Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.228
Filtrar
1.
Luminescence ; 39(6): e4798, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825785

RESUMO

Cellular hypoxia is a common pathological process in various diseases. Detecting cellular hypoxia is of great scientific significance for early diagnosis of tumors. The hypoxia fluorescence probe analysis method can efficiently and conveniently evaluate the hypoxia status in tumor cells. These probes are covalently linked by hypoxic recognition groups and organic fluorescent molecules. Currently, the fluorescent molecules used in these probes often exhibit the aggregation-caused quenching effect, which is not conducive to fluorescence imaging in water. Herein, an activatable hypoxia fluorescence probe was constructed by covalently linking aggregation-induced emission luminogens to the hypoxic recognition group azobenzene. It does not emit fluorescence in solution and in solid state under light excitation due to the presence of photosensitive azo bonds. It can be cleaved by intracellular azoreductase into fluorescent amino derivatives with aggregation-induced emission characteristic. As the concentration of oxygen in cells decreases, its fluorescence intensity increases, making it suitable for fluorescence imaging to detect hypoxic environment in live cancer cells. This work broadens the molecular design approach for activatable hypoxia fluorescent probes.


Assuntos
Hipóxia Celular , Corantes Fluorescentes , Imagem Óptica , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Estrutura Molecular , Compostos Azo/química , Células HeLa , Fluorescência
2.
Pak J Pharm Sci ; 37(1(Special)): 173-184, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38747267

RESUMO

Hydrazones 1-6, azo-pyrazoles 7-9 and azo-pyrimidines 10-15 are compounds that exhibit antibacterial activity. The mode of action and structures of these derivatives have been previously confirmed as antibacterial. In this investigation, biological screening and molecular docking studies were performed for derivatives 1-15, with compounds 2, 7, 8, 14 and 15 yielding the best energy scores (from -20.7986 to -10.5302 kcal/mol). Drug-likeness and in silico ADME prediction for the most potent derivatives, 2, 7, 8, 14 and 15, were predicted (from 84.46 to 96.85%). The latter compounds showed good recorded physicochemical properties and pharmacokinetics. Compound 8 demonstrated the strongest inhibition, which was similar to the positive control (eflornithine) against Trypanosoma brucei brucei (WT), with an EC50 of 25.12 and 22.52µM, respectively. Moreover, compound 14 exhibited the best activity against Leishmania mexicana promastigotes and Leishmania major promastigotes (EC50 =46.85; 40.78µM, respectively).


Assuntos
Simulação de Acoplamento Molecular , Pirazóis , Pirimidinas , Tripanossomicidas , Trypanosoma brucei brucei , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Trypanosoma brucei brucei/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/química , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Leishmania mexicana/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/química , Simulação por Computador , Compostos Azo/farmacologia , Compostos Azo/química , Compostos Azo/síntese química , Relação Estrutura-Atividade , Testes de Sensibilidade Parasitária
3.
PeerJ ; 12: e17328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770094

RESUMO

Nanotechnology and nanoparticles have gained massive attention in the scientific community in recent years due to their valuable properties. Among various AgNPs synthesis methods, microbial approaches offer distinct advantages in terms of cost-effectiveness, biocompatibility, and eco-friendliness. In the present research work, investigators have synthesized three different types of silver nanoparticles (AgNPs), namely AgNPs-K, AgNPs-M, and AgNPs-E, by using Klebsiella pneumoniae (MBC34), Micrococcus luteus (MBC23), and Enterobacter aerogenes (MBX6), respectively. The morphological, chemical, and elemental features of the synthesized AgNPs were analyzed by using UV-Vis spectroscopy (UV-Vis), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and energy-dispersive spectroscopy (EDX). UV-Vis absorbance peaks were obtained at 475, 428, and 503 nm for AgNPs-K, AgNPs-M, and AgNPs-E, respectively. The XRD analysis confirmed the crystalline nature of the synthesized AgNPs, having peaks at 26.2°, 32.1°, and 47.2°. At the same time, the FTIR showed bands at 599, 963, 1,693, 2,299, 2,891, and 3,780 cm-1 for all the types of AgNPs indicating the presence of bacterial biomolecules with the developed AgNPs. The size and morphology of the AgNPs varied from 10 nm to several microns and exhibited spherical to porous sheets-like structures. The percentage of Ag varied from 37.8% (wt.%) to 61.6%, i.e., highest in AgNPs-K and lowest in AgNPs-M. Furthermore, the synthesized AgNPs exhibited potential for environmental remediation, with AgNPs-M exhibiting the highest removal efficiency (19.24% at 120 min) for methyl orange dye in simulated wastewater. Further, all three types of AgNPs were evaluated for the removal of methyl orange dye from the simulated wastewater, where the highest dye removal percentage was 19.24% at 120 min by AgNPs-M. Antibacterial potential of the synthesized AgNPs assessment against both Gram-positive (GPB) Bacillus subtilis (MBC23), B. cereus (MBC24), and Gram-negative bacteria Enterococcus faecalis (MBP13) revealed promising results, with AgNPs-M, exhibiting the largest zone of inhibition (12 mm) against GPB B. megaterium. Such investigation exhibits the potential of the bacteria for the synthesis of AgNPs with diverse morphology and potential applications in environmental remediation and antibacterial therapy-based synthesis of AgNPs.


