Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.037
Filtrar
1.
Anal Chim Acta ; 1313: 342700, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38862203

RESUMO

BACKGROUND: L-p-Boronophehylalanine (BPA) is used in boron neutron capture therapy (BNCT), which is a novel selective cancer radiotherapy technique. It is important to measure BPA levels in human blood for effective radiotherapy; a prompt gamma-ray spectrometer, ICP-AES, and ICP-MS have been used for this purpose. However, these methods require sophisticated and expensive apparatuses as well as experienced analysts. Herein, we propose an HPLC-FL method for the determination of BPA after precolumn derivatization. A new fluorogenic reagent for aryl boronic acid derivatives, namely, 4-iodobenzonitrile, was employed for the fluorogenic derivatization of BPA based on the Suzuki coupling reaction. RESULTS: After the fluorogenic derivatization, a fluorescent cyanobiphenyl derivative is formed with maximum fluorescence at 335 nm after excitation at 290 nm. The developed method showed good linearity (r2=0.997) over the concentration range of 0.5-1000 nmol/L, and the detection limit (S/N = 3) was 0.26 nmol/L. The proposed method is more sensitive than previously reported methods for the determination of BPA, including the ICP-MS. Finally, the proposed method was successively applied to the measurement of BPA in human whole blood samples with a good recovery rate (≥95.7 %) using only 10 µL of blood sample. The proposed method offers a simple and efficient solution for monitoring BPA levels in BNCT-treated patients. SIGNIFICANCE: 4-Iodobenzonitrile was investigated as a new fluorogenic reagent for BPA based on Suzuki coupling. A new HPLC-FL method for BPA in whole blood samples with ultrasensitivity was developed. The developed method is superior in sensitivity to all previously reported methods for BPA. The method requires only a very small sample volume, making it suitable for micro-blood analysis of BPA via fingerstick sampling.


Assuntos
Corantes Fluorescentes , Nitrilas , Fenilalanina , Humanos , Nitrilas/química , Nitrilas/sangue , Cromatografia Líquida de Alta Pressão/métodos , Corantes Fluorescentes/química , Fenilalanina/sangue , Fenilalanina/análogos & derivados , Fenilalanina/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Compostos de Boro/química , Compostos de Boro/sangue
2.
Theranostics ; 14(8): 3193-3212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855185

RESUMO

As a developing radiation treatment for tumors, neutron capture therapy (NCT) has less side effects and a higher efficacy than conventional radiation therapy. Drugs with specific isotopes are indispensable counterparts of NCT, as they are the indespensable part of the neutron capture reaction. Since the creation of the first and second generations of boron-containing reagents, NCT has significantly advanced. Notwithstanding, the extant NCT medications, predominantly comprised of small molecule boron medicines, have encountered challenges such monofunctionality, inadequate targeting of tumors, and hypermetabolism. There is an urgent need to promote the research and development of new types of NCT drugs. Bio-nanomaterials can be introduced into the realm of NCT, and nanotechnology can give conventional medications richer functionality and significant adaptability. This can complement the advantages of each other and is expected to develop more new drugs with less toxicity, low side effects, better tumor targeting, and high biocompatibility. In this review, we summarized the research progress of nano-drugs in NCT based on the different types and sources of isotopes used, and introduced the attempts and efforts made by relevant researchers in combining nanomaterials with NCT, hoping to provide pivotal references for promoting the development of the field of tumor radiotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Animais , Terapia por Captura de Nêutron/métodos , Nanopartículas/química , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Nanotecnologia/métodos , Terapia por Captura de Nêutron de Boro/métodos , Compostos de Boro/uso terapêutico , Compostos de Boro/química , Compostos de Boro/farmacologia
3.
Food Res Int ; 188: 114341, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823851

RESUMO

Spatiotemporal assessment of lipid and protein oxidation is key for understanding quality deterioration in emulsified food products containing polyunsaturated fatty acids. In this work, we first mechanistically validated the use of the lipid oxidation-sensitive fluorophore BODIPY 665/676 as a semi-quantitative marker for local peroxyl radical formation. Next, we assessed the impact of microfluidic and colloid mill emulsification (respectively producing mono- and polydisperse droplets) on local protein and lipid oxidation kinetics in whey protein isolate (WPI)-stabilized emulsions. We further used BODIPY 581/591 C11 and CAMPO-AFDye 647 as colocalisation markers for lipid and protein oxidation. The polydisperse emulsions showed an inverse relation between droplet size and lipid oxidation rate. Further, we observed less protein and lipid oxidation occurring in similar sized droplets in monodisperse emulsions. This observation was linked to more heterogeneous protein packing at the droplet surface during colloid mill emulsification, resulting in larger inter-droplet heterogeneity in both protein and lipid oxidation. Our findings indicate the critical roles of emulsification methods and droplet sizes in understanding and managing lipid oxidation.


Assuntos
Emulsões , Oxirredução , Tamanho da Partícula , Proteínas do Soro do Leite , Proteínas do Soro do Leite/química , Emulsões/química , Compostos de Boro/química , Cinética , Peróxidos/química , Lipídeos/química
4.
ACS Appl Mater Interfaces ; 16(20): 26870-26885, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739846

RESUMO

Pathogen detection has become a major research area all over the world for water quality surveillance and microbial risk assessment. Therefore, designing simple and sensitive detection kits plays a key role in envisaging and evaluating the risk of disease outbreaks and providing quality healthcare settings. Herein, we have designed a facile and low-cost colorimetric sensing strategy for the selective and sensitive determination of ß-galactosidase producing pathogens. The hexagonal boron nitride quantum dots (h-BN QDs) were established as a nanozyme that showed prominent peroxidase-like activity, which catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by H2O2. The h-BN QDs were embedded on a layer-by-layer assembled agarose biopolymer. The ß-galactosidase enzyme partially degrades ß-1,4 glycosidic bonds of agarose polymer, resulting in accessibility of h-BN QDs on the solid surface. This assay can be conveniently conducted and analyzed by monitoring the blue color formation due to TMB oxidation within 30 min. The nanocomposite was stable for more than 90 days and was showing TMB oxidation after incubating it with Escherichia coli (E. coli). The limit of detection was calculated to be 1.8 × 106 and 1.5 × 106 CFU/mL for E. coli and Klebsiella pneumonia (K. pneumonia), respectively. Furthermore, this novel sensing approach is an attractive platform that was successfully applied to detect E. coli in spiked water samples and other food products with good accuracy, indicating its practical applicability for the detection of pathogens in real samples.


Assuntos
Benzidinas , Compostos de Boro , Colorimetria , Escherichia coli , Pontos Quânticos , beta-Galactosidase , Pontos Quânticos/química , Colorimetria/métodos , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , Compostos de Boro/química , Benzidinas/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Peroxidase/química , Peroxidase/metabolismo , Limite de Detecção , Oxirredução , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação
5.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792159

RESUMO

As a development of our research on biocompatible glycoconjugate probes and specifically multi-chromophoric systems, herein, we report the synthesis and early bactericidal tests of two luminescent glycoconjugates whose basic structure is characterized by two boron dipyrromethene difluoride (BODIPY) moieties and three galactoside rings mounted on an oligophenylene ethynylene (OPE) skeleton. BODIPY fluorophores have found widespread application in many branches of biology in the last few decades. In particular, molecular platforms showing two different BODIPY groups have unique photophysical behavior useful in fluorescence imaging. Construction of the complex architecture of the new probes is accomplished through a convergent route that exploits a series of copper-free Heck-Cassar-Sonogashira cross-couplings. The great emergency due to the proliferation of bacterial infections, in conjunction with growing antibiotic resistance, requires the production of new multifunctional drugs and efficient methods for their targeted delivery to control bacteria-associated diseases. Preliminary studies of the glycoconjugate properties as antibacterial agents against representatives of Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) pathogens, which are associated with chronic infections, indicated significant bactericidal activity ascribable to their structural features.


Assuntos
Antibacterianos , Compostos de Boro , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Glicoconjugados/química , Glicoconjugados/farmacologia , Glicoconjugados/síntese química , Estrutura Molecular , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química
6.
Anal Chem ; 96(21): 8586-8593, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728058

RESUMO

Nowadays, signal enhancement is imperative to increase sensitivity of advanced ECL devices for expediting their promising applications in clinic. In this work, photodynamic-assisted electrochemiluminescence (PDECL) device was constructed for precision diagnosis of Parkinson, where an advanced emitter was prepared by electrostatically linking 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) with 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]). Specifically, protoporphyrin IX (PPIX) can trigger the photodynamic reaction under light irradiation with a wavelength of 450 nm to generate lots of singlet oxygen (1O2), showing a 2.43-fold magnification in the ECL responses. Then, the aptamer (Apt) was assembled on the functional BET-[BMIm] for constructing a "signal off" ECL biosensor. Later on, the PPIX was embedded into the G-quadruplex (G4) of the Apt to magnify the ECL signals for bioanalysis of α-synuclein (α-syn) under light excitation. In the optimized surroundings, the resulting PDECL sensor has a broad linear range of 100.0 aM ∼ 10.0 fM and a low limit of detection (LOD) of 63 aM, coupled by differentiating Parkinson patients from normal individuals according to the receiver operating characteristic (ROC) curve analysis of actual blood samples. Such research holds great promise for synthesis of other advanced luminophores, combined with achieving an early clinical diagnosis.


Assuntos
Compostos de Boro , Técnicas Eletroquímicas , Medições Luminescentes , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/sangue , Compostos de Boro/química , Técnicas Biossensoriais/métodos , alfa-Sinucleína/análise , alfa-Sinucleína/sangue , Protoporfirinas/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção
7.
Anal Chem ; 96(21): 8356-8364, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753674

RESUMO

Lipids are essential for various cellular functions, including energy storage, membrane flexibility, and signaling molecule production. Maintaining proper lipid levels is important to prevent health problems such as cancer, neurodegenerative disorders, cardiovascular diseases, obesity, and diabetes. Monitoring cellular lipid droplets (LDs) in real-time with high resolution can provide insights into LD-related pathways and diseases owing to the dynamic nature of LDs. Fluorescence-based imaging is widely used for tracking LDs in live cells and animal models. However, the current fluorophores have limitations such as poor photostability and high background staining. Herein, we developed a novel fluorogenic probe based on a push-pull interaction combined with aggregation-induced emission enhancement (AIEE) for dynamic imaging of LDs. Probe 1 exhibits favorable membrane permeability and spectroscopic characteristics, allowing specific imaging of cellular LDs and time-lapse imaging of LD accumulation. This probe can also be used to examine LDs in fruit fly tissues in various metabolic states, serving as a highly versatile and specific tool for dynamic LD imaging in cellular and tissue environments.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Animais , Humanos , Imagem Óptica , Compostos de Boro/química , Camundongos , Células HeLa , Drosophila melanogaster
8.
J Med Chem ; 67(10): 7935-7953, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38713163

RESUMO

The integration of diverse chemical tools like small-molecule inhibitors, activity-based probes (ABPs), and proteolysis targeting chimeras (PROTACs) advances clinical drug discovery and facilitates the exploration of various biological facets of targeted proteins. Here, we report the development of such a chemical toolbox for the human Parkinson disease protein 7 (PARK7/DJ-1) implicated in Parkinson's disease and cancers. By combining structure-guided design, miniaturized library synthesis, and high-throughput screening, we identified two potent compounds, JYQ-164 and JYQ-173, inhibiting PARK7 in vitro and in cells by covalently and selectively targeting its critical residue, Cys106. Leveraging JYQ-173, we further developed a cell-permeable Bodipy probe, JYQ-196, for covalent labeling of PARK7 in living cells and a first-in-class PARK7 degrader JYQ-194 that selectively induces its proteasomal degradation in human cells. Our study provides a valuable toolbox to enhance the understanding of PARK7 biology in cellular contexts and opens new opportunities for therapeutic interventions.


Assuntos
Proteína Desglicase DJ-1 , Proteólise , Compostos de Boro/farmacologia , Compostos de Boro/química , Compostos de Boro/síntese química , Proteína Desglicase DJ-1/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade
9.
Jt Dis Relat Surg ; 35(2): 340-346, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727113

RESUMO

OBJECTIVES: The aim of this study was to investigate the effects of adding hexagonal boron nitride at four different concentrations to polymethylmethacrylate (PMMA) bone cement, which is commonly used in orthopedic surgeries, on the mechanical properties and microarchitecture of the bone cement. MATERIALS AND METHODS: The study included an unaltered control group and groups containing four different concentrations (40 g of bone cement with 0.5 g, 1 g, 1.5 g, 2 g) of hexagonal boron nitride. The samples used for mechanical tests were prepared at 20±2ºC in operating room conditions, using molds in accordance with the test standards. As a result of the tests, the pressure values at which the samples deformed were determined from the load-deformation graphs, and the megapascal (MPa) values at which the samples exhibited strength were calculated. RESULTS: The samples with 0.5 g boron added to the bone cement had significantly increased mechanical strength, particularly in the compression test. In the group where 2 g boron was added, it was noted that, compared to the other groups, the strength pressure decreased and the porosity increased. The porosity did not change particularly in the group where 0.5 g boron was added. CONCLUSION: Our study results demonstrate that adding hexagonal boron nitride (HBN) to bone cement at a low concentration (0.5 g / 40 g PPMA) significantly increases the mechanical strength in terms of MPa (compression forces) without adversely affecting porosity. However, the incorporation of HBN at higher concentrations increases porosity, thereby compromising the biomechanical properties of the bone cement, as evidenced by the negative impact on compression and four-point bending tests. Boron-based products have gained increased utilization in the medical field, and HBN is emerging as a promising chemical compound, steadily growing in significance.


Assuntos
Cimentos Ósseos , Compostos de Boro , Força Compressiva , Teste de Materiais , Polimetil Metacrilato , Compostos de Boro/química , Compostos de Boro/farmacologia , Polimetil Metacrilato/química , Cimentos Ósseos/química , Teste de Materiais/métodos , Porosidade , Estresse Mecânico
10.
J Hazard Mater ; 472: 134475, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733781

RESUMO

Narrow spectrum nano-antibiotics are supposedly the future trouble-shooters to improve the efficacy of conventional antimicrobials for treatment of severe bacterial infections, remove contamination from water and diminish the development of antibiotic resistance. In this study, antimicrobial peptide functionalized boron-carbon-nitride nanosheets ((Ant)pep@BCN NSs) are developed that are a promising wastewater disinfector and antibiotic resistant bactericide agent. These nanosheets are developed for selective removal and effective inactivation of antibiotic resistant bacteria (ARB) from water in presence of two virulent bacteria. The (Ant)pep@BCN NSs provide reactive surface receptors specific to the ARB. They mimic muralytic enzymes to damage the cell membrane of ARB. These NSs demonstrate 3-fold higher antimicrobial efficiency against the targeted ARB compared to pristine BCN even at lower concentrations. To the best of our knowledge, this is the first time that functionalized BCN has been developed to remove ARB selectively from wastewater. Furthermore, the (Ant)pep@BCN selectively reduced the microbiological load and led to morphological changes in Gram negative ARB in a mixed bacterial inoculum. These ARBs excreted outer-inner membrane vesicles (OIMVs) of triangular shape as a stimuli response to (Ant)pep@BCN NSs. These novel antimicrobial peptide-NSs have potential to improve treatment efficacy against ARB infections and water contamination.


Assuntos
Antibacterianos , Purificação da Água , Antibacterianos/farmacologia , Antibacterianos/química , Purificação da Água/métodos , Águas Residuárias/química , Nanoestruturas/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Poluentes Químicos da Água/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Compostos de Boro/química , Compostos de Boro/farmacologia
11.
Bioorg Chem ; 148: 107494, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797067

RESUMO

Near-infrared (NIR) responsive nanoparticles are an important platform for multimodal phototherapy. Importantly, the simultaneous NIR-triggered photodynamic (PDT) and photothermal (PTT) therapy is a powerful approach to increase the antitumor efficiency of phototherapic nanoparticles due to the synergistic effect. Herein, a boron dipyrromethene (BODIPY)-based amphiphilic dye with enhanced electron donor-acceptor-donor (D-A-D) structure (BDP-AP) was designed and synthesized, which could self-assemble into stable nanoparticles (BDP-AP NPs) for the synergistic NIR-triggered PDT/PTT therapy. BDP-AP NPs synchronously generated singlet oxygen (1O2) and achieved preeminent photothermal conversion efficiency (61.42%). The in vitro and in vivo experiments showed that BDP-AP NPs possessed negligible dark cytotoxicity and infusive anticancer performance. BDP-AP NPs provide valuable guidance for the construction of PDT/PTT-synergistic NIR nanoagents to improve the efficiency of photoinduced cancer therapy in the future.


Assuntos
Antineoplásicos , Compostos de Boro , Ensaios de Seleção de Medicamentos Antitumorais , Raios Infravermelhos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Terapia Fototérmica , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Humanos , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Camundongos , Estrutura Molecular , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Relação Dose-Resposta a Droga , Neoplasias Experimentais/patologia , Neoplasias Experimentais/tratamento farmacológico , Camundongos Endogâmicos BALB C
12.
Chem Commun (Camb) ; 60(46): 5960-5963, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38767007

RESUMO

A cationic aggregation-induced emission photosensitizer (AIE-PS) MNNPyBB has been reported to have antibacterial effects against both Gram-positive and Gram-negative bacteria. The bacterial kill mechanism has been investigated and elucidated. In a methicillin-resistant Staphylococcus aureus subcutaneous infection model, wound closure has been achieved with normal re-epithelialization and preserved skin morphology.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Animais , Camundongos , Infecções Estafilocócicas/tratamento farmacológico , Compostos de Boro/química , Compostos de Boro/farmacologia
13.
Talanta ; 276: 126251, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761657

RESUMO

Monitoring of glutathione has attracted considerable attention owing to its biological and clinical significance. An eco-friendly, economic, simple, biocompatible probe with excellent sensitivity and selectivity is very important. Herein, FeOOH QD@ATP-BODIPY nanocomposite was fabricated from one-step synthesized FeOOH quantum dots (FeOOH QD) and commercial boron-dipyrromethene-conjugated adenosine 5'-triphosphate (ATP-BODIPY) for glutathione (GSH) sensing in solutions and living cells. Three fascinate merits of FeOOH QD were confirmed: (a) as fluorescence quencher for ATP-BODIPY, (b) as selective recognizer of GSH and (c) with carrier effects and membrane permeability. The construction and response mechanism of the nanocomposite was based on the competitive coordination chemistry and redox reaction of FeOOH QD between GSH and phosphate group of ATP-BODIPY. Under the optimal conditions, the detection limit for GSH was as low as 68.8 nM. Excellent linear range of 0.2-400 µM was obtained. Furthermore, the chemical response of the nanocomposite exhibits high selectivity toward GSH over other electrolytes and biomolecules. It was successfully applied for GSH determination in human serum samples. The MTT assay exhibited FeOOH QD@ATP-BODIPY nanocomposite own good biocompatibility. FeOOH QD@ATP-BODIPY respond to GSH in living cells in situ was also proved via fluorescence imaging. These suggested that the FeOOH QD@ATP-BODIPY nanocomposite had potential application in biological and clinical applications.


Assuntos
Trifosfato de Adenosina , Compostos de Boro , Glutationa , Nanocompostos , Pontos Quânticos , Compostos de Boro/química , Glutationa/análise , Glutationa/química , Humanos , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/sangue , Trifosfato de Adenosina/química , Nanocompostos/química , Pontos Quânticos/química , Materiais Biocompatíveis/química , Células HeLa , Corantes Fluorescentes/química , Limite de Detecção , Compostos Férricos/química , Imagem Óptica
14.
Biosens Bioelectron ; 260: 116448, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820720

RESUMO

Functionalized few-layer borophene (FFB) was prepared using gallnut extract and coffee waste extract as natural exfoliating and stabilizing agents in an environmentally friendly ultrasonic and high shear exfoliation. Here, a facile precipitation method was employed to grow iron oxide nanoparticles doped with cerium (Ce-FeONPs) onto the surface of FFB. This intriguing combination of materials yielded Ce-FeONPs nanoparticles that exhibited exceptional peroxidase-like activity, efficiently catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) to a blue oxidized TMB (oxTMB) in the presence of hydrogen peroxide (H2O2). Additionally, the introduction of FFB contributes a reducibility effect to the catalytic oxidation of TMB, facilitating the restoration of the oxTMB to TMB. Thus, FFB-Ce-FeONPs showcase intriguing properties encompassing both oxidative and reductive characteristics, suggesting their potential as a reagent for repeated detection of H2O2. Moreover, a colorimetric sensing system enabled the liner detection of H2O2 spanning a concentration range from 0.08 to 1 mM, with a detection limit of 0.03 mM. Noteworthily, FFB-Ce-FeONPs demonstrated sustained efficacy over ten successive recycling cycles, as indicated by consistent slopes and observable color changes. In summary, this work reports the first application of nanoenzymes in repetitive H2O2 detection. Even after ten multiple cycles, the detection limit remains virtually unaltered, underscoring the robustness and enduring effectiveness of the engineered nanomaterial. The proposed simultaneous oxidation and reduction strategies for detecting H2O2 showed a commendable capability in ten cycles of H2O2 detection, thus providing a promising approach in the field of H2O2 detection.


Assuntos
Técnicas Biossensoriais , Cério , Colorimetria , Peróxido de Hidrogênio , Limite de Detecção , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Cério/química , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Oxirredução , Compostos de Boro/química , Química Verde , Benzidinas/química , Catálise , Nanopartículas Magnéticas de Óxido de Ferro/química , Compostos Férricos/química
15.
Biomaterials ; 309: 122605, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38754291

RESUMO

Multidisciplinary therapy centered on radical surgery for resectable pancreatic cancer is expected to prolong prognosis, but relies on CA19-9 biomarker levels to determine treatment strategy. Boron neutron capture therapy (BNCT) is a chemoradiotherapy using tumor hyperaccumulator boron drugs and neutron irradiation. The purpose of this study is to investigate novel boron drug agents for BNCT for pancreatic cancer. Bioinformatics was used to evaluate the uptake of current boron amino acid (BPA) drugs for BNCT into pancreatic cancer. The expression of the amino acid transporter LAT1, a BPA uptake transporter, was low in pancreatic cancer and even lower in high CA19-9 pancreatic cancer. In contrast, the glucose transporter was high in high CA19-9 pancreatic cancers and inversely correlated with LAT1 expression. Considering the low EPR effect in pancreatic cancer, we synthesized a small molecule Glucose-BSH, which is boron BSH bound to glucose, and confirmed its specific uptake in pancreatic cancer. uptake of Glucose-BSH was confirmed in an environment compatible with the tumor microenvironment. The therapeutic efficacy and safety of Glucose-BSH by therapeutic neutron irradiation were confirmed with BNCT. We report Glucose-BSH boron drug discovery study of a Precision Medicine BNCT with application to high CA19-9 pancreatic cancer.


Assuntos
Terapia por Captura de Nêutron de Boro , Glucose , Neoplasias Pancreáticas , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Humanos , Glucose/metabolismo , Linhagem Celular Tumoral , Animais , Compostos de Boro/química , Compostos de Boro/uso terapêutico , Boro/química , Feminino , Camundongos Nus
16.
Biomaterials ; 309: 122618, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38797122

RESUMO

Over the last decades, a variety of metal complexes have been developed as chemotherapeutic agents. Despite the promising therapeutic prospects, the vast majority of these compounds suffer from low solubility, poor pharmacological properties, and most importantly poor tumor accumulation. To circumvent these limitations, herein, the incorporation of cytotoxic Ir(III) complexes and a variety of photosensitizers into polymeric gemini nanoparticles that selectively accumulate in the tumorous tissue and could be activated by near-infrared (NIR) light to exert an anticancer effect is reported. Upon exposure to light, the photosensitizer is able to generate singlet oxygen, triggering the rapid dissociation of the nanostructure and the activation of the Ir prodrug, thereby initiating a cascade of mitochondrial targeting and damage that ultimately leads to cell apoptosis. While selectively accumulating into tumorous tissue, the nanoparticles achieve almost complete eradication of the cisplatin-resistant cervical carcinoma tumor in vivo upon exposure to NIR irradiation.


Assuntos
Antineoplásicos , Compostos de Boro , Raios Infravermelhos , Irídio , Nanopartículas , Polímeros , Nanopartículas/química , Humanos , Animais , Compostos de Boro/química , Compostos de Boro/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Irídio/química , Polímeros/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Feminino , Camundongos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Fotoquimioterapia/métodos , Células HeLa , Camundongos Nus
17.
Chem Commun (Camb) ; 60(45): 5770-5789, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38752310

RESUMO

Photocages, also known as photoactivated protective groups (PPGs), have been utilized to achieve controlled release of target molecules in a non-invasive and spatiotemporal manner. In the past decade, BODIPY fluorophores, a well-established class of fluorescent dyes, have emerged as a novel type of photoactivated protective group capable of efficiently releasing cargo species upon irradiation. This is due to their exceptional properties, including high molar absorption coefficients, resistance to photochemical and thermal degradation, multiple modification sites, favorable uncaging quantum yields, and highly adjustable spectral properties. Compared to traditional photocages that mainly absorb UV light, BODIPY-based photocages that absorb visible/near-infrared (Vis/NIR) light offer advantages such as deeper tissue penetration and reduced bio-autofluorescence, making them highly suitable for various biomedical applications. Consequently, different types of photoactivated protective groups based on the BODIPY skeleton have been established. This highlight provides a comprehensive overview of the strategies employed to construct BODIPY photocages by substituting leaving groups at different positions within the BODIPY fluorophore, including the meso-methyl position, boron position, 2,6-position, and 3,5-position. Furthermore, the application of these BODIPY photocages in biomedical fields, such as fluorescence imaging and controlled release of active species, is discussed.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Compostos de Boro/química , Corantes Fluorescentes/química , Humanos , Imagem Óptica , Processos Fotoquímicos , Estrutura Molecular , Animais
18.
ACS Appl Mater Interfaces ; 16(22): 29324-29337, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776974

RESUMO

Triplet-triplet annihilation upconversion (TTA-UC) implemented in nanoparticle assemblies is of emerging interest in biomedical applications, including in drug delivery and imaging. As it is a bimolecular process, ensuring sufficient mobility of the sensitizer and annihilator to facilitate effective collision in the nanoparticle is key. Liposomes can provide the benefits of two-dimensional confinement and condensed concentration of the sensitizer and annihilator along with superior fluidity compared to other nanoparticle assemblies. They are also biocompatible and widely applied across drug delivery modalities. However, there are relatively few liposomal TTA-UC systems reported to date, so systematic studies of the influence of the liposomal environment on TTA-UC are currently lacking. Here, we report the first example of a BODIPY-based sensitizer TTA-UC system within liposomes and use this system to study TTA-UC generation and compare the relative intensity of the anti-Stokes signal for this system as a function of liposome composition and membrane fluidity. We report for the first time on time-resolved spectroscopic studies of TTA-UC in membranes. Nanosecond transient absorption data reveal the BODIPY-perylene dyad sensitizer has a long triplet lifetime in liposome with contributions from three triplet excited states, whose lifetimes are reduced upon coinclusion of the annihilator due to triplet-triplet energy transfer, to a greater extent than in solution. This indicates triplet energy transfer between the sensitizer and the annihilator is enhanced in the membrane system. Molecular dynamics simulations of the sensitizer and annihilator TTA collision complex are modeled in the membrane and confirm the co-orientation of the pair within the membrane structure and that the persistence time of the bound complex exceeds the TTA kinetics. Modeling also reliably predicted the diffusion coefficient for the sensitizer which matches closely with the experimental values from fluorescence correlation spectroscopy. The relative intensity of the TTA-UC output across nine liposomal systems of different lipid compositions was explored to examine the influence of membrane viscosity on upconversion (UC). UC showed the highest relative intensity for the most fluidic membranes and the weakest intensity for highly viscous membrane compositions, including a phase separation membrane. Overall, our study reveals that the co-orientation of the UC pair within the membrane is crucial for effective TTA-UC within a biomembrane and that the intensity of the TTA-UC output can be tuned in liposomal nanoparticles by modifying the phase and fluidity of the liposome. These new insights will aid in the design of liposomal TTA-UC systems for biomedical applications.


Assuntos
Compostos de Boro , Lipossomos , Lipossomos/química , Compostos de Boro/química , Nanopartículas/química , Fluidez de Membrana
19.
J Hazard Mater ; 473: 134686, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788582

RESUMO

Hexagonal boron nitride (hBN) is an emerging two-dimensional material attracting considerable attention in the industrial sector given its innovative physicochemical properties. Potential risks are associated mainly with occupational exposure where inhalation and skin contact are the most relevant exposure routes for workers. Here we aimed at characterizing the effects induced by composites of thermoplastic polyurethane (TPU) and hBN, using immortalized HaCaT skin keratinocytes and BEAS-2B bronchial epithelial cells. The composite was abraded using a Taber® rotary abraser and abraded TPU and TPU-hBN were also subjected to photo-Fenton-mediated degradation mimicking potential weathering across the product life cycle. Cells were exposed to the materials for 24 h (acute exposure) or twice per week for 4 weeks (chronic exposure) and evaluated with respect to material internalization, cytotoxicity, and proinflammatory cytokine secretion. Additionally, comprehensive mass spectrometry-based proteomics and metabolomics (secretomics) analyses were performed. Overall, despite evidence of cellular uptake of the material, no significant cellular and/or protein expression profiles alterations were observed after acute or chronic exposure of HaCaT or BEAS-2B cells, identifying only few pro-inflammatory proteins. Similar results were obtained for the degraded materials. These results support the determination of hazard profiles associated with cutaneous and pulmonary hBN-reinforced polymer composites exposure.


Assuntos
Compostos de Boro , Poliuretanos , Humanos , Poliuretanos/toxicidade , Poliuretanos/química , Compostos de Boro/química , Compostos de Boro/toxicidade , Linhagem Celular , Pele/efeitos dos fármacos , Pele/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos
20.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731562

RESUMO

Leishmaniasis and Human African trypanosomiasis pose significant public health threats in resource-limited regions, accentuated by the drawbacks of the current antiprotozoal treatments and the lack of approved vaccines. Considering the demand for novel therapeutic drugs, a series of BODIPY derivatives with several functionalizations at the meso, 2 and/or 6 positions of the core were synthesized and characterized. The in vitro activity against Trypanosoma brucei and Leishmania major parasites was carried out alongside a human healthy cell line (MRC-5) to establish selectivity indices (SIs). Notably, the meso-substituted BODIPY, with 1-dimethylaminonaphthalene (1b) and anthracene moiety (1c), were the most active against L. major, displaying IC50 = 4.84 and 5.41 µM, with a 16 and 18-fold selectivity over MRC-5 cells, respectively. In contrast, the mono-formylated analogues 2b and 2c exhibited the highest toxicity (IC50 = 2.84 and 6.17 µM, respectively) and selectivity (SI = 24 and 11, respectively) against T. brucei. Further insights on the activity of these compounds were gathered from molecular docking studies. The results suggest that these BODIPYs act as competitive inhibitors targeting the NADPH/NADP+ linkage site of the pteridine reductase (PR) enzyme. Additionally, these findings unveil a range of quasi-degenerate binding complexes formed between the PRs and the investigated BODIPY derivatives. These results suggest a potential correlation between the anti-parasitic activity and the presence of multiple configurations that block the same site of the enzyme.


Assuntos
Antiprotozoários , Compostos de Boro , Leishmania major , Simulação de Acoplamento Molecular , Trypanosoma brucei brucei , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Trypanosoma brucei brucei/efeitos dos fármacos , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Leishmania major/efeitos dos fármacos , Desenho de Fármacos , Relação Estrutura-Atividade , Linhagem Celular , Estrutura Molecular , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Oxirredutases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA