Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.872
Filtrar
1.
BMC Plant Biol ; 24(1): 606, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926658

RESUMO

Early season carrot (Daucus carota) production is being practiced in Punjab, Pakistan to meet the market demand but high temperature hampers the seed germination and seedling establishment which cause marked yield reduction. Seed priming with potassium nitrate breaks the seed dormancy and improves the seed germination and seedling growth potential but effects vary among the species and ecological conditions. The mechanism of KNO3 priming in high temperature stress tolerance is poorly understood yet. Thus, present study aimed to evaluate high temperature stress tolerance potential of carrot seeds primed with potassium nitrate and impacts on growth, physiological, and antioxidant defense systems. Carrot seeds of a local cultivar (T-29) were primed with various concentration of KNO3 (T0: unprimed (negative control), T1: hydroprimed (positive control), T2: 50 mM, T3:100mM, T4: 150 mM, T5: 200 mM, T6: 250 mM and T7: 300 mM) for 12 h each in darkness at 20 ± 2℃. Seed priming with 50 mM of KNO3 significantly enhanced the seed germination (36%), seedling growth (28%) with maximum seedling vigor (55%) and also exhibited 16.75% more carrot root biomass under high temperature stress as compared to respective control. Moreover, enzymatic activities including peroxidase, catalase, superoxidase dismutase, total phenolic contents, total antioxidants contents and physiological responses of plants were also improved in response to seed priming under high temperature stress. By increasing the level of KNO3, seed germination, growth and root biomass were reduced. These findings suggest that seed priming with 50 mM of KNO3 can be an effective strategy to improve germination, growth and yield of carrot cultivar (T-29) under high temperature stress in early cropping. This study also proposes that KNO3 may induces the stress memory by heritable modulations in chromosomal structure and methylation and acetylation of histones that may upregulate the hormonal and antioxidant activities to enhance the stress tolerance in plants.


Assuntos
Antioxidantes , Daucus carota , Germinação , Nitratos , Compostos de Potássio , Plântula , Sementes , Antioxidantes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Nitratos/metabolismo , Nitratos/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Daucus carota/crescimento & desenvolvimento , Daucus carota/efeitos dos fármacos , Daucus carota/fisiologia , Compostos de Potássio/farmacologia , Germinação/efeitos dos fármacos , Temperatura Alta
2.
Sci Rep ; 14(1): 12651, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825618

RESUMO

Effective disinfection methods are crucial in the cold chain transportation process of food due to the specificity of temperature and the diversity of contaminated flora. The objective of this study was to investigate the sanitizing effect of different disinfectants on various fungi at - 20 °C to achieve accurate disinfection of diverse bacterial populations. Peracetic acid, hydrogen peroxide, and potassium bisulfate were selected as low-temperature disinfectants and were combined with antifreeze. The sanitizing effect of these cryogenic disinfectants on pathogens such as Bacillus subtilis black variant spores (ATCC9372), Staphylococcus aureus (ATCC 6538), Candida albicans (ATCC 10231), Escherichia coli (8099), and poliovirus (PV-1) was sequentially verified by bactericidal and virus inactivation experiments. After a specified time of disinfection, a neutralizing agent was used to halt the sanitizing process. The study demonstrates that different disinfectants exhibit selective effects during the low-temperature disinfection process. Peracetic acid, hydrogen peroxide, and potassium monopersulfate are suitable for the low-temperature environmental disinfection of bacterial propagules, viruses, and fungal contaminants. However, for microorganisms with strong resistance to spores, a low-temperature disinfectant based on peracetic acid should be chosen for effective disinfection treatment. Our results provide a valuable reference for selecting appropriate disinfectants to sanitize various potential pathogens in the future.


Assuntos
Temperatura Baixa , Desinfetantes , Desinfecção , Peróxido de Hidrogênio , Ácido Peracético , Desinfetantes/farmacologia , Desinfecção/métodos , Peróxido de Hidrogênio/farmacologia , Ácido Peracético/farmacologia , Sulfatos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Compostos de Potássio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Poliovirus/efeitos dos fármacos
3.
J Environ Sci (China) ; 145: 180-192, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844318

RESUMO

A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese (Mn2+) and ammonium (NH4+-N). Three different combinations of oxidants (KMnO4 and K2FeO4) and reductants (MnSO4 and FeCl2) were used during the start-up period. Filter R3 started up by KMnO4 and FeCl2 (Mn7+→MnOx) exhibited excellent catalytic property, and the NH4+-N and Mn2+ removal efficiency reached over 80% on the 10th and 35th days, respectively. Filter R1 started up by K2FeO4 and MnSO4 (MnOx←Mn2+) exhibited the worst catalytic property. Filter R2 started up by KMnO4 and MnSO4 (Mn7+→MnOx←Mn2+) were in between. According to Zeta potential results, the Mn-based oxides (MnOx) formed by Mn7+→MnOx performed the highest pHIEP and pHPZC. The higher the pHIEP and pHPZC, the more unfavorable the cation adsorption. However, it was inconsistent with its excellent Mn2+ and NH4+-N removal abilities, implying that catalytic oxidation played a key role. Combined with XRD and XPS analysis, the results showed that the MnOx produced by the reduction of KMnO4 showed early formation of buserite crystals, high degree of amorphous, high content of Mn3+ and lattice oxygen with the higher activity to form defects. The above results showed that MnOx produced by the reduction of KMnO4 was more conducive to the formation of active species for catalytic oxidation of NH4+-N and Mn2+ removal. This study provides new insights on the formation mechanisms of the active MnOx that could catalytic oxidation of NH4+-N and Mn2+.


Assuntos
Compostos de Amônio , Filtração , Manganês , Óxidos , Manganês/química , Óxidos/química , Compostos de Amônio/química , Filtração/métodos , Poluentes Químicos da Água/química , Permanganato de Potássio/química , Compostos de Manganês/química , Oxirredução , Eliminação de Resíduos Líquidos/métodos , Compostos de Potássio/química , Adsorção , Compostos Férricos/química , Compostos de Ferro
4.
Am J Dent ; 37(3): 141-146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899994

RESUMO

PURPOSE: To evaluate the effect of air abrasion and polishing procedures on roughness and color stability of ceramic and composite materials after artificial accelerated aging. METHODS: In this study, six restorative materials were tested: feldspathic ceramic (CEREC Blocks), glass ceramic (IPS e.max CAD), resin-based hybrid ceramic (Cerasmart), microhybrid composite (Charisma Classic), nanohybrid composite (Charisma Diamond) and nanoceramic composite (CeramXOne). Forty square-shaped composite specimens were fabricated from each composite and CAD-CAM ceramic material. Initial surface roughness measurements were performed using a profilometer and color measurements of each specimen with a spectrophotometer. Ten control specimens for each group did not receive air abrasion. The other specimens were treated by an air abrasion device and then were randomly divided into three subgroups of 10 specimens (n= 10). After air abrasion, 10 specimens of each group did not receive polishing (Air abrasion group) and others were repolished with Sof-Lex kit (Sof-Lex group) or a rubber kit (Rubber group). Surface roughness and color measurements were repeated before and after 300 hours of artificial accelerated aging (AAA). The univariate test and then three-way ANOVA and two-way ANOVA were performed for comparison of groups (α= 0.05). RESULTS: The univariate statistical analysis revealed that the restorative materials were differently affected after air abrasion, polishing methods and AAA (P< 0.001). Three-way ANOVA showed that the surface roughness of the restorative materials increased after air abrasion and AAA (P< 0.001). Two-way ANOVA showed statistically significant differences between color changes of ceramic (CEREC and IPS e.max CAD) and composite based restorative materials (P< 0.001). CLINICAL SIGNIFICANCE: Clinicians should be aware that air abrasion at a specified power and time significantly changes the surface roughness of the materials except for CEREC. Additionally, polishing procedures (Sof-Lex, Rubber) did not significantly reduce the surface roughness of the ceramic groups. After air abrasion, depending on the material type used clinically, restorations should be repolished to reduce roughness and ensure color stability.


Assuntos
Cerâmica , Cor , Resinas Compostas , Polimento Dentário , Porcelana Dentária , Teste de Materiais , Propriedades de Superfície , Polimento Dentário/métodos , Resinas Compostas/química , Cerâmica/química , Porcelana Dentária/química , Materiais Dentários/química , Abrasão Dental por Ar , Fatores de Tempo , Desenho Assistido por Computador , Silicatos de Alumínio/química , Espectrofotometria , Humanos , Compostos de Potássio/química
5.
Water Res ; 259: 121869, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851113

RESUMO

This work aims to explore the ability of molten salt to solve salt deposition in supercritical water (SCW) related technologies including supercritical water oxidation and supercritical water gasification, with KNO3 and Na2SO4 as examples. In the pure KNO3 solution, the two-phase layering of high-density KNO3 molten salt (settling at the reactor bottom) and low-density saturated KNO3-SCW salt solution (flowing out at the top outlet of the reactor) was formed in a kettle-reactor with about 6.5 ratio of depth to inner diameter, thereby improving the accuracy of measured solubilities. The precipitation macro-characteristics of mixed KNO3 and Na2SO4 in SCW were investigated under different feed concentration conditions. The results showed that Na2SO4 deposition on the reactor sidewall could be reduced by more than 90 % when the mass ratio of KNO3 to Na2SO4 in the feed was only 0.167. No visible salt deposition was observed on the sidewall when the ratio was 0.374. All solid deposited salts were converted into the liquid molten salt as the ratio reached 3.341, and thus could easily flow out of the reactor, without plugging. 'Molten salt dissolution' mechanism may provide a more plausible explanation for mixed KNO3 and Na2SO4 in SCW. In addition, the precipitation micro-mechanisms of mixed KNO3 and Na2SO4, and the critical conditions of avoiding sidewall deposition and reactor plugging were proposed. This work is valuable for overcoming the salt deposition problem in SCW-related technologies.


Assuntos
Precipitação Química , Compostos de Potássio , Sulfatos , Água , Sulfatos/química , Água/química , Compostos de Potássio/química , Nitratos/química , Solubilidade
6.
BMC Plant Biol ; 24(1): 548, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872106

RESUMO

Enhancing wheat productivity by implementing a comprehensive approach that combines irrigation, nutrition, and organic amendments shows potential for collectively enhancing crop performance. This study examined the individual and combined effects of using irrigation systems (IS), foliar potassium bicarbonate (PBR) application, and compost application methods (CM) on nine traits related to the growth, physiology, and yield of the Giza-171 wheat cultivar. Analysis of variance revealed significant (P ≤ 0.05) main effects of IS, PBR, and CM on wheat growth, physiology, and yield traits over the two growing seasons of the study. Drip irrigation resulted in a 16% increase in plant height, leaf area index, crop growth rate, yield components, and grain yield compared to spray irrigation. Additionally, the application of foliar PBR at a concentration of 0.08 g/L boosted these parameters by up to 22% compared to the control. Furthermore, the application of compost using the role method resulted in enhanced wheat performance compared to the treatment including mix application. Importantly, the combined analysis revealed that the three-way interaction between the three factors had a significant effect (P ≤ 0.05) on all the studied traits, with drip irrigation at 0.08 g PBR rate and role compost application method (referred as Drip_0.08g_Role) resulting in the best performance across all traits, while sprinkle irrigation without PBR and conventional mixed compost method (referred as sprinkle_CK_Mix) produced the poorest results. This highlights the potential to synergistically improve wheat performance through optimized agronomic inputs.


Assuntos
Irrigação Agrícola , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Irrigação Agrícola/métodos , Fertilizantes , Bicarbonatos/metabolismo , Compostagem/métodos , Compostos de Potássio , Solo/química
7.
J Water Health ; 22(6): 1102-1110, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935460

RESUMO

Ferrate (Fe(VI): HFeO4- /FeO42-), a potent oxidant, has been investigated as an alternative chemical disinfectant in water treatment due to its reduced production of disinfection by-products. In this study, we assessed the disinfecting ability of potassium ferrate against a variety of microorganisms, including waterborne pathogens, under varying pH and water temperature conditions. We presented CT values, a metric of ferrate concentrations (C) and contact time (T), to quantify microbial inactivation rates. Among the tested microorganisms, human adenovirus was the least resistant to ferrate, followed by waterborne bacteria such as Escherichia coli and Vibrio cholerae, and finally, the protozoan parasite Giardia duodenalis. We further investigated the impact of two pH values (7 and 8) and two temperatures (5 and 25 °C) on microbial inactivation rates, observing that inactivation rates increased with lower pH and higher temperature. In addition to showcasing ferrate's capacity to effectively inactivate a range of the tested microorganisms, we offer a ferrate CT table to facilitate the comparison of the effectiveness of various disinfection methods.


Assuntos
Desinfetantes , Giardia lamblia , Temperatura , Concentração de Íons de Hidrogênio , Desinfetantes/farmacologia , Giardia lamblia/efeitos dos fármacos , Adenovírus Humanos/efeitos dos fármacos , Compostos de Potássio/farmacologia , Compostos de Potássio/química , Microbiologia da Água , Desinfecção/métodos , Purificação da Água/métodos , Compostos de Ferro/farmacologia , Compostos de Ferro/química , Humanos , Escherichia coli/efeitos dos fármacos
8.
J Adhes Dent ; 26(1): 125-134, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38770704

RESUMO

PURPOSE: To investigate the effect of adhesive type and long-term aging on the shear bond strength (SBS) between silica-based ceramics and composite cement (CC). MATERIALS AND METHODS: Lithium-silicate (LS), feldspathic (FD) and polymer-infiltrated ceramic (PIC) blocks were sectioned (10 x 12 x 2 mm) and divided into 24 groups considering the factors: "ceramics" (LS, FD, and PIC), "adhesive" (Ctrl: without adhesive; 2SC: 2-step conventional; 3SC: 3-step conventional; 1SU: 1-step universal), and "aging" (non-aged or aged [A]). After the surface treatments, CC cylinders (n = 15, Ø = 2 mm; height = 2 mm) were made and half of the samples were subjected to thermocycling (10,000) and stored in water at 37°C for 18 months. The samples were submitted to SBS testing (100 kgf, 1 mm/min) and failure analysis. Extra samples were prepared for microscopic analysis of the adhesive interface. SBS (MPa) data was analyzed by 3-way ANOVA and Tukey's test (5%). Weibull analysis was performed on the SBS data. RESULTS: All factors and interactions were significant for SBS (p<0.05). Before aging, there was no significant difference between the tested groups and the respective control groups. After aging, the LS_1SU (22.18 ± 7.74) and LS_2SC (17.32 ± 5.86) groups exhibited significantly lower SBS than did the LS_Ctrl (30.30 ± 6.11). Only the LS_1SU group showed a significant decrease in SBS after aging vs without aging. The LS_1SU (12.20) group showed the highest Weibull modulus, which was significantly higher than LS_2SC_A (2.82) and LS_1SU_A (3.15) groups. CONCLUSION: No type of adhesive applied after silane benefitted the long-term adhesion of silica-based ceramics to CC in comparison to the groups without adhesive.


Assuntos
Cerâmica , Colagem Dentária , Teste de Materiais , Cimentos de Resina , Resistência ao Cisalhamento , Dióxido de Silício , Dióxido de Silício/química , Cerâmica/química , Fatores de Tempo , Cimentos de Resina/química , Desenho Assistido por Computador , Propriedades de Superfície , Análise do Estresse Dentário , Cimentação/métodos , Porcelana Dentária/química , Humanos , Resinas Compostas/química , Cimentos Dentários/química , Compostos de Potássio/química , Silicatos de Alumínio/química , Temperatura
9.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792066

RESUMO

The objective of this study is to develop a remediation technology for composited heavy metal-contaminated soil. Biochars (BC300, BC400, and BC500) derived from corn were combined with potassium dihydrogen phosphate (KH2PO4) to immobilize and remove heavy metal ions, including mercury (Hg2+), cadmium (Cd2+), and lead (Pb2+). The adsorption kinetics of metal ions in aqueous solutions with different concentrations was tested, and the fitting effects of the two models were compared. The findings demonstrate that the joint application of biochar and KH2PO4 could markedly enhance the immobilization efficacy of Pb2+, whereas the utilization of KH2PO4 on its own exhibited a more pronounced immobilization impact on Cd2+. Furthermore, the present study underscores the shortcomings of various remediation techniques that must be taken into account when addressing heavy metal-contaminated soils. It also emphasizes the value of comprehensive remediation techniques that integrate multiple remediation agents. This study offers a novel approach and methodology for addressing the intricate and evolving challenges posed by heavy metal contamination in soil. Its practical value and potential for application are significant.


Assuntos
Cádmio , Carvão Vegetal , Chumbo , Mercúrio , Fosfatos , Compostos de Potássio , Poluentes do Solo , Carvão Vegetal/química , Poluentes do Solo/química , Cádmio/química , Chumbo/química , Adsorção , Mercúrio/química , Fosfatos/química , Compostos de Potássio/química , Recuperação e Remediação Ambiental/métodos , Medição de Risco , Solo/química , Metais Pesados/química , Cinética
10.
Bioresour Technol ; 403: 130888, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788804

RESUMO

Downstream processing of biomolecules, particularly therapeutic proteins and enzymes, presents a formidable challenge due to intricate unit operations and high costs. This study introduces a novel cysteine (cys) functionalized aqueous two-phase system (ATPS) utilizing polyethylene glycol (PEG) and potassium phosphate, referred as PEG-K3PO4/cys, for selective extraction of laccase from complex protein mixtures. A 3D-baffle micro-mixer and phase separator was meticulously designed and equipped with computer vision controller, to enable precise mixing and continuous phase separation under automated-flow. Microfluidic-assisted ATPS exhibits substantial increase in partition coefficient (Kflow = 16.3) and extraction efficiency (EEflow = 88 %) for laccase compared to conventional batch process. Integrated and continuous-flow process efficiently partitioned laccase, even in low concentrations and complex crude extracts. Circular dichroism spectra of laccase confirm structural stability of enzyme throughout the purification process. Eventually, continuous-flow microfluidic bioseparation is highly useful for seamless downstream processing of target biopharmaceuticals in integrated and autonomous manner.


Assuntos
Lacase , Polietilenoglicóis , Lacase/química , Polietilenoglicóis/química , Fosfatos/química , Cisteína/química , Água/química , Dicroísmo Circular , Compostos de Potássio
11.
Water Res ; 258: 121744, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754301

RESUMO

Replacing petroleum-based plastics with biodegradable polymers is a major challenge for modern society especially for food packaging applications. To date, poly(lactic acid) represents 25 % of the total biodegradable plastics and it is estimated that, in the future, it could become the main contributor to the biodegradable plastics industry. Anaerobic digestion is an interesting way for the poly(lactic acid) end of life, even if its biodegradability is limited in mesophilic conditions. The aims of this study were to identify the best pre-treatment for maximizing the methane yield, minimizing the anaerobic digestion duration and limiting residual plastic fragments in the digestate. A systematic comparison was carried out between thermal, chemical, and thermo-chemical pre-treatment. Pre-treatment with 4 M KOH for 48 h at 35°C was effective in improving the mesophilic anaerobic digestion of the poly(lactic acid). Such pre-treatment allows obtaining 90 % of the theoretical methane potential, in 24 - 30 days. Importantly, such pre-treatment completely solubilized the poly(lactic acid), leaving no solid residues in the digestate. In addition, using KOH permits to avoid the sodication of the soil due to the digestate application as fertilizer.


Assuntos
Poliésteres , Poliésteres/química , Anaerobiose , Polímeros/química , Metano/metabolismo , Ácido Láctico/metabolismo , Álcalis/química , Hidróxidos/química , Compostos de Potássio/química , Biodegradação Ambiental , Temperatura
12.
Chemosphere ; 359: 142283, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734251

RESUMO

Polyvinyl chloride (PVC), known for its chemical stability and flame-retardant qualities, has many uses in various fields, such as pipes, electric wires, and cable insulation. Research has established its potential recovery as a fluidic fuel through pyrolysis, but the use of PVC pyrolysis oil, which is tainted by chlorine, is constrained by its low heat value and harmful environmental effects. This study engineered a layered double hydroxide (LDH) to tackle these challenges. The LDH facilitated dechlorination during PVC pyrolysis and bolstered thermal stability via cross-linking. During pyrolysis with LDH, PVC was transformed into carbon-rich precursors to sorbents. Chemical activation of these residues using KOH created sorbents with a specific surface area of 1495.4 m2 g⁻1, rendering them hydrophilic. These resulting sorbents displayed impressive adsorption capabilities, removing up to 486.79 mg g⁻1 of methylene blue and exhibiting the simultaneous removal of cations and anions.


Assuntos
Corantes , Hidróxidos , Cloreto de Polivinila , Cloreto de Polivinila/química , Hidróxidos/química , Adsorção , Corantes/química , Corantes/isolamento & purificação , Compostos de Potássio/química , Poluentes Químicos da Água/química , Azul de Metileno/química , Pirólise
13.
Sci Rep ; 14(1): 11248, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755228

RESUMO

An effective strategy for enhancing fruit production continuity during extended sweet pepper season involves adopting innovative biostimulants such as potassium silicate (PS) and vinasse. Adjusting PS and vinasse concentrations are crucial for maintaining the balance between vegetative and fruit growth, particularly in sweet pepper with a shallow root system, to sustain fruiting over prolonged season. However, the interaction between PS and vinasse and the underlying physiological mechanisms that extend the sweet pepper season under greenhouse conditions remain unclear. This study aimed to investigate the impact of PS and vinasse treatments on the yield and biochemical constituents of perennial pepper plants cultivated under greenhouse conditions. For two consecutive seasons [2018/2019 and 2019/2020], pepper plants were sprayed with PS (0, 0.5, and 1 g/l) and drenched with vinasse (0, 1, 2, and 3 l/m3). To estimate the impact of PS and vinasse on the growth, yield, and biochemical constituents of pepper plants, fresh and dry biomass, potential fruit yield, and some biochemical constituents were evaluated. Results revealed that PS (0.5 g/l) coupled with vinasse (3 l/m3) generated the most remarkable enhancement, in terms of plant biomass, total leaf area, total yield, and fruit weight during both growing seasons. The implementation of vinasse at 3 l/m3 with PS at 0.5 and 1 g/l demonstrated the most pronounced augmentation in leaf contents (chlorophyll index, nitrogen and potassium), alongside improved fruit quality, including total soluble solid and ascorbic acid contents, of extended sweet pepper season. By implementing the optimal combination of PS and vinasse, growers can significantly enhance the biomass production while maintaining a balance in fruiting, thereby maximizing the prolonged fruit production of superior sweet pepper under greenhouse conditions.


Assuntos
Capsicum , Frutas , Silicatos , Capsicum/crescimento & desenvolvimento , Capsicum/efeitos dos fármacos , Capsicum/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Frutas/metabolismo , Biomassa , Potássio/metabolismo , Potássio/análise , Estações do Ano , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Biometria , Compostos de Potássio/farmacologia
14.
J Vis Exp ; (206)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38709074

RESUMO

Utilizing vegetable oil as a sustainable feedstock, this study presents an innovative approach to ultrasonic-assisted transesterification for biodiesel synthesis. This alkaline-catalyzed procedure harnesses ultrasound as a potent energy input, facilitating the rapid conversion of extra virgin olive oil into biodiesel. In this demonstration, the reaction is run in an ultrasonic bath under ambient conditions for 15 min, requiring a 1:6 molar ratio of extra virgin olive oil to methanol and a minimum amount of KOH as the catalyst. The physiochemical properties of biodiesel are also reported. Emphasizing the remarkable advantages of ultrasonic-assisted transesterification, this method demonstrates notable reductions in reaction and separation times, achieving near-perfect purity (~100%), high yields, and negligible waste generation. Importantly, these benefits are achieved within a framework that prioritizes safety and environmental sustainability. These compelling findings underscore the effectiveness of this approach in converting vegetable oil into biodiesel, positioning it as a viable option for both research and practical applications.


Assuntos
Biocombustíveis , Óleos de Plantas , Óleos de Plantas/química , Esterificação , Hidróxidos/química , Azeite de Oliva/química , Ondas Ultrassônicas , Compostos de Potássio/química , Catálise
15.
Food Chem ; 452: 139604, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749139

RESUMO

This study aims to repurpose waste grain from the Baijiu brewing process into activated carbon for mitigating risk factors in alcoholic beverages, enhancing quality and ensuring safety. For attaining the most effective activated carbon, tailored carbon synthesis conditions were identified for diverse alcoholic beverages, optimising strategies. For beverages with low flavour compound content, optimal conditions include 900 °C calcination, 16-hour activation and a 1:2 activation ratio. In contrast, for those with abundant flavour compounds, 800 °C calcination, 16-hour activation and a 1:1 activation ratio are recommended. Post-synthesis analyses, employing nitrogen physisorption-desorption isotherms, FT-IR and SEM, validated a significant BET surface area of 244.871 m2/g for the KOH-activated carbon. Critical to adsorption efficiency, calcination temperature showcased noteworthy micro-porosity (0.8-1 nm), selectively adsorbing higher alcohols (C3-C6) and acetaldehyde while minimising acid and ester adsorption. Sensory evaluations refined optimal parameters, ensuring efficient spent grain management and heightened beverage safety without compromising aroma.


Assuntos
Bebidas Alcoólicas , Carvão Vegetal , Hidróxidos , Compostos de Potássio , Bebidas Alcoólicas/análise , Carvão Vegetal/química , Humanos , Hidróxidos/química , Compostos de Potássio/química , Adsorção , Paladar , Resíduos/análise , Aromatizantes/química , Grão Comestível/química , Odorantes/análise , Fatores de Risco , Masculino , Feminino , Adulto , Adulto Jovem , Pessoa de Meia-Idade
16.
Environ Res ; 252(Pt 2): 118876, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582420

RESUMO

The rapid transition towards modernization and industrialization led to an increase in urban population, resulting in paramount challenge to municipal sewage sludge management. Anaerobic digestion (AD) serves as a promising venue for energy recovery from waste-activated sludge (WAS). Addressing the challenge of breaking down floc structures and microbial cells is crucial for releasing extracellular polymeric substances and cytoplasmic macromolecules to facilitate hydrolysis and fermentation process. The present study aims to introduce a combined process of alkaline/acid pre-treatments and AD to enhance sludge digestion and biogas production. The study investigates the influence of alkali pretreatment at ambient temperature using four alkali reagents (NaOH, Ca(OH)2, Mg(OH)2, and KOH). The primary goal is to provide insights into the intricate interplay of alkali dosages (0.04-0.12 g/gTS) on key physic-chemical parameters crucial for optimizing the pre-treatment dosage. Under the optimized alkaline/acid pre-treatment condition, the TSS reduction of 18%-30% was achieved. An increase in sCOD concentration (24%-50%) signifies the enhanced hydrolysis and solubilization rate of organic substrate in WAS. Finally, the biomethane potential test (BMPT) was performed for pre-treated WAS samples. The maximum methane (CH4) yield was observed in combination A1 (244 mL/g) and D1 (253 mL/g), demonstrating the pivotal role of alkali optimization in enhancing AD efficiency. This study serves as a valuable resource to policymakers, researchers, and technocrats in addressing challenges associated to sludge management.


Assuntos
Biocombustíveis , Esgotos , Esgotos/química , Biocombustíveis/análise , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Álcalis/química , Metano , Hidróxido de Sódio/química , Hidróxido de Cálcio/química , Hidróxido de Magnésio/química , Reatores Biológicos , Hidróxidos/química , Compostos de Potássio/química
17.
Environ Sci Pollut Res Int ; 31(21): 31108-31122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38625474

RESUMO

Salinity stress significantly constrains agricultural productivity and vegetation decline worldwide, particularly in Iran. Potassium, the second most prevalent nutrient in plants, is well known to be essential for cell metabolism. Here, the effects of potassium fertilizer in two biogenic nanoparticles (K-NPs) and conventional (potassium sulfate) forms (0.1 mg/ml) on Melissa officinalis L. under salinity (0, 50, 100, and 150 mM) were investigated. The results demonstrated that stress markers (electrolyte leakage, malondialdehyde, and hydrogen peroxide) increased as salinity levels increased. Plant growth parameters (shoot and root length, fresh and dry weight of shoot and root) and physiological and photosynthetic parameters (stomatal conductance, relative water content, chlorophyll fluorescence, and photosynthetic pigments) were reduced in salinized plants. The highest reduction in fresh weight root, dry weight root, fresh weight shoot, dry weight shoot, root length, and shoot length was recorded under 150 mM NaCl by 30.2%, 51.6%, 30.5%, 24.7%, 26.4%, and 21%, respectively. In contrast, bulk potassium sulfate and K-NPs increased these parameters. Furthermore, K-NPs improved M. officinalis tolerance to NaCl toxicity by enhancing the content of osmolytes such as proline, soluble sugars, and antioxidant enzymes, improving antioxidant contents such as phenols, tannins, anthocyanins, and flavonoids; increasing total protein; and lowering stress markers in plant tissues. Given the results of the physiological, biochemical, and phytochemical parameters obtained from this study, it can be stated that K-NPs, in comparison to the conventional form of potassium fertilizer, exhibit a greater potential to mitigate damages caused by salinity stress in M. officinalis plants.


Assuntos
Melissa , Potássio , Estresse Salino , Sulfatos , Melissa/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Nanopartículas , Compostos Fitoquímicos , Irã (Geográfico) , Folhas de Planta/efeitos dos fármacos , Compostos de Potássio , Fotossíntese/efeitos dos fármacos
18.
BMC Oral Health ; 24(1): 507, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685035

RESUMO

BACKGROUND: Dentin hypersensitivity, often occurring after dental treatments or from erosive lesions, is a prevalent patient complaint. This study introduces a paste combining 8% L-arginine, calcium carbonate, and potassium nitrate to evaluate its impact on dentinal tubules occlusion, dentin permeability, and tooth sensitivity. METHODS: Dentin surfaces from 24 third molars (thickness: 2 mm) were divided into two groups of 12. One received the experimental paste, while the other received a placebo without desensitizer. Permeability and sealing ability were assessed through scanning electron microscopy (SEM) and dentin permeability measurement. The pastes' effects on hypersensitivity were then examined in a triple-blind, randomized parallel-armed clinical trial with 16 eligible patients. Sensitivity to cold, touch, and spontaneous stimuli was recorded using the VAS scale at various intervals post-treatment. Statistical analysis was conducted using Shapiro-Wilk, Mann-Whitney U, Friedman, and Wilcoxon tests (α = 0.05). RESULTS: The permeability test demonstrated a significant reduction in dentin permeability in the experimental group (P = 0.002) compared to the control (P = 0.178). SEM images revealed most dentinal tubules in the intervention samples to be occluded. Clinically, both groups showed a significant decrease in the three types of evaluated sensitivity throughout the study. However, no significant difference in sensitivities between the two groups was observed, with the exception of cold sensitivity at three months post-treatment (P = 0.054). CONCLUSION: The innovative desensitizing paste featuring 8% L-arginine, calcium carbonate, and potassium nitrate effectively occluded dentinal tubules and reduced dentin permeability. It mitigated immediate and prolonged dentin hypersensitivity to various stimuli, supporting its potential role in managing dentin hypersensitivity. TRIAL REGISTRATION: http://irct.ir : IRCT20220829055822N1, September 9th, 2022.


Assuntos
Arginina , Carbonato de Cálcio , Dessensibilizantes Dentinários , Sensibilidade da Dentina , Microscopia Eletrônica de Varredura , Nitratos , Compostos de Potássio , Humanos , Sensibilidade da Dentina/tratamento farmacológico , Arginina/uso terapêutico , Carbonato de Cálcio/uso terapêutico , Nitratos/uso terapêutico , Masculino , Feminino , Compostos de Potássio/uso terapêutico , Dessensibilizantes Dentinários/uso terapêutico , Adulto , Permeabilidade da Dentina/efeitos dos fármacos , Dentina/efeitos dos fármacos , Cremes Dentais/uso terapêutico , Adulto Jovem , Pessoa de Meia-Idade
20.
Sci Total Environ ; 926: 171614, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508276

RESUMO

The phosphate-modified biochar (BC) immobilizes cadmium (Cd), yet little is known about how phosphate species affect Cd detoxification in contaminated soils. We developed phosphate-modified biochar through the pyrolysis of wheat straw impregnated with three types of phosphate: mono­potassium phosphate (MKP), dipotassium hydrogen phosphate (DKP), and tripotassium phosphate (TKP). The Cd adsorption mechanism of modified biochar was investigated by biochar characterization, adsorption performance evaluation, and soil incubation tests. The results demonstrated that the efficiency of biochar in immobilizing Cd2+ followed the order: TKP-BC > DKP-BC > MKP-BC. The TKP-BC had the highest orthophosphate content, the fastest adsorption rate, and the largest adsorption capacity (Langmuir) of 257.28 mg/g, which is 6.31 times higher than that of the unmodified BC (CK). In contrast, pyrophosphate was predominant in MKP-BC and DKP-BC. The primary adsorption mechanism for Cd2+ was precipitation, followed by cation exchange, as evidenced by the formation of CdP minerals on the BC surface, and an increase of K+ in solution (compared to water-soluble K+) and a decrease of K+ in the biochar during adsorption. Desorption of Cd from the TKP-BC after adsorption was 9.77 %-12.39 % at a pH of 5-9, much lower than that of CK. The soil incubation test showed the diethylenetriaminepentaacetic acid extracted Cd of TKP-BC, MKP-BC, and DKP-BC was reduced by 67.93 %, 18.41 % and 31.30 % over CK, respectively. Using the planar optodes technique, we also found that TKP-BC had the longest effect enhancing in situ soil pH. This study provides a theoretical basis for developing heavy metal pollution control technology using green remediation materials and offers insights into the remediation mechanisms.


Assuntos
Cádmio , Compostos de Potássio , Poluentes do Solo , Cádmio/análise , Solo/química , Triticum/química , Carvão Vegetal/química , Fosfatos , Poluentes do Solo/análise , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...