Assuntos
Compostos Azo , Nanopartículas Metálicas , Micrococcus luteus , Prata , Prata/química , Prata/farmacologia , Prata/metabolismo , Nanopartículas Metálicas/química , Compostos Azo/química , Compostos Azo/farmacologia , Compostos Azo/metabolismo , Micrococcus luteus/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/metabolismo , Difração de Raios X , Poluentes Químicos da Água/metabolismo , Corantes/química , Corantes/farmacologia
4.
Sci Rep ; 14(1): 10419, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710746

RESUMO

The present work elicits a novel approach to combating COVID-19 by synthesizing a series of azo-anchored 3,4-dihydroimidazo[4,5-b]indole derivatives. The envisaged methodology involves the L-proline-catalyzed condensation of para-amino-functionalized azo benzene, indoline-2,3-dione, and ammonium acetate precursors with pertinent aryl aldehyde derivatives under ultrasonic conditions. The structures of synthesized compounds were corroborated through FT-IR, 1H NMR, 13C NMR, and mass analysis data. Molecular docking studies assessed the inhibitory potential of these compounds against the main protease (Mpro) of SARS-CoV-2. Remarkably, in silico investigations revealed significant inhibitory action surpassing standard drugs such as Remdesivir, Paxlovid, Molnupiravir, Chloroquine, Hydroxychloroquine (HCQ), and (N3), an irreversible Michael acceptor inhibitor. Furthermore, the highly active compound was also screened for cytotoxicity activity against HEK-293 cells and exhibited minimal toxicity across a range of concentrations, affirming its favorable safety profile and potential suitability. The pharmacokinetic properties (ADME) of the synthesized compounds have also been deliberated. This study paves the way for in vitro and in vivo testing of these scaffolds in the ongoing battle against SARS-CoV-2.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Indóis , Simulação de Acoplamento Molecular , Inibidores de Proteases , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , SARS-CoV-2/efeitos dos fármacos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Células HEK293 , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Imidazóis/farmacologia , Imidazóis/química , Imidazóis/síntese química , Simulação por Computador , COVID-19/virologia , Compostos Azo/farmacologia , Compostos Azo/química , Compostos Azo/síntese química
5.
PLoS One ; 19(5): e0300402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805514

RESUMO

The examination of photocatalyst powders for the total removal of pollutants from aqueous solutions is a vital research subject within the realm of environmental preservation. The objective of this study is to develop a photocatalyst heterojunction consisting of Zingiber/ZnO-H for the degradation of both the reactive red dye (RR 141) and ofloxacin antibiotic in wastewater. The current investigation outlines the process of synthesising a composite material by combining Zingiber montanum extract with zinc oxide (ZnO) by a hydrothermal method. The synthesis was conducted at a temperature of 180°C for a period of 4 hours. Consequently. The photocatalyst with a constructed heterojunction shown a notable enhancement in its photocatalytic activity as a result of the improved efficiency in charge separation at the interface. The application of economically viable solar energy facilitated the complete eradication of harmful pollutants through the process of detoxification. The removal of impurities occurs by a process that follows a first-order kinetics. Among the pollutants, RR141 demonstrates the greatest rate constant at 0.02 min-1, while ofloxacin has a rate constant of 0.01 min-1. The assessment of the stability of the produced photocatalyst was conducted after undergoing five cycles. This study additionally investigated the influence of sunshine on degradation, uncovering degradation rates of 97% for RR141 and 99% for ofloxacin when exposed to UV Lamp, and degradation rates of 97% for RR141 and 95% for ofloxacin when exposed to Solar Light.


