Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.075
Filtrar
1.
BMC Oral Health ; 24(1): 890, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097700

RESUMO

This study aims to investigate the effect of Mineral Trioxide Aggregate (MTA), a bioactive endodontic cement, and Concentrated Growth Factor (CGF), a second-generation autologous growth factor, on pulpotomy-induced pulp inflammation. The study utilized the maxillary anterior central teeth of thirty-six young male Sprague Dawley rats. Forty-eight teeth were randomly assigned to two groups (12 rats/group; 24 teeth/group) based on the capping material (MTA or CGF). Subsequently, two subgroups (MTAG and CGFG) were formed per group (12 teeth/group) based on the time following pulpotomy (2-weeks and 4-weeks). The central teeth of the 12 animals assigned to the control group (CG) were not manipulated in any way, both in the 2-week group and in the 4-week group. Tissue samples extracted from rats at the end of the experiment were stained with H&E for histopathological analysis. For immunohistochemical analysis, primary antibodies for TNF-α and NF-kß/65 were incubated. Data obtained from semi-quantitative analysis were assessed for normal distribution using Skewness-Kurtosis values, Q-Q plot, Levene's test, and the Shapiro-Wilk test on statistical software. A P value < 0.05 was considered significant. When compared with the control group, both MTAG and CGFG showed increased edematous and inflammatory areas. In MTAG, edematous and inflammatory areas decreased significantly from the 2nd week (2(2-2), 2(1-2)) to the 4th week (1(1-1), 1(0-1)), while in CGFG, edematous areas decreased (2(2-3), 1.5(1-2)), and inflammatory areas increased significantly (2(2-3), 3(2-2.5)). When compared with the control group, TNF-α and NF-kß/p65 positivity were higher in both MTAG and CGFG. In MTAG, TNF-α [2(1.5-2)] and NF-kß/p65 [1.5(1-2)] positivity decreased significantly from the 2nd week to the 4th week [TNF-α: 1(1-1), NF-kß/p65: 1(1-2)], while no significant change was observed in CGFG. In conclusion, this study revealed a reduction in cells showing TNF-α and NF-kß/p65 positivity in the MTA treatment group compared to the CGF group. Although MTA demonstrated more favorable results than CGF in mitigating pulpal inflammation within the scope of this study, further experimental and clinical investigations are warranted to obtain comprehensive data regarding CGF.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Combinação de Medicamentos , Óxidos , Pulpotomia , Ratos Sprague-Dawley , Silicatos , Fator de Necrose Tumoral alfa , Animais , Silicatos/farmacologia , Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Compostos de Cálcio/uso terapêutico , Óxidos/farmacologia , Pulpotomia/métodos , Masculino , Fator de Necrose Tumoral alfa/metabolismo , Ratos , Fator de Transcrição RelA/metabolismo , Distribuição Aleatória , Pulpite/patologia , Pulpite/metabolismo , NF-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular
2.
Braz Oral Res ; 38: e066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109763

RESUMO

This study assessed the physicochemical and antibiofilm properties of white mineral trioxide aggregate (MTA) associated with 1 or 2% of farnesol. Setting time was evaluated based on ISO 6876/2012. Radiopacity was evaluated by radiographic analysis. pH was assessed after time intervals of 1, 3, 7, 14, 21, and 28 days. Solubility (% mass loss) and volumetric change (by micro-CT) of the cements were evaluated after immersion in distilled water. The presence of voids inside the materials was assessed by using micro-CT. Antibiofilm activity against Enterococcus faecalis was evaluated by crystal violet assay and the modified direct contact test performed with biofilm previously formed on bovine root dentin for 14 days. Data were submitted to ANOVA/Tukey tests with 5% significance level. The incorporation of farnesol into MTA increased its setting time, but decreased its solubility at 30 days and its volumetric loss in all periods (p < 0.05). Radiopacity and solubility after 7 days were similar among the materials (p > 0.05). The association of farnesol showed the highest pH value after 1 and 3 days (p < 0.05). The association of farnesol with MTA promoted a decrease in the presence of voids, and increased the antimicrobial activity on biofilm biomass of E. faecalis (p < 0.05). In conclusion, the addition of farnesol can be suggested to improve the antimicrobial properties and the consistency of MTA.


Assuntos
Compostos de Alumínio , Biofilmes , Compostos de Cálcio , Combinação de Medicamentos , Enterococcus faecalis , Farneseno Álcool , Teste de Materiais , Óxidos , Materiais Restauradores do Canal Radicular , Silicatos , Solubilidade , Silicatos/farmacologia , Silicatos/química , Óxidos/farmacologia , Óxidos/química , Biofilmes/efeitos dos fármacos , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Enterococcus faecalis/efeitos dos fármacos , Compostos de Alumínio/farmacologia , Compostos de Alumínio/química , Farneseno Álcool/farmacologia , Farneseno Álcool/química , Concentração de Íons de Hidrogênio , Fatores de Tempo , Bovinos , Materiais Restauradores do Canal Radicular/farmacologia , Materiais Restauradores do Canal Radicular/química , Animais , Análise de Variância , Reprodutibilidade dos Testes , Dentina/efeitos dos fármacos , Valores de Referência , Propriedades de Superfície/efeitos dos fármacos
3.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986501

RESUMO

Salmonella is a common cause of human foodborne illness, which is frequently associated with consumption of contaminated or undercooked poultry meat. Serotype Infantis is among the most common serotypes isolated from poultry meat products globally. Isolates of serotype Infantis carrying the pESI plasmid, the most dominant strain of Infantis, have been shown to exhibit oxidizer tolerance. Therefore, 16 strains of Salmonella with and without pESI carriage were investigated for susceptibility to biocide chemical processing aids approved for use in US poultry meat processing: peracetic acid (PAA), cetylpyridinium chloride (CPC), calcium hypochlorite, and sodium hypochlorite. Strains were exposed for 15 s to simulate spray application and 90 min to simulate application in an immersion chiller. All strains tested were susceptible to all concentrations of PAA, CPC, and sodium hypochlorite when applied for 90 min. When CPC, calcium hypochlorite, and sodium hypochlorite were applied for 15 s to simulate spray time, strains responded similarly to each other. However, strains responded variably to exposure to PAA. The variation was not statistically significant and appears unrelated to pESI carriage. Results highlight the necessity of testing biocide susceptibility in the presence of organic material and in relevant in situ applications.


Assuntos
Desinfetantes , Ácido Peracético , Plasmídeos , Aves Domésticas , Salmonella , Hipoclorito de Sódio , Desinfetantes/farmacologia , Animais , Salmonella/efeitos dos fármacos , Salmonella/genética , Ácido Peracético/farmacologia , Hipoclorito de Sódio/farmacologia , Plasmídeos/genética , Aves Domésticas/microbiologia , Cetilpiridínio/farmacologia , Compostos de Cálcio/farmacologia , Microbiologia de Alimentos , Humanos , Testes de Sensibilidade Microbiana , Manipulação de Alimentos
4.
Clin Oral Investig ; 28(8): 416, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969964

RESUMO

OBJECTIVES: To assess the biocompatibility, bioactivity, and immunomodulatory properties of three new calcium silicate cement-based sealers: Ceraseal (CS), Totalfill BC Sealer (TFbc) and WellRoot ST (WR-ST) on human periodontal ligament stem cells (hPDLSCs). MATERIALS AND METHODS: HPDLSCs were isolated from extracted third molars from healthy patients. Eluates (1:1, 1:2, and 1:4 ratio) and sample discs of CS, TFbc and WR-ST after setting were prepared. A series of assays were performed: cell characterization, cell metabolic activity (MTT assay) cell attachment and morphology (SEM assay), cell migration (wound-healing assay), cytoskeleton organization (phaloidin-based assay); IL-6 and IL-8 release (ELISA); differentiation marker expression (RT-qPCR assay), and cell mineralization (Alizarin Red S staining). HPDLSCs cultured in unconditioned (negative control) or osteogenic (positive control) culture media were used as a comparison. Statistical significance was established at p < 0.05. RESULTS: All the tested sealers exhibited similar results in the cytocompatibility assays (cell metabolic activity, migration, attachment, morphology, and cytoskeleton organization) compared with a negative control group. CS and TFbc exhibited an upregulation of at least one osteo/cementogenic marker compared to the negative and positive control groups. CS and TFbc also showed a significantly higher calcified nodule formation than the negative and positive control groups. Both the marker expression and calcified nodule formation were significantly higher in CS-treated cells than TFbc treated cells. WR-ST exhibited similar results to the control group. CS and TFbc-treated cells exhibited a significant downregulation of IL-6 after 72 h of culture compared to the negative control group (p < 0.05). CONCLUSION: All the tested sealers exhibited an adequate cytocompatibility. CS significantly enhances cell differentiation by upregulating the expression of key genes associated with bone and cementum formation. Additionally, CS was observed to facilitate the mineralization of the extracellular matrix effectively. In contrast, the effects of TFbc and WR-ST on these processes were less pronounced compared to CS. Furthermore, both CS and TFbc exhibited an anti-inflammatory potential, contributing to their potential therapeutic benefits in regenerative endodontics. CLINICAL RELEVANCE: This is the first study to compare the biological properties and immunomodulatory potential of Ceraseal, Totalfill BC Sealer, and WellRoot ST. The results act as supporting evidence for their use in root canal treatment.


Assuntos
Materiais Biocompatíveis , Compostos de Cálcio , Teste de Materiais , Ligamento Periodontal , Silicatos , Compostos de Cálcio/farmacologia , Silicatos/farmacologia , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Técnicas In Vitro , Células Cultivadas , Células-Tronco/efeitos dos fármacos , Materiais Restauradores do Canal Radicular/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Adesão Celular/efeitos dos fármacos , Dente Serotino
5.
Int J Nanomedicine ; 19: 6659-6676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975320

RESUMO

Background: Vital pulp therapy (VPT) is considered a conservative treatment for preserving pulp viability in caries and trauma-induced pulpitis. However, Mineral trioxide aggregate (MTA) as the most frequently used repair material, exhibits limited efficacy under inflammatory conditions. This study introduces an innovative nanocomposite hydrogel, tailored to simultaneously target anti-inflammation and dentin mineralization, aiming to efficiently preserve vital pulp tissue. Methods: The L-(CaP-ZnP)/SA nanocomposite hydrogel was designed by combining L-Arginine modified calcium phosphate/zinc phosphate nanoparticles (L-(CaP-ZnP) NPs) with sodium alginate (SA), and was characterized with TEM, SEM, FTIR, EDX, ICP-AES, and Zeta potential. In vitro, we evaluated the cytotoxicity and anti-inflammatory properties. Human dental pulp stem cells (hDPSCs) were cultured with lipopolysaccharide (LPS) to induce an inflammatory response, and the cell odontogenic differentiation was measured and possible signaling pathways were explored by alkaline phosphatase (ALP)/alizarin red S (ARS) staining, qRT-PCR, immunofluorescence staining, and Western blotting, respectively. In vivo, a pulpitis model was utilized to explore the potential of the L-(CaP-ZnP)/SA nanocomposite hydrogel in controlling pulp inflammation and enhancing dentin mineralization by Hematoxylin and eosin (HE) staining and immunohistochemistry staining. Results: In vitro experiments revealed that the nanocomposite hydrogel was synthesized successfully and presented desirable biocompatibility. Under inflammatory conditions, compared to MTA, the L-(CaP-ZnP)/SA nanocomposite hydrogel demonstrated superior anti-inflammatory and pro-odontogenesis effects. Furthermore, the nanocomposite hydrogel significantly augmented p38 phosphorylation, implicating the involvement of the p38 signaling pathway in pulp repair. Significantly, in a rat pulpitis model, the L-(CaP-ZnP)/SA nanocomposite hydrogel downregulated inflammatory markers while upregulating mineralization-related markers, thereby stimulating the formation of robust reparative dentin. Conclusion: The L-(CaP-ZnP)/SA nanocomposite hydrogel with good biocompatibility efficiently promoted inflammation resolution and enhanced dentin mineralization by activating p38 signal pathway, as a pulp-capping material, offering a promising and advanced solution for treatment of pulpitis.


Assuntos
Alginatos , Anti-Inflamatórios , Polpa Dentária , Hidrogéis , Nanocompostos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Nanocompostos/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Alginatos/química , Alginatos/farmacologia , Pulpite/terapia , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Silicatos/química , Silicatos/farmacologia , Ratos , Diferenciação Celular/efeitos dos fármacos , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Células Cultivadas , Compostos de Alumínio/química , Compostos de Alumínio/farmacologia , Arginina/química , Arginina/farmacologia , Ratos Sprague-Dawley , Combinação de Medicamentos , Masculino , Óxidos/química , Óxidos/farmacologia
6.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998912

RESUMO

Managing chronic non-healing wounds presents a significant clinical challenge due to their frequent bacterial infections. Mesoporous silica-based materials possess robust wound-healing capabilities attributed to their renowned antimicrobial properties. The current study details the advancement of mesoporous silicon-loaded MnO and CaO molecules (HMn-Ca) against bacterial infections and chronic non-healing wounds. HMn-Ca was synthesized by reducing manganese chloride and calcium chloride by urotropine solution with mesoporous silicon as the template, thereby transforming the manganese and calcium ions on the framework of mesoporous silicon. The developed HMn-Ca was investigated using scanning electron microscopy (SEM), transmission electron microscope (TEM), ultraviolet-visible (UV-visible), and visible spectrophotometry, followed by the determination of Zeta potential. The production of reactive oxygen species (ROS) was determined by using the 3,3,5,5-tetramethylbenzidine (TMB) oxidation reaction. The wound healing effectiveness of the synthesized HMn-Ca is evaluated in a bacterial-infected mouse model. The loading of MnO and CaO inside mesoporous silicon enhanced the generation of ROS and the capacity of bacterial capture, subsequently decomposing the bacterial membrane, leading to the puncturing of the bacterial membrane, followed by cellular demise. As a result, treatment with HMn-Ca could improve the healing of the bacterial-infected wound, illustrating a straightforward yet potent method for engineering nanozymes tailored for antibacterial therapy.


Assuntos
Compostos de Manganês , Nanopartículas , Óxidos , Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Camundongos , Nanopartículas/química , Óxidos/química , Óxidos/farmacologia , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Porosidade , Espécies Reativas de Oxigênio/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Oxirredução , Antibacterianos/farmacologia , Antibacterianos/química , Manganês/química , Manganês/farmacologia , Testes de Sensibilidade Microbiana
7.
Minerva Dent Oral Sci ; 73(4): 194-199, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963287

RESUMO

BACKGROUND: Preservation of primary teeth in children is highly important. Pulpotomy is a commonly performed treatment procedure for primary teeth with extensive caries. Thus, biocompatibility of pulpotomy agents is highly important. Biodentine, calcium enriched mixture (CEM) cement, ferric sulfate, and mineral trioxide aggregate (MTA) Angelus are commonly used for this purpose. Thus, this study aimed to assess the apoptotic effects of Biodentine, CEM cement, ferric sulfate, and MTA on stem cells isolated from the human pulp of exfoliated deciduous teeth. METHODS: In this in-vitro, experimental study, stem cells isolated from the human pulp of exfoliated deciduous teeth were exposed to three different concentrations of Biodentine, CEM cement, ferric sulfate, and MTA for different time periods. The cytotoxicity of the materials was evaluated by flow cytometry using the annexin propidium iodide (PI) kit. Data were analyzed by ANOVA and Tukey's test at P<0.05 level of significance. RESULTS: All four tested materials induced significantly greater apoptosis compared with the control group. The difference in cell apoptosis caused by the first concentration of ferric sulfate and MTA was not significant at 24 hours. In other comparisons, the cytotoxicity of ferric sulfate was significantly lower than that of other materials. Biodentine showed higher cytotoxicity than MTA at first; but this difference faded over time. The cytotoxicity of CEM cement was comparable to that of MTA. The highest cell viability was noted at 24 hours in presence of the minimum concentration of ferric sulfate. The lowest cell viability was noted at 72 hours in presence of the maximum concentration of CEM cement. CONCLUSIONS: In comparison with other materials, ferric sulfate showed minimum cytotoxicity; the cytotoxicity of the three cements was comparable. It appears that the concentration of ferric sulfate and the composition of cements are responsible for different levels of cytotoxicity.


Assuntos
Compostos de Alumínio , Apoptose , Compostos de Cálcio , Polpa Dentária , Combinação de Medicamentos , Compostos Férricos , Células-Tronco Mesenquimais , Óxidos , Silicatos , Dente Decíduo , Humanos , Compostos de Cálcio/farmacologia , Silicatos/farmacologia , Compostos de Alumínio/farmacologia , Compostos de Alumínio/toxicidade , Óxidos/farmacologia , Dente Decíduo/efeitos dos fármacos , Dente Decíduo/citologia , Compostos Férricos/farmacologia , Apoptose/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Cimentos Dentários/farmacologia , Cimentos Dentários/toxicidade , Teste de Materiais , Técnicas In Vitro , Citometria de Fluxo/métodos
8.
Bioresour Technol ; 407: 131143, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043280

RESUMO

Anaerobic fermentation has emerged as a promising method of transforming waste activated sludge into high-value products (e.g., volatile fatty acids (VFAs)). This work developed sodium citrate (SC)-calcium oxide (CaO) pretreatment to accelerate the production of VFAs by enhancing sludge solubilization and disintegration of extracellular polymeric substances. The results showed that co-pretreatment with 0.25 g/g TSS of SC and 0.05 g/g TSS of CaO effectively boosted VFAs accumulation (5823.3 mg COD/L), which was 12.2 times higher than the Control group. SC-CaO pretreatment enhanced hydrolysis and acidogenesis by providing ample organic substrates, thereby promoting the growth of hydrolytic and acidogenic bacteria. Additionally, the fermentation broth resulting from co-pretreatment exhibited lower phosphorus concentration and higher biodegradability. Economic analysis confirmed that the combined pretreatment is cost-effective. This work provides a viable strategy for enhancing high-value product recovery from sludge.


Assuntos
Compostos de Cálcio , Citratos , Ácidos Graxos Voláteis , Óxidos , Esgotos , Citrato de Sódio , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Óxidos/farmacologia , Óxidos/química , Hidrólise , Citrato de Sódio/farmacologia , Fermentação , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio
9.
Braz Dent J ; 35: e245771, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922251

RESUMO

This study aimed to evaluate the antimicrobial activity of calcium hypochlorite (Ca (OCl)2) and sodium hypochlorite (NaOCl) using confocal laser scanning microscopy (CLSM) and dentin organic matrix alteration by picrosirius staining and light microscopy (LM). Samples of human extracted teeth were infected with Enterococcus faecalis by centrifugation of the bacterial suspension and were treated with Ca(OCl)2 or NaOCl at 0.5%, 2.5%, and 6% for 15, 30, and 60 seconds. CLSM and viability staining were used to quantitatively analyze the proportions of dead/live bacteria in the canal lumen and border of the root canal. The data were analyzed by ANOVA and Fisher test. For LM analysis, one hundred bovine teeth were randomly divided into 10 test groups (n=10): G1- Without treatment; G2- 17% EDTA; G3- 6% NaOCl; G4- 6% NaOCl + EDTA; G5- 0.5% Ca(OCl)2; G6- 0.5% Ca(OCl)2 + EDTA; G7- 2.5% Ca(OCl)2; G8- 2.5% Ca(OCl)2 + EDTA; G9- 6% Ca(OCl)2; G10- 6% Ca(OCl)2 + EDTA. The samples were fragmented and stained with Picrosirius. Data were analyzed by Kruskal-Wallis and Dunn (P<0.05). There was a strong correlation between the results of the canal lumen and the border of the root canal (r=0.962). Both hypochlorites at a concentration of 0.5% showed less microbial reduction compared to 2.5% and 6% (P<0.05). There was less antimicrobial activity at 15 seconds compared to 30 and 60 seconds (P<0.05). Ca(OCl)2 and NaOCl showed similar results at the same concentrations (P>0.05). In conclusion, Ca(OCl)2 caused fewer alterations to the dentin organic matrix at concentrations of 0.5% and 2.5%. Ca(OCl)2 presents antimicrobial activity similar to NaOCl, and collagen damage is concentration-dependent.


Assuntos
Compostos de Cálcio , Colágeno , Dentina , Enterococcus faecalis , Hipoclorito de Sódio , Hipoclorito de Sódio/farmacologia , Dentina/efeitos dos fármacos , Dentina/microbiologia , Compostos de Cálcio/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Humanos , Anti-Infecciosos/farmacologia , Irrigantes do Canal Radicular/farmacologia , Bovinos , Microscopia Confocal , Animais , Cavidade Pulpar/microbiologia , Técnicas In Vitro
10.
BMC Oral Health ; 24(1): 732, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926776

RESUMO

OBJECTIVE: This study aimed to compare the remineralization effects of a calcium silicate-based cement (Biodentine) and of a glass ionomer cement (GIC: Fuji IX) on artificially demineralized dentin. METHODS: Four standard cavities were prepared in dentin discs prepared from 34 extracted sound human third molars. In each disc, one cavity was covered with an acid-resistant varnish before demineralization (Group 1). The specimens were soaked in a chemical demineralization solution for 96 h to induce artificial carious lesions. Thereafter, one cavity each was filled with Biodentine (Group 2) and GIC (Group 3), respectively, and one carious lesion was left unrestored as a negative control (Group 4). Next, specimens were immersed in simulated body fluid (SBF) for 21 days. After cross-sectioning the specimens, the Ca/P ratio was calculated in each specimen by using scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX). Finally, data were analyzed using repeated-measures ANOVA with post-hoc Bonferroni correction. RESULTS: Both cement types induced dentin remineralization as compared to Group 4. The Ca/P ratio was significantly higher in Group 2 than in Group 3 (p < 0.05). CONCLUSION: The dentin lesion remineralization capability of Biodentine is higher than that of GIC, suggesting the usefulness of the former as a bioactive dentin replacement material. CLINICAL RELEVANCE: Biodentine has a higher remineralization ability than that of GIC for carious dentin, and its interfacial properties make it a promising bioactive dentin restorative material.


Assuntos
Compostos de Cálcio , Dentina , Cimentos de Ionômeros de Vidro , Microscopia Eletrônica de Varredura , Silicatos , Remineralização Dentária , Compostos de Cálcio/uso terapêutico , Compostos de Cálcio/farmacologia , Cimentos de Ionômeros de Vidro/uso terapêutico , Cimentos de Ionômeros de Vidro/farmacologia , Humanos , Silicatos/uso terapêutico , Silicatos/farmacologia , Dentina/efeitos dos fármacos , Remineralização Dentária/métodos , Técnicas In Vitro , Espectrometria por Raios X , Cálcio , Teste de Materiais , Cárie Dentária , Fósforo
11.
Clin Oral Investig ; 28(6): 344, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809444

RESUMO

OBJECTIVES: The aim of the present study was to assess the cytocompatibility of epoxy resin-based AH Plus Jet (Dentsply De Trey, Konstanz, Germany), Sealer Plus (MK Life, Porto Alegre, Brazil), calcium silicate-based Bio-C Sealer (Angelus, Londrina, PR, Brazil), Sealer Plus BC (MK Life) and AH Plus BC (Dentsply) through a tridimensional (3D) culture model of human osteoblast-like cells. METHODS: Spheroids of MG-63 cells were produced and exposed to fresh root canal sealers extracts by 24 h, and the cytotoxicity was assessed by the Lactate Dehydrogenase assay (LDH). The distribution of dead cells within the microtissue was assessed by fluorescence microscopy, and morphological effects were investigated by histological analysis. The secreted inflammatory mediators were detected in cell supernatants through flow luminometry (XMap Luminex). RESULTS: Cells incubated with AH Plus Jet, AH Plus BC, Sealer Plus BC and Bio-C Sealer extracts showed high rates of cell viability, while the Sealer Plus induced a significant reduction of cell viability, causing reduction on the spheroid structure. Sealer Plus and Seaker Plus BC caused alterations on 3D microtissue morphology. The AH Plus BC extract was associated with the downregulation of secretion of pro-inflammatory cytokines IL-5, IL-7, IP-10 and RANTES. CONCLUSIONS: The new AH Plus BC calcium silicate-based endodontic sealer did not reduce cell viability in vitro, while led to the downregulation of pro-inflammatory cytokines. CLINICAL SIGNIFICANCE: Choosing the appropriate endodontic sealer is a crucial step. AH Plus BC demonstrated high cell viability and downregulation of pro-inflammatory cytokines, appearing reliable for clinical use, while Sealer Plus presented lower cytocompatibility.


Assuntos
Compostos de Cálcio , Sobrevivência Celular , Resinas Epóxi , Teste de Materiais , Materiais Restauradores do Canal Radicular , Silicatos , Materiais Restauradores do Canal Radicular/farmacologia , Humanos , Compostos de Cálcio/farmacologia , Silicatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Mediadores da Inflamação/metabolismo , Microscopia de Fluorescência , Osteoblastos/efeitos dos fármacos
12.
Adv Mater ; 36(31): e2404842, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38767289

RESUMO

Revascularization after rotator cuff repair is crucial for tendon-to-bone healing. The chirality of materials has been reported to influence their performance in tissue repair. However, data on the use of chiral structures to optimize biomaterials as a revascularization strategy remain scarce. Here, calcium silicate hydrate (CSO) films with hierarchical chirality on the atomic to micrometer scale are developed. Interestingly, levorotatory CSO (L-CSO) films promote the migration and angiogenesis of endothelial cells, whereas dextral and racemic CSO films do not induce the same effects. Molecular analysis demonstrates that L-chirality can be recognized by integrin receptors and leads to the formation of focal adhesion, which activates mechanosensitive ion channel transient receptor potential vanilloid 4 to conduct Ca2+ influx. Consequently, the phosphorylation of serum response factor is biased by Ca2+ influx to promote the vascular endothelial growth factor receptor 2 signaling pathway, resulting in enhanced angiogenesis. After implanted in a rat rotator cuff tear model, L-CSO films strongly enhance vascularization at the enthesis, promoting collagen maturation, increasing bone and fibrocartilage formation, and eventually improving the biomechanical strength. This study reveals the mechanism through which chirality influences angiogenesis in endothelial cells and provides a critical theoretical foundation for the clinical application of chiral biomaterials.


Assuntos
Materiais Biocompatíveis , Doenças Ósseas , Compostos de Cálcio , Neovascularização Fisiológica , Silicatos , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Silicatos/química , Silicatos/farmacologia , Doenças Ósseas/terapia , Movimento Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Humanos , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Cicatrização , Neovascularização Fisiológica/efeitos dos fármacos , Lesões do Manguito Rotador/terapia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células Endoteliais da Veia Umbilical Humana
13.
Mater Horiz ; 11(12): 2957-2973, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38586926

RESUMO

Organoids, which are 3D multicellular constructs, have garnered significant attention in recent years. Existing organoid culture methods predominantly utilize natural and synthetic polymeric hydrogels. This study explored the potential of a composite hydrogel mainly consisting of calcium silicate (CS) nanowires and methacrylated gelatin (GelMA) as a substrate for organoid formation and functionalization, specifically for intestinal and liver organoids. Furthermore, the research delved into the mechanisms by which CS nanowires promote the structure formation and development of organoids. It was discovered that CS nanowires can influence the stiffness of the hydrogel, thereby regulating the expression of the mechanosensory factor yes-associated protein (YAP). Additionally, the bioactive ions released by CS nanowires in the culture medium could accelerate Wnt/ß-catenin signaling, further stimulating organoid development. Moreover, bioactive ions were found to enhance the nutrient absorption and ATP metabolic activity of intestinal organoids. Overall, the CS/GelMA composite hydrogel proves to be a promising substrate for organoid formation and development. This research suggested that inorganic biomaterials hold significant potential in organoid research, offering bioactivities, biosafety, and cost-effectiveness.


Assuntos
Compostos de Cálcio , Hidrogéis , Nanofios , Organoides , Silicatos , Silicatos/farmacologia , Silicatos/química , Organoides/efeitos dos fármacos , Organoides/metabolismo , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Hidrogéis/farmacologia , Nanofios/química , Animais , Humanos , Materiais Biocompatíveis/farmacologia , Camundongos , Gelatina/química , Fígado/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Intestinos/citologia , Intestinos/efeitos dos fármacos
14.
Microsc Res Tech ; 87(9): 2072-2081, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38661299

RESUMO

This research was aimed to evaluate push-out bond strength and apical-microleakage after application of three different calcium silicate-based cements with irrigation solutions on simulated immature teeth. 40 maxillary permanent canine teeth were used for push-out bond strength test, and 120 maxillary permanent incisors were used for microleakage evaluation. 120 root slices were divided into four main groups (EDTA, Chitosan, Phytic acid, and Saline) and immersed these solutiouns according to irrigation procedures. Each irrigation group was divided into 3 subgroups (Biodentine, MTA Repair HP, and NeoPUTTY). The prepared teeth were divided into four groups according to irrigation procedure for microleakage test. EDTA irrigation with Biodentine group showed highest push-out bond strength value and saline group with Neoputty showed the lowest push-out bond strength value. The highest microleakage value was seen in saline group with MTA Repair HP, while the lowest microleakage value was observed chitosan with Biodentine group. Chitosan and phytic acid solutions can be recommended as an alternative irrigation solution to 17% EDTA in single-session apexification treatment, since they are non-toxic, naturally occurring materials, effectively remove the smear layer, and have a positive effect on bond strength and apical leakage. RESEARCH HIGHLIGHTS: One of the factors affecting the long-term success of root canal treatment is a hermetic seal. Non-hermetic or inadequate filling triggers a chronic inflammatory reaction in periapical tissues, causing fluids to enter the spaces and negatively affecting the success of the treatment. Therefore, this study will help clinicians choose the right biomaterial and irrigation solution that will affect the success of root canal treatment.


Assuntos
Compostos de Cálcio , Quitosana , Ácido Edético , Ácido Fítico , Silicatos , Quitosana/química , Silicatos/química , Silicatos/farmacologia , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Ácido Edético/farmacologia , Ácido Edético/química , Humanos , Ácido Fítico/farmacologia , Irrigantes do Canal Radicular/farmacologia , Cimentos Dentários/farmacologia , Cimentos Dentários/química , Colagem Dentária/métodos , Infiltração Dentária , Materiais Restauradores do Canal Radicular/química , Preparo de Canal Radicular/métodos , Incisivo , Teste de Materiais
15.
Environ Sci Pollut Res Int ; 31(21): 30959-30971, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38619769

RESUMO

Soil amendment is an important strategy for improving soil quality and crop yield. From 2014 to 2019, we conducted a study to investigate the effects of tobacco straw return with lime on soil nutrients, soil microbial community structure, tobacco leaf yield, and quality in southern Anhui, China. A field experiment was conducted with four treatments: straw removed (CK), straw return (St), straw return with dolomite (St + D), and straw return with lime (St + L). Results showed that after 5 years of application, the St + L significantly increased the soil pH by 16.9%, and the contents of soil alkaline nitrogen (N) and available potassium (K) by 17.2% and 23.0%, respectively, compared with the CK. Moreover, the St + L significantly increased tobacco leaf yield (24.0%) and the appearance (9.1%) and sensory (5.9%) quality of flue-cured tobacco leaves. The addition of soil conditioners (straw, dolomite, and lime) increased both the total reads and effective sequences of soil microorganisms. Bacterial diversity was more sensitive to changes in the external environment compared to soil fungi. The application of soil amendments (lime and straw) promoted the growth of beneficial microorganisms in the soil. Additionally, bacterial species had greater competition and limited availability of resources for survival compared to fungi. The results showed that soil microorganisms were significantly influenced by the presence of AK, AN, and pH contents. These findings can provide an effective method for improving the quality of flue-cured tobacco leaves and guiding the amelioration of acidic soil in regions where tobacco-rice rotation is practiced.


Assuntos
Compostos de Cálcio , Nicotiana , Óxidos , Folhas de Planta , Microbiologia do Solo , Solo , Solo/química , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Microbiota/efeitos dos fármacos , Agricultura/métodos , China
16.
Microsc Res Tech ; 87(7): 1584-1597, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38433562

RESUMO

To evaluate the effects of premixed calcium silicate based ceramic sealers on the viability and osteogenic/cementogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The materials evaluated were TotalFill BC Sealer (TFbc), AH Plus Bioceramic Sealer (AHPbc), and Neosealer Flo (Neo). Standardized discs and 1:1, 1:2, and 1:4 eluates of the tested materials were prepared. The following in vitro experiments were carried out: ion release, cell metabolic activity 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell migration, immunofluorescence experiment, cell attachment, gene expression, and mineralization assay. Statistical analyses were performed using one-way ANOVA followed by Tukey's post hoc test (p < .05). Increased Ca2+ release was detected in TFbc compared to AHPbc and Neo (*p < .05). Biological assays showed a discrete cell metabolic activity and cell migration in Neo-treated cell, whereas scanning electronic microscopy assay exhibited that TFbc group had a better cell adhesion process of substrate attachment, spreading, and cytoskeleton development on the niche-like structures of the cement than AHPbc and Neo. The sealers tested were able to induce overexpression of the CEMP-1, ALP, and COL1A1 genes in the first days of exposure, particularly in the case of TFbc (***p < .001). All materials tested significantly increased the mineralization of hPDLSCs when compared to the negative control, although more pronounced calcium deposition was observed in the TFbc-treated cells (***p < .001). Our results suggested that TFbc promotes cell differentiation, both by increasing the expression of key osteo/odontogenic genes and by promoting mineralization of the extracellular matrix, whereas this phenomenon was less evident in Neo and AHPbc. RESEARCH HIGHLIGHTS: TFbc group had a better cell adhesion process of substrate attachment, spreading, and cytoskeleton development on the niche-like structures of the cement than AHPbc and Neo. The sealers tested were able to induce overexpression of the CEMP-1, ALP, and COL1A1 genes in the first days of exposure, particularly in the case of TFbc. All materials tested significantly increased the mineralization of hPDLSCs when compared to the negative control, although more pronounced calcium deposition was observed in the TFbc-treated cells.


Assuntos
Compostos de Cálcio , Diferenciação Celular , Cerâmica , Osteogênese , Ligamento Periodontal , Silicatos , Células-Tronco , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Silicatos/farmacologia , Silicatos/química , Diferenciação Celular/efeitos dos fármacos , Cerâmica/química , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Osteogênese/efeitos dos fármacos , Células Cultivadas , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cementogênese/efeitos dos fármacos , Microscopia Eletrônica de Varredura
17.
Environ Res ; 251(Pt 1): 118632, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467361

RESUMO

Visual impairment due to corneal keratitis-causing bacteria is becoming a matter of health concern. The bacterial colonization and their resistance to multiple drugs need imperative attention. To overcome the issue of alternative remedial therapeutic agents, particularly for topical application, a study was carried out to synthesize calcium oxide nanoparticles (CaO NPs) using the biomaterial Eleusine coracana seed aqueous extract. The biosynthesized calcium oxide nanoparticles (CaO NPs) are non-toxic or less-toxic chemical precursors. Moreover, CaO NPs are eco-friendly and are used for several industrial, biomedical, and environmental applications. Biosynthesized CaO NPs were characterized using ultraviolet-visible spectroscopy, Fourier transform-infrared spectroscopy, scanning electron microscopy, and dynamic light scattering study. The synthesized CaO NPs exhibit with good anti-inflammatory activities with dose dependant (50-250 µg/mL). Moreover, Eleusine coracana-mediated CaO NPs significantly inhibited the multiple drug-resistant Gram-positive Staphylococci epidermidis and Enterococcus faecalis and Gram-negative Escherichia coli and Klebsiella pneumoniae that were isolated from the corneal ulcer. This study provides a potential therapeutic option for multiple drug-resistant corneal pathogens that cause vision impairment.


Assuntos
Antibacterianos , Compostos de Cálcio , Eleusine , Nanopartículas , Extratos Vegetais , Sementes , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Sementes/química , Nanopartículas/química , Antibacterianos/farmacologia , Eleusine/química , Óxidos/química , Óxidos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Testes de Sensibilidade Microbiana
18.
Adv Healthc Mater ; 13(16): e2303390, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38490171

RESUMO

Tumor recurrence and massive bone defects are two critical challenges for postoperative treatment of oral and maxillofacial tumor, posing serious threats to the health of patients. Herein, in order to eliminate residual tumor cells and promote osteogenesis simultaneously, the hydrogen peroxide (H2O2) self-sufficient TCP-PDA-CaO2-CeO2 (TPCC) scaffolds are designed by preparing CaO2 or/and CeO2 nanoparticles (NPs)/chitosan solution and modifying the NPs into polydopamine (PDA)-modified 3D printed TCP scaffolds by rotary coating method. CaO2 NPs loaded on the scaffolds can release Ca2+ and sufficient H2O2 in the acidic tumor microenvironment (TME). The generated H2O2 can further produce hydroxyl radicals (·OH) under catalysis effect by peroxidase (POD) activity of CeO2 NPs, in which the photothermal effect of the PDA coating enhances its POD catalytic effect. Overall, NPs loaded on the scaffold chemically achieve a cascade reaction of H2O2 self-sufficiency and ·OH production, while functionally achieving synergistic effects on anti-tumor and bone promotion. In vitro and in vivo studies show that the scaffolds exhibit effective osteo-inductivity, induced osteoblast differentiation and promote osseointegration. Therefore, the multifunctional composite scaffolds not only validate the concept of chemo-dynamic therapy (CDT) cascade therapy, but also provide a promising clinical strategy for postoperative treatment of oral and maxillofacial tumor.


Assuntos
Fosfatos de Cálcio , Peróxido de Hidrogênio , Osseointegração , Impressão Tridimensional , Alicerces Teciduais , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Animais , Alicerces Teciduais/química , Osseointegração/efeitos dos fármacos , Camundongos , Humanos , Nanopartículas/química , Polímeros/química , Indóis/química , Indóis/farmacologia , Óxidos/química , Cério/química , Cério/farmacologia , Osteogênese/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos
19.
Int Endod J ; 57(6): 713-726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467586

RESUMO

AIM: To evaluate the inflammatory reaction and the ability to induce mineralization activity of a new repair material, NeoPUTTY (NPutty; NuSmile, USA), in comparison with Bio-C Repair (BC; Angelus, Brazil) and MTA Repair HP (MTA HP; Angelus, Brazil). METHODOLOGY: Polyethylene tubes were filled with materials or kept empty (control group, CG) and implanted in subcutaneous tissue of rats for 7, 15, 30, and 60 days (n = 6/group). Capsule thickness, number of inflammatory cells (ICs), fibroblasts, collagen content, and von Kossa analysis were performed. Unstained sections were evaluated under polarized light and by immunohistochemistry for osteocalcin (OCN). Data were submitted to two-way anova followed by Tukey's test (p ≤ .05), except for OCN. OCN data were submitted to Kruskal-Wallis and Dunn and Friedman post hoc tests followed by the Nemenyi test at a significance level of 5%. RESULTS: At 7, 15, and 30 days, thick capsules containing numerous ICs were seen around the materials. At 60 days, a moderate inflammatory reaction was observed for NPutty, BC while MTA HP presented thin capsules with moderate inflammatory cells. In all periods, NPutty specimens contained the highest values of ICs (p < .05). From 7 to 60 days, the number of ICs reduced significantly while an increase in the number of fibroblasts and birefringent collagen content was observed. At 7 and 15 days, no significant difference was observed in the immunoexpression of OCN (p > .05). At 30 and 60 days, NPutty showed the lowest values of OCN (p < .05). At 60 days, a similar immunoexpression was observed for BC and MTA HP (p > .05). In all time intervals, capsules around NPutty, BC, and MTA HP showed von Kossa-positive and birefringent structures. CONCLUSIONS: Despite the greater inflammatory reaction promoted by NeoPutty than BC and MTA HP, the reduction in the thickness of capsules, the increase in the number of fibroblasts, and the reduction in the number of ICs indicate that this bioceramic material is biocompatible Furthermore, NeoPutty presents the ability to induce mineralization activity.


Assuntos
Materiais Biocompatíveis , Bismuto , Compostos de Cálcio , Teste de Materiais , Silicatos , Animais , Silicatos/farmacologia , Compostos de Cálcio/farmacologia , Ratos , Materiais Biocompatíveis/farmacologia , Ratos Wistar , Óxidos/farmacologia , Combinação de Medicamentos , Masculino , Compostos de Alumínio/farmacologia , Cimentos Dentários/farmacologia , Fibroblastos/efeitos dos fármacos , Colágeno/metabolismo
20.
J Biomed Mater Res A ; 112(7): 1124-1137, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38433700

RESUMO

This work presents the effect of the silicocarnotite (SC) and nagelschmidtite (Nagel) phases on in vitro osteogenesis. The known hydroxyapatite of biological origin (BHAp) was used as a standard of osteoconductive characteristics. The evaluation was carried out in conventional and osteogenic media for comparative purposes to assess the osteogenic ability of the bioceramics. First, the effect of the material on cell viability at 24 h, 7 and 14 days of incubation was evaluated. In addition, cell morphology and attachment on dense bioceramic surfaces were observed by fluorescence microscopy. Specifically, alkaline phosphatase (ALP) activity was evaluated as an osteogenic marker of the early stages of bone cell differentiation. Mineralized extracellular matrix was observed by calcium phosphate deposits and extracellular vesicle formation. Furthermore, cell phenotype determination was confirmed by scanning electron microscope. The results provided relevant information on the cell attachment, proliferation, and osteogenic differentiation processes after 7 and 14 days of incubation. Finally, it was demonstrated that SC and Nagel phases promote cell proliferation and differentiation, while the Nagel phase exhibited a superior osteoconductive behavior and could promote MC3T3-E1 cell differentiation to a higher extent than SC and BHAp, which was reflected in a higher number of deposits in a shorter period for both conventional and osteogenic media.


Assuntos
Diferenciação Celular , Cerâmica , Durapatita , Osteoblastos , Osteogênese , Silicatos , Animais , Camundongos , Durapatita/química , Durapatita/farmacologia , Cerâmica/química , Cerâmica/farmacologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Silicatos/química , Silicatos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Fosfatase Alcalina/metabolismo , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Sobrevivência Celular/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Células 3T3 , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...