Assuntos
Antibacterianos , Ofloxacino , Fotólise , Óxido de Zinco , Óxido de Zinco/química , Ofloxacino/química , Antibacterianos/química , Compostos Azo/química , Poluentes Químicos da Água/química , Catálise , Cinética
6.
J Chromatogr A ; 1727: 464978, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38788401

RESUMO

A novel azo-linked porous organic polymer (AL-POP) was synthesized from caffeic acid and benzidine via an azo-coupling reaction and characterized by FTIR, SEM-EDS, BET, TGA, XRD and zeta potential analysis. AL-POPs were incorporated into melamine sponges and used for pipette tip micro solid-phase extraction (PT-MSPE) of six types of B vitamins (including thiamine, riboflavin, nicotinamide, pyridoxine, folic acid, and cyanocobalamin). After extraction, the samples were analyzed using high performance liquid chromatography-diode array detection (HPLC-DAD) system. The effect of AL-POP composition on the extraction efficiency (EE) of vitamins was investigated and benzidine to caffeic acid mol ratio of 1.5, 3.35 mmol of NaNO2, and reaction time of 8 h were selected as optimum conditions. The efficiency of the extraction process was improved by optimizing various parameters such as the amount of sorbent, pH and ionic strength of the sample, sample volume, number of sorption and desorption cycles, type of wash solvent, and type and volume of eluent solvent. Linearity (R2≥0.9987), Limit of detection (LOD) (11.88-18.97 ng/mL), limit of quantification (LOQ) (39.62-63.23 ng/mL), and enrichment factor (EF) (1.27-4.31) were obtained using calibration curves plotted under optimum conditions. Recovery values of these six B vitamins in the spiked multivitamin syrup samples varied from 80.01% to 108.35%, with a relative standard deviation (RSD) below 5.44%. Eventually, the optimized method was successfully used to extract and quantify the B vitamins in multivitamin syrup and non-alcoholic beer.


Assuntos
Limite de Detecção , Triazinas , Complexo Vitamínico B , Triazinas/análise , Triazinas/química , Triazinas/isolamento & purificação , Porosidade , Cromatografia Líquida de Alta Pressão/métodos , Complexo Vitamínico B/análise , Complexo Vitamínico B/química , Complexo Vitamínico B/isolamento & purificação , Adsorção , Polímeros/química , Compostos Azo/análise , Compostos Azo/química , Compostos Azo/isolamento & purificação , Microextração em Fase Sólida/métodos , Extração em Fase Sólida/métodos , Concentração de Íons de Hidrogênio
7.
Anal Chem ; 96(19): 7723-7729, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695281

RESUMO

Accurate detection of labile analytes through activity based fluorogenic sensing is meaningful but remains a challenge because of nonrapid reaction kinetic. Herein, we present a signaling reporter engineering strategy to accelerate azoreduction reaction by positively charged fluorophore promoted unstable anion recognition for rapidly sensing sodium dithionite (Na2S2O4), a kind of widespread used but harmful inorganic reducing agent. Its quick decomposition often impedes application reliability of traditional fluorogenic probes in real samples because of their slow responses. In this work, four azo-based probes with different charged fluorophores (positive, zwitterionic, neutral, and negative) were synthesized and compared. Among of them, with sequestration effect of positively charged anthocyanin fluorophore for dithionite anion via electrostatic attraction, the cationic probe Azo-Pos displayed ultrafast fluorogenic response (∼2 s) with the fastest response kinetic (kpos' = 0.373 s-1) that is better than other charged ones (kzwi' = 0.031 s-1, kneu' = 0.013 s-1, kneg' = 0.003 s-1). Azo-Pos was demonstrated to be capable to directly detect labile Na2S2O4 in food samples and visualize the presence of Na2S2O4 in living systems in a timely fashion. This new probe has potential as a robust tool to fluorescently monitor excessive food additives and biological invasion of harmful Na2S2O4. Moreover, our proposed accelerating strategy would be versatile to develop more activity-based sensing probes for quickly detecting other unstable analytes of interest.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Humanos , Ditionita/química , Compostos Azo/química , Cinética
8.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792089

RESUMO

1-(3-aryl)-3-(dimethylamino)prop-2-en-1-one (enaminones) derivatives and the diazonium salt of para-chloroaniline were used to synthesize several novel disperse azo dyes with high yield and the use of an environmentally friendly approach. At 100 and 130 °C, we dyed polyester fabrics using the new synthesized disperse dyes. At various temperatures, the dyed fabrics' color intensity was assessed. The results we obtained showed that dyeing utilizing a high temperature method at 130 °C was enhanced than dyeing utilizing a low temperature method at 100 °C. Reusing dye baths once or twice was a way to achieve two goals at the same time. The first was obtaining a dyed product at no cost, and the second was a way to treat the wastewater of dyeing bath effluents and reuse it again. Good results were obtained for the fastness characteristics of polyester dyed with disperse dyes. When the disperse dyes were tested against certain types of microbes and cancer cells, they demonstrated good and encouraging findings for the potential to be used as antioxidants and antimicrobial agents.


Assuntos
Corantes , Poliésteres , Têxteis , Poliésteres/química , Poliésteres/síntese química , Corantes/química , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Compostos Azo/química , Compostos Azo/síntese química , Testes de Sensibilidade Microbiana
9.
J Agric Food Chem ; 72(22): 12469-12477, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771932

RESUMO

Photopharmacology can be implemented in a way of regulating drug activities by light-controlling the molecular configuations. Three photochromic ligands (PCLs) that bind on one or two sites of GABARs and nAChRs were reported here. These multiphoton PCLs, including FIP-AB-FIP, IMI-AB-FIP, and IMI-AB-IMI, are constructed with an azobenzene (AB) bridge that covalently connects two fipronil (FIP) and imidacloprid (IMI) molecules. Interestingly, the three PCLs as well as FIP and IMI showed great insecticidal activities against Aedes albopictus larvae and Aphis craccivora. IMI-AB-FIP in both trans/cis isomers can be reversibly interconverted depending on light, accompanied by insecticidal activity decrease or increase by 1.5-2.3 folds. In addition, IMI-AB-FIP displayed synergistic effects against A. craccivora (LC50, IMI-AB-FIP = 14.84-22.10 µM, LC50, IMI-AB-IMI = 210.52-266.63 µM, LC50, and FIP-AB-FIP = 36.25-51.04 µM), mainly resulting from a conceivable reason for simultaneous targeting on both GABARs and nAChRs. Furthermore, modulations of wiggler-swimming behaviors and cockroach neuron function were conducted and the results indirectly demonstrated the ligand-receptor interactions. In other words, real-time regulations of receptors and insect behaviors can be spatiotemporally achieved by our two-photon PCLs using light.


Assuntos
Aedes , Compostos Azo , Inseticidas , Neonicotinoides , Nitrocompostos , Pirazóis , Animais , Nitrocompostos/química , Nitrocompostos/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Compostos Azo/química , Compostos Azo/farmacologia , Neonicotinoides/química , Neonicotinoides/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Aedes/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Comportamento Animal/efeitos dos fármacos , Luz , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA/química
10.
Int J Biol Macromol ; 270(Pt 1): 132056, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704070

RESUMO

Since the potential carcinogenic, toxic and non-degradable dyes trigger serious environmental contamination by improper treatment, developing novel adsorbents remains a major challenge. A novel high efficiency and biopolymer-based environmental-friendly adsorbent, chitosan­sodium tripolyphosphate-melamine sponge (CTS-STPP-MS) composite, was prepared for Orange II removing with chitosan as raw material, sodium tripolyphosphate as cross-linking agent. The composite was carefully characterized by SEM, EDS, FT-IR and XPS. The influence of crosslinking conditions, dosage, pH, initial concentration, contacting time and temperature on adsorption were tested through batch adsorption experiments. CTS-STPP-MS adsorption process was exothermic, spontaneous and agreed with Sips isotherm model accompanying the maximum adsorption capacity as 948 mg∙g-1 (pH = 3). Notably, the adsorption performance was outstanding for high concentration solutions, with a removal rate of 97 % in up to 2000 mg∙L-1 OII solution (100 mg sorbent dosage, 50 mL OII solution, pH = 3, 289.15 K). In addition, the adsorption efficiency yet remained 97.85 % after 5 repeated adsorption-desorption cycles. The driving force of adsorption was attributed to electrostatic attraction and hydrogen bonds which was proved by adsorption results coupled with XPS. Owing to the excellent properties of high-effective, environmental-friendly, easy to separate and regenerable, CTS-STPP-MS composite turned out to be a promising adsorbent in contamination treatment.


Assuntos
Compostos Azo , Quitosana , Triazinas , Poluentes Químicos da Água , Quitosana/química , Quitosana/análogos & derivados , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Triazinas/química , Compostos Azo/química , Compostos Azo/isolamento & purificação , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Benzenossulfonatos/química , Cinética , Polifosfatos/química , Ânions/química , Temperatura , Corantes/química , Corantes/isolamento & purificação
11.
Chemosphere ; 359: 142261, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714246

RESUMO

In this study, we investigated the freezing-induced acceleration of dye bleaching by chloride-activated peroxymonosulfate (PMS). It has been observed that the oxidation of chloride by PMS generates a free chlorine species, such as hypochlorous acid (HOCl), under mild acidic and circumneutral pH condition. This process is the major reason for the enhanced oxidation capacity for electron-rich organic compounds (e.g., phenol) in the chloride-PMS system. However, we demonstrated that the chloride-PMS system clearly reduced the total organic carbon concentration (TOC), whereas the HOCl system did not lead to decrease in TOC. Overall, the chemical reaction is negligible in an aqueous condition if the concentrations of reagents are low, and freezing the solution accelerates the degradation of dye pollutants remarkably. Most notably, the pseudo-first order kinetic rate constant for acid orange 7 (AO7) degradation is approximately 0.252 h-1 with 0.5 mM PMS, 1 mM NaCl, initial pH 3, and a freezing temperature of -20 °C. AO7 degradation is not observed when the solution is not frozen. According to a confocal Raman-microscope analysis and an experiment that used an extremely high dose of reactants, the freeze concentration effect is the main reason for the acceleration phenomenon. Because the freezing phenomenon is spontaneous at high latitudes and at mid-latitudes in winter, and the chloride is ubiquitous elsewhere, the frozen chloride-PMS system has potential as a method for energy-free and eco-friendly technology for the degradation of organic pollutants in cold environments.


Assuntos
Compostos Azo , Cloretos , Corantes , Congelamento , Oxirredução , Peróxidos , Poluentes Químicos da Água , Compostos Azo/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Corantes/química , Peróxidos/química , Cloretos/química , Cinética , Concentração de Íons de Hidrogênio
12.
Int J Biol Macromol ; 270(Pt 1): 132304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744361

RESUMO

Until now, black titania has attracted much interest as a potential photocatalyst. In this contribution, we report the first demonstration of the effective strategy to fundamentally improve the photocatalytic performance using a novel sustainable defective titanium­carbon-phosphorous (TCPH) hybrid nanocomposite. The prepared TCPH was used for photocatalytic degradation of the main organic pollutants, which is methyl orange (MO) dye. The physico-chemical properties of as-prepared samples were characterized by various techniques to observe the transformations after carbonization and the interaction between different composite phases. The existence of Ti+3 and oxygen vacancies at the surface, and a notable increase in surface area, are all demonstrated by TCPH, together with the distinct core-shell structure. These unique properties exhibit excellent photocatalytic performance due to the boosted charge transport and separation. The highest degradation efficiency of methyl orange (MO) was attained in the case of TCPH when compared with titanium-cellulose-phosphorous (TCeP) and titanium­carbon-phosphorous (TCPN). Accordingly, the highest degradation efficiency was achieved by applying the optimal operational conditions of 1 g/L of TCPH catalyst, 10 mg/L of MO, pH of 7 and the temperature at 25 ± 3 °C after 3 min under LED lamp (365 nm) with light intensity 100 mW/cm2. The degradation mechanism was investigated, and the trapping tests showed the dominance of hydroxyl radicals in the degradation of MO. TCPH showed high stability under a long period of operation in five consecutive cycles, which renders the highly promising on an industrial scale. The fabrication of highly active defective titanium­carbon-phosphorous opens new opportunities in various areas, including water splitting, and CO2 reduction.


Assuntos
Carbono , Celulose , Fósforo , Titânio , Titânio/química , Carbono/química , Catálise , Fósforo/química , Celulose/química , Compostos Azo/química , Nanocompostos/química , Processos Fotoquímicos
13.
Int J Biol Macromol ; 270(Pt 1): 132329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744362

RESUMO

The present work develops an effective bioadsorbent of cross-linked chitosan-genipin/SiO2 adsorbent (CHI-GNP/SiO2). The developed CHI-GNP/SiO2 was employed for the removal of organic dye (reactive orange 16, RO16) from simulated wastewater. The optimization of the fundamental adsorption variables (CHI-GNP/SiO2 dose, time, and pH) via the Box-Behnken design (BBD) was attained for achieving maximal adsorption capacity and high removal efficiency. The good agreement between the Freundlich isotherms and empirical data of RO16 adsorption by CHI-GNP/SiO2 indicates that the adsorption process follows a multilayer adsorption mechanism. The reasonable agreement between the pseudo-second-order model and the kinetic data of RO16 adsorption by CHI-GNP/SiO2 was obtained. The maximum RO16 adsorption capacity (qmax) of CHI-GNP/SiO2 was identified to be 57.1 mg/g. The adsorption capacity of CHI-GNP/SiO2 is attributed to its unique surface properties, including its highly porous structure and the presence of functional groups such as amino and hydroxyl groups. According to the results of this investigation, CHI-GNP/SiO2 has the potential to be an adsorbent for the removal of acidic dyes from wastewater.


Assuntos
Compostos Azo , Quitosana , Dióxido de Silício , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Dióxido de Silício/química , Adsorção , Compostos Azo/química , Compostos Azo/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cinética , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Modelos Estatísticos , Águas Residuárias/química , Corantes/química , Corantes/isolamento & purificação , Iridoides
14.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731445

RESUMO

Reducing high concentrations of pollutants such as heavy metals, pesticides, drugs, and dyes from water is an emerging necessity. We evaluated the use of Luffa cylindrica (Lc) as a natural non-conventional adsorbent to remove azo dye mixture (ADM) from water. The capacity of Lc at three different doses (2.5, 5.0, and 10.0 g/L) was evaluated using three concentrations of azo dyes (0.125, 0.250, and 0.500 g/L). The removal percent (R%), maximum adsorption capacity (Qm), isotherm and kinetics adsorption models, and pH influence were evaluated, and Fourier-transform infrared spectroscopy and scanning electron microscopy were performed. The maximum R% was 70.8% for 10.0 g L-1Lc and 0.125 g L-1 ADM. The Qm of Lc was 161.29 mg g-1. Adsorption by Lc obeys a Langmuir isotherm and occurs through the pseudo-second-order kinetic model. Statistical analysis showed that the adsorbent dose, the azo dye concentration, and contact time significantly influenced R% and the adsorption capacity. These findings indicate that Lc could be used as a natural non-conventional adsorbent to reduce ADM in water, and it has a potential application in the pretreatment of wastewaters.


Assuntos
Compostos Azo , Corantes , Luffa , Poluentes Químicos da Água , Purificação da Água , Luffa/química , Compostos Azo/química , Compostos Azo/isolamento & purificação , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Cinética , Corantes/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
16.
Bioresour Technol ; 400: 130698, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615967

RESUMO

The growing textile industry produces large volumes of hazardous wastewater containing dyes, which stresses the need for cheap, efficient adsorbing technologies. This study investigates a novel preprocessing method for producing activated carbons from abundantly available softwood bark. The preprocessing involved a continuous steam explosion preconditioning step, chemical activation with ZnCl2, pyrolysis at 600 and 800 °C, and washing. The activated carbons were subsequently characterized by SEM, XPS, Raman and FTIR prior to evaluation for their effectiveness in adsorbing reactive orange 16 and two synthetic dyehouse effluents. Results showed that the steam-exploded carbon, pyrolyzed at 600 °C, obtained the highest BET specific surface area (1308 m2/g), the best Langmuir maximum adsorption of reactive orange 16 (218 mg g-1) and synthetic dyehouse effluents (>70 % removal) of the tested carbons. Finally, steam explosion preconditioning could open up new and potentially more sustainable process routes for producing functionalized active carbons.


Assuntos
Compostos Azo , Carvão Vegetal , Casca de Planta , Vapor , Adsorção , Casca de Planta/química , Compostos Azo/química , Carvão Vegetal/química , Corantes/química , Carbono/química , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/métodos , Poluentes Químicos da Água , Águas Residuárias/química , Análise Espectral Raman
18.
Langmuir ; 40(18): 9761-9774, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663878

RESUMO

Stimuli-responsive behaviors and controlled release in liposomes are pivotal in nanomedicine. To this end, we present an approach using a photoresponsive azobenzene nanocluster (AzDmpNC), prepared from azobenzene compounds through melting and aggregation. When integrated with liposomes, they form photoresponsive vesicles. The morphology and association with liposomes were investigated by using transmission electron microscopy. Liposomes loaded with calcein exhibited a 9.58% increased release after UV exposure. To gain insights into the underlying processes and elucidate the mechanisms involved. The molecular dynamic simulations based on the reactive force field and all-atom force field were employed to analyze the aggregation of isomers into nanoclusters and their impacts on phospholipid membranes, respectively. The results indicate that the nanoclusters primarily aggregate through π-π and T-stacking forces. The force density inside the cis-isomer of AzDmpNC formed after photoisomerization is lower, leading to its easier dispersion, rapid diffusion, and penetration into the membrane, disrupting the densification.


Assuntos
Compostos Azo , Lipossomos , Simulação de Dinâmica Molecular , Compostos Azo/química , Compostos Azo/efeitos da radiação , Lipossomos/química , Nanopartículas/química , Raios Ultravioleta , Fluoresceínas/química , Processos Fotoquímicos
19.
Int J Biol Macromol ; 267(Pt 2): 131478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604434

RESUMO

In this study, an environmentally friendly, effective, easily synthesizable and recoverable nano-sized catalyst system (Ag@NaAlg-keratin) was designed by decorating Ag nanoparticles on microbeads containing sodium alginate (NaAlg) and keratin obtained from goose feathers. The structure, morphology and crystallinity of the Ag@NaAlg-keratin nanocatalyst were evaluated by XRD, FT-IR, FE-SEM, EDS/EDS mapping and TEM analyses. Catalytic ability of designed Ag@NaAlg-keratin nanocatalyst was then investigated against 4-nitrophenol (4-NP) and methyl orange (MO) reductions. Ag@NaAlg-keratin nanocatalyst effectively reduced 4-NP in 6 min and MO in 5 min, with rate constants of 0.17 min-1 and 0.16 min-1, respectively. Additionally, activation energies (Ea) were found as 39.8 kJ/mol for 4-NP and 37.9 kJ/mol for MO. Performed recyclability tests showed that the Ag@NaAlg-keratin nanocatalyst was easily recovered due to its microbead form and successfully reused five times, maintaining both its activity and structure. Furthermore, antioxidant activity of Ag@NaAlg-keratin nanocatalyst was the highest (73.16 %).


Assuntos
Alginatos , Antioxidantes , Queratinas , Nanopartículas Metálicas , Microesferas , Prata , Alginatos/química , Nanopartículas Metálicas/química , Prata/química , Queratinas/química , Catálise , Antioxidantes/química , Antioxidantes/farmacologia , Animais , Nitrofenóis/química , Plumas/química , Compostos Azo/química
20.
Int J Biol Macromol ; 267(Pt 2): 131533, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608988

RESUMO

As a renewable aromatic compound with enormous production potential, lignin has various potential high-value utilization pathways, but the success achieved in the field of photocatalysis is limited. Herein, this work prepares a new type of photocatalyst by modifying Graphitic Carbon Nitride Nanotubes (CNT) with self-assembled lignin nanospheres for the photocatalytic production of H2O2 and the degradation of azo dyes. Under light conditions, lignin enhances the production of H2O2 through oxygen reduction and collaborates with carbon nitride tubes to generate O2- and 1O2. Furthermore, carbon nitride tubes form electron-rich regions with lignin, promoting the transfer of electrons from adsorbed aromatic pollutants to this region, thereby facilitating their degradation. The experimental results indicate that the addition of 5 % lignin significantly enhances the photocatalytic degradation efficiency of azo dyes, with a degradation rate 1.87 times higher than that of the original carbon nitride tubes. Furthermore, CNL also have excellent degradation ability to pollutants in actual wastewater. This study provides new insights and prospects for the high-value utilization of lignin, enabling it to be used as a photocatalytic co-catalyst to participate in the photocatalytic degradation of environmental pollutants.


Assuntos
Grafite , Peróxido de Hidrogênio , Lignina , Lignina/química , Grafite/química , Catálise , Peróxido de Hidrogênio/química , Nanotubos/química , Nitrilas/química , Compostos Azo/química , Compostos de Boro/química , Poluentes Químicos da Água/química , Processos Fotoquímicos , Nanotubos de Carbono/química , Compostos de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA