Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.381
Filtrar
1.
Sci Rep ; 14(1): 19304, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164280

RESUMO

First time compared the different metals doped ZnS nanoparticles for antibacterial and liver cancer cell line. In this study, copper, aluminum and nickel doped ZnS NPs were synthesized via co-precipitation method. The XRD analysis was confirmed the presence of cubic crystal structure and crystallite size decreased from 6 to 3 nm with doping elements. While as SEM micro-grains were revealed slightly irregular and agglomerated morphology with the presence of dopant elements. The presence of different dopant elements such as Cu, Al and Ni in ZnS NPs was identified via EDX analysis. The FTIR results demonstrate various vibrational stretching and bending modes attached to the surface of ZnS nanomaterials. After that the well diffusion method was used to conduct in-vitro bioassays for evaluation of antibacterial and anticancer activities against E.coli and B.cereus, as well as HepG2 liver cancer cell line. Our findings unveil exceptional results with maximum inhibition zone of approximately 9 to 23 mm observed against E.coli and 12 to 27 mm against B.cereus, respectively. In addition, the significant reduction in cell viability was achieved against the HepG2 liver cancer cell line. These favorable results highlight the potential of Ni doped ZnS NPs for various biomedical applications. In future, the doped ZnS nanomaterials will be suitable for hyperthermia therapy and wound healing process.


Assuntos
Alumínio , Antibacterianos , Antineoplásicos , Cobre , Escherichia coli , Níquel , Sulfetos , Compostos de Zinco , Humanos , Níquel/química , Antibacterianos/farmacologia , Antibacterianos/química , Sulfetos/química , Sulfetos/farmacologia , Cobre/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Alumínio/química , Compostos de Zinco/química , Escherichia coli/efeitos dos fármacos , Células Hep G2 , Nanopartículas Metálicas/química , Sobrevivência Celular/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanopartículas/química
2.
Curr Microbiol ; 81(9): 294, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095512

RESUMO

More recently, the application of semiconductor nanomaterials called quantum dots (QDs), has gained considerable attention as they possess tunable optoelectronic and physicochemical properties. There are several routes of QDs synthesis some of which include lithography, molecular beam epitaxy, and chemical reduction. However, most of these methods are expensive, labour intensive, and produce toxic by-products. Hence, the biosynthesis of QDs has been extensively researched for addressing the issues. This review elaborates on the biogenic synthesis of cadmium selenide, cadmium telluride, cadmium sulfide, lead sulfide, and zinc sulfide QDs using bacteria, and fungi. Further, we attempt to identify the underlying mechanism and critical parameters that can control the synthesis of QDs. Eventually, their application in detectors, photovoltaics, biodiesel, photocatalysis, infection-control, and bioimaging are discussed. Thus, biogenic QDs have a tremendous scope in future to emerge as next generation nanotheranostics although thorough pharmacokinetic, and pharmacodynamic studies are required.


Assuntos
Bactérias , Compostos de Cádmio , Fungos , Pontos Quânticos , Sulfetos , Compostos de Zinco , Pontos Quânticos/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Fungos/metabolismo , Fungos/efeitos dos fármacos , Compostos de Cádmio/química , Compostos de Zinco/química , Compostos de Selênio/química , Chumbo/química , Telúrio
3.
Int J Nanomedicine ; 19: 6829-6843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005958

RESUMO

Background: With the rapid development of nanotechnology, constructing a multifunctional nanoplatform that can deliver various therapeutic agents in different departments and respond to endogenous/exogenous stimuli for multimodal synergistic cancer therapy remains a major challenge to address the inherent limitations of chemotherapy. Methods: Herein, we synthesized hollow mesoporous Prussian Blue@zinc phosphate nanoparticles to load glucose oxidase (GOx) and DOX (designed as HMPB-GOx@ZnP-DOX NPs) in the non-identical pore structures of their HMPB core and ZnP shell, respectively, for photothermally augmented chemo-starvation therapy. Results: The ZnP shell coated on the HMPB core, in addition to providing space to load DOX for chemotherapy, could also serve as a gatekeeper to protect GOx from premature leakage and inactivation before reaching the tumor site because of its degradation characteristics under mild acidic conditions. Moreover, the loaded GOx can initiate starvation therapy by catalyzing glucose oxidation while causing an upgradation of acidity and H2O2 levels, which can also be used as forceful endogenous stimuli to trigger smart delivery systems for therapeutic applications. The decrease in pH can improve the pH-sensitivity of drug release, and O2 can be supplied by decomposing H2O2 through the catalase-like activity of HMPBs, which is beneficial for relieving the adverse conditions of anti-tumor activity. In addition, the inner HMPB also acts as a photothermal agent for photothermal therapy and the generated hyperthermia upon laser irradiation can serve as an external stimulus to further promote drug release and enzymatic activities of GOx, thereby enabling a synergetic photothermally enhanced chemo-starvation therapy effect. Importantly, these results indicate that HMPB-GOx@ZnP-DOX NPs can effectively inhibit tumor growth by 80.31% and exhibit no obvious systemic toxicity in mice. Conclusion: HMPB-GOx@ZnP-DOX NPs can be employed as potential theranostic agents that incorporate multiple therapeutic modes to efficiently inhibit tumors.


Assuntos
Doxorrubicina , Ferrocianetos , Glucose Oxidase , Fosfatos , Terapia Fototérmica , Compostos de Zinco , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Animais , Glucose Oxidase/química , Glucose Oxidase/farmacologia , Camundongos , Ferrocianetos/química , Ferrocianetos/farmacologia , Humanos , Compostos de Zinco/química , Fosfatos/química , Fosfatos/farmacologia , Terapia Fototérmica/métodos , Porosidade , Nanopartículas/química , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Portadores de Fármacos/química
4.
Int J Nanomedicine ; 19: 6377-6397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952677

RESUMO

Background: How to ingeniously design multi-effect photosensitizers (PSs), including multimodal imaging and multi-channel therapy, is of great significance for highly spatiotemporal controllable precise phototherapy of malignant tumors. Methods: Herein, a novel multifunctional zinc(II) phthalocyanine-based planar micromolecule amphiphile (ZnPc 1) was successfully designed and synthesized, in which N atom with photoinduced electron transfer effect was introduced to enhance the near-infrared absorbance and nonradiative heat generation. After simple self-assembling into nanoparticles (NPs), ZnPc 1 NPs would exhibit enhanced multimodal imaging properties including fluorescence (FL) imaging (FLI) /photoacoustic (PA) imaging (PAI) /infrared (IR) thermal imaging, which was further used to guide the combined photodynamic therapy (PDT) and photothermal therapy (PTT). Results: It was that under the self-guidance of the multimodal imaging, ZnPc 1 NPs could precisely pinpoint the tumor from the vertical and horizontal boundaries achieving highly efficient and accurate treatment of cancer. Conclusion: Accordingly, the integration of FL/PA/IR multimodal imaging and PDT/PTT synergistic therapy pathway into one ZnPc 1 could provide a blueprint for the next generation of phototherapy, which offered a new paradigm for the integration of diagnosis and treatment in tumor and a promising prospect for precise cancer therapy.


Assuntos
Indóis , Isoindóis , Imagem Multimodal , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Imagem Multimodal/métodos , Animais , Humanos , Indóis/química , Indóis/farmacologia , Fotoquimioterapia/métodos , Nanopartículas/química , Camundongos , Compostos de Zinco/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Linhagem Celular Tumoral , Técnicas Fotoacústicas/métodos , Terapia Fototérmica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Camundongos Endogâmicos BALB C , Fototerapia/métodos , Feminino
5.
Bioresour Technol ; 408: 131157, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059588

RESUMO

The present study successfully synthesized a novel biochar adsorbent (M-L-BC) using litchi seed modified with zinc chloride for PFASs removal in water. M-L-BC greatly enhanced removal of all examined PFASs (>95 %) as compared to the pristine biochar (<40 %). The maximum adsorption capacity was observed for PFOS, reaching 29.6 mg/g. Adsorption kinetics of PFASs followed the pseudo-second-order model (PSO), suggesting the predominance of chemical adsorption. Moreover, characterization and density functional theory (DFT) calculations jointly revealed involvement of surface complexation, electrostatic interactions, hydrogen bonding, and hydrophobic interactions in PFAS adsorption. Robust PFAS removal was demonstrated for M-L-BC across a wide range of pH (3-9), and coexisting ions had limited impact on adsorption of PFASs except PFBA. Furthermore, M-L-BC showed excellent performance in real water samples and retained reusability after five cycles of regeneration. Overall, M-L-BC represents a promising and high-quality adsorbent for efficient and sustainable removal of PFASs from water.


Assuntos
Carvão Vegetal , Cloretos , Litchi , Sementes , Poluentes Químicos da Água , Purificação da Água , Compostos de Zinco , Carvão Vegetal/química , Adsorção , Poluentes Químicos da Água/isolamento & purificação , Sementes/química , Purificação da Água/métodos , Cloretos/química , Compostos de Zinco/química , Litchi/química , Cinética , Concentração de Íons de Hidrogênio , Fluorocarbonos/química , Água/química
6.
Bioresour Technol ; 407: 131148, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047801

RESUMO

A novel ternary deep eutectic solvent (TDES), consisting of zinc chloride, ethylene glycol and alpha hydroxy carboxylic acids (i.e., glycolic acid, citric acid and malic acid), was first proposed to effectively fractionate and convert willow (Salix matsudana cv. Zhuliu) into fermentable sugar. In particular, the zinc chloride/ethylene glycol/malic acid (ZnCl2/EG/MA) TDES system showed remarkable fractionation performance with 91.66 % xylan and 90.12 % lignin removals at 130 °C for 1.5 h, resulting in 96.01 % glucose yield in the subsequent enzymatic hydrolysis stage. Moreover, the regenerated lignin showed regular nanoparticle morphology and good antioxidant properties. Even after four recycling, the TDES showed 70.16 % of delignification and 83.70 % glucose yield with the TDES pretreated willow. Overall, this study demonstrated an effective solvent fractionation approach to maximize the utilization of total lignocellulose under mild conditions.


Assuntos
Fracionamento Químico , Lignina , Salix , Salix/química , Lignina/química , Fracionamento Químico/métodos , Solventes Eutéticos Profundos/química , Glucose/química , Hidrólise , Cloretos/química , Solventes/química , Compostos de Zinco/química , Fermentação
7.
ACS Appl Mater Interfaces ; 16(31): 40483-40498, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39058959

RESUMO

Three-dimensional (3D) spheroid cell cultures of fibroblast (L929) and tumor mammary mouse (4T1) were chosen as in vitro tissue models for tissue imaging of ternary AgInS/ZnS fraction quantum dots (QDs). We showed that the tissue-mimetic morphology of cell spheroids through well-developed cell-cell and cell-matrix interactions and distinct diffusion/transport characteristics makes it possible to predict the effect of ternary AgInS/ZnS fraction QDs on the vital activity of cells while simultaneously comparing with classical two-dimensional (2D) cell cultures. The AgInS/ZnS fractions, emitting in a wide spectral range from 635 to 535 nm with a mean size from ∼3.1 ± 0.8 to ∼1.8 ± 0.4 nm and a long photoluminescence lifetime, were separated from the initial QD ensemble by using antisolvent-induced precipitation. For ternary AgInS/ZnS fraction QDs, the absence of toxicity at different QD concentrations was demonstrated on 2D and 3D cell structures. QDs show a robust correlation between numerous factors: their sizes in biological fluids over time, penetration capabilities into 2D and 3D cell structures, and selectivity with respect to penetration into cancerous and healthy cell spheroids. A reproducible protocol for the preparation of QDs along with their unique biological properties allows us to consider ternary AgInS/ZnS fraction QDs as attractive fluorescent contrast agents for tissue imaging.


Assuntos
Pontos Quânticos , Esferoides Celulares , Sulfetos , Compostos de Zinco , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Animais , Camundongos , Sulfetos/química , Compostos de Zinco/química , Esferoides Celulares/efeitos dos fármacos , Linhagem Celular Tumoral , Índio/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Prata/química , Tamanho da Partícula , Compostos de Prata/química
8.
ACS Appl Mater Interfaces ; 16(30): 38916-38930, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39041453

RESUMO

Despite the potential of photodynamic therapy (PDT) in cancer treatment, the development of efficient and photostable photosensitizing molecules that operate at long wavelengths of light has become a major hurdle. Here, we report for the first time an Ir(III)-phthalocyanine conjugate (Ir-ZnPc) as a novel photosensitizer for high-efficiency synergistic PDT treatment that takes advantage of the long-wavelength excitation and near infrared (NIR) emission of the phthalocyanine scaffold and the known photostability and high phototoxicity of cyclometalated Ir(III) complexes. In order to increase water solubility and cell membrane permeability, the conjugate and parent zinc phthalocyanine (ZnPc) were encapsulated in amphoteric redox-responsive polyurethane-polyurea hybrid nanocapsules (Ir-ZnPc-NCs and ZnPc-NCs, respectively). Photobiological evaluations revealed that the encapsulated Ir-ZnPc conjugate achieved high photocytotoxicity in both normoxic and hypoxic conditions under 630 nm light irradiation, which can be attributed to dual Type I and Type II reactive oxygen species (ROS) photogeneration. Interestingly, PDT treatments with Ir-ZnPc-NCs and ZnPc-NCs significantly inhibited the growth of three-dimensional (3D) multicellular tumor spheroids. Overall, the nanoencapsulation of Zn phthalocyanines conjugated to cyclometalated Ir(III) complexes provides a new strategy for obtaining photostable and biocompatible red-light-activated nano-PDT agents with efficient performance under challenging hypoxic environments, thus offering new therapeutic opportunities for cancer treatment.


Assuntos
Antineoplásicos , Indóis , Isoindóis , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Indóis/química , Indóis/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Irídio/química , Irídio/farmacologia , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Compostos de Zinco/química , Espécies Reativas de Oxigênio/metabolismo , Nanocápsulas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos
9.
Int J Biol Macromol ; 275(Pt 1): 133454, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964692

RESUMO

In the realization of the goal of circular economy, cellulose as one of sustainable biomass resources, have attracted much attention because of their abundant sources, biodegradability and renewability. However, the mechanical and waterproof performance of cellulose-based materials are usually not satisfying, which limits their high-value utilization. In this study, cellulose membrane with high-performance from the aspects of mechanical properties, water-resistance ability, oxygen barrier capacity and biodegradability, was prepared from bleached hardwood pulp (HBKP) in a AlCl3/ZnCl2/H2O solution. The AlCl3/ZnCl2/H2O acted as both solvent and catalyst to dissolve cellulose and facilitate the chemical crosslinking of epichlorohydrin (EPI) with cellulose, thus improved the overall performance of the obtained cellulose membrane. The addition sequence, amount and crosslinking time of EPI during chemical crosslinking had important effects on the properties of the membranes. When 7 wt% EPI was crosslinked for 24 h, the tensile stress reached 133 MPa and the strain reached 17 %. Moreover, the membrane had excellent oxygen insulation down to (1.1 ± 0.31) × 10-4 cm3/m2·d·Pa, and good water-resistance ability, no obvious swelling behavior after 450 days of immersion in distilled water. Furthermore, the membrane could be degraded by microorganisms in about 20 days. This cellulose-based membrane offers a sustainable and biodegradable packaging material.


Assuntos
Celulose , Membranas Artificiais , Celulose/química , Catálise , Água/química , Epicloroidrina/química , Resistência à Tração , Biodegradação Ambiental , Compostos de Zinco/química , Cloreto de Alumínio/química , Oxigênio/química , Embalagem de Produtos/métodos , Cloretos
10.
Anal Chem ; 96(29): 12012-12021, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38975991

RESUMO

The development of liquid biopsy methods for the accurate and reliable detection of miRNAs in whole blood is critical for the early diagnosis and monitoring of diseases. However, accurate quantification of miRNA expression levels remains challenging due to the complex matrix and low abundance of miRNAs in blood samples. Herein, we report a contactless signal output strategy with low background interference that ensures "zero-contact" between the reaction system and the colorimetry system. The designed target-induced magnetic ZnS/ZIF-90/ZnS network can serve as a unique signal amplifier and transducer. It releases hydrogen sulfide (H2S) gas in an acidic solution which can be concentrated in a droplet of only a few microliters in volume, etching the silver layer of Au@Ag nanostars (NSTs) in the droplet. This will lead to changes in the localized surface plasmon resonance signals of the NSTs. Finally, quantitative detection of let-7a is realized by measuring the offset value of the UV-vis absorption peak. Therefore, by virtue of the synergistic action of quadruple signal amplification methods, including catalytic hairpin assembly, ZnS/ZIF-90/ZnS, magnetic separation, and microextraction, the "All-in-Tube" ultrasensitive detection of low-abundance let-7a in whole blood is achieved with a detection limit as low as the aM level. In addition, the "zero-contact" signal output mode effectively solves the problem of complex matrix interference, demonstrating the great potential of this method for miRNA quantification in complex samples, such as whole blood.


Assuntos
MicroRNAs , Sulfetos , MicroRNAs/sangue , Humanos , Sulfetos/química , Compostos de Zinco/química , Colorimetria , Limite de Detecção , Ouro/química , Prata/química , Ressonância de Plasmônio de Superfície , Fenômenos Magnéticos , Nanopartículas Metálicas/química , Sulfeto de Hidrogênio/sangue
11.
Biosens Bioelectron ; 260: 116459, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838575

RESUMO

In this study, an ultrasensitive photoelectrochemical (PEC) aptasensor based on dual-sensitized heterojunction Ag2S/ZnS/NiS composites as a signal probe was proposed for the detection of tobramycin (TOB) by combining a cascaded quadratic signal amplification strategy. Specifically, compared to the limited visible light-harvesting capability of single sensitized composites, Ag2S/ZnS/NiS composites with p-n and n-n heterojunction could greatly improve the light energy utilization to tremendously strengthen the optical absorption in the entire visible-light region. Moreover, dual-sensitized heterojunction could effectively hinder the rapid recombination of photoelectrons and holes (carriers) to obtain a good photocurrent for improving the sensitivity of the aptasensor. Furthermore, a cascaded quadratic signal amplification strategy was applied to convert trace target TOB into plentiful gold nanoclusters (Au NCs) labelled double-stranded DNA for the construction of PEC aptasensor, with a broad linear detection range from 0.01 to 100 ng mL-1 and a low detection limit of 3.38 pg mL-1. Importantly, this study provided a versatile and sensitive PEC biosensing platform for TOB analysis, and demonstrated its successful application for TOB detection in milk samples. This protocol provides a novel dual-sensitized heterojunction composites to develop a highly efficient and harmfulless PEC aptasensor, which is expected to be used in food safety, environmental monitoring and other areas.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Luz , Limite de Detecção , Leite , Compostos de Prata , Sulfetos , Tobramicina , Compostos de Zinco , Tobramicina/análise , Tobramicina/química , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Compostos de Prata/química , Compostos de Zinco/química , Sulfetos/química , Leite/química , Animais , Nanopartículas Metálicas/química , Antibacterianos/análise , Ouro/química , Contaminação de Alimentos/análise
12.
J Chem Phys ; 160(23)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38884404

RESUMO

Zinc tungstate is a semiconductor known for its favorable photocatalytic, photoluminescence, and scintillation properties, coupled with its relatively low cost, reduced toxicity, and high stability in biological and catalytic environments. In particular, zinc tungstate evinces scintillation properties, namely the ability to emit visible light upon absorption of energetic radiation such as x rays, which has led to applications not only as radiation detectors but also for biomedical applications involving the delivery of optical light to deep tissue, such as photodynamic therapy and optogenetics. Here, we report on the synthesis of zinc tungstate nanorods generated via an optimized but facile method, which allows for synthetic control over the aspect ratio of the as-synthesized anisotropic motifs via rational variation of the solution pH. We investigate the effect of aspect ratio on their resulting photoluminescent and radioluminescent properties. We further demonstrate the potential of these zinc tungstate nanorods for biomedical applications, such as photodynamic therapy for cancer treatment, by analyzing their toxicological profile within cell lines and neurons.


Assuntos
Nanotubos , Compostos de Tungstênio , Compostos de Tungstênio/química , Compostos de Tungstênio/toxicidade , Nanotubos/química , Humanos , Animais , Fotoquimioterapia , Sobrevivência Celular/efeitos dos fármacos , Compostos de Zinco/química , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Zinco/química
13.
Food Chem ; 457: 139648, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908249

RESUMO

Florfenicol (F), an antimicrobial agent exclusive to veterinary use within the chloramphenicol class, is extensively applied as a broad-spectrum remedy for animal diseases. Despite its efficacy, concerns arise over potential deleterious residues in animal-derived edibles, posing threats to human health. This study pioneers an innovative approach, introducing a quantum dot fluorescence-based immunoassay (FLISA) for the meticulous detection of F residues in animal-derived foods and feeds. This method demonstrates heightened sensitivity, with a detection limit of 0.3 ng/mL and a quantitative detection range of 0.6-30.4 ng/mL. Method validation, applied to diverse food sources, yields recoveries from 90.4 % to 109.7 %, featuring RSDs within 1.3 % to 8.7 %, the results showed high consistency with the national standard HPLC-MS/MS detection method. These findings underscore the method's accuracy and precision, positioning it as a promising tool for swift and reliable F residue detection, with substantial implications for fortifying food safety monitoring.


Assuntos
Antibacterianos , Contaminação de Alimentos , Pontos Quânticos , Tianfenicol , Pontos Quânticos/química , Tianfenicol/análise , Tianfenicol/análogos & derivados , Contaminação de Alimentos/análise , Animais , Antibacterianos/análise , Imunoensaio/métodos , Sulfetos/análise , Sulfetos/química , Compostos de Zinco/química , Resíduos de Drogas/análise , Anticorpos/química , Ração Animal/análise , Limite de Detecção , Compostos de Cádmio/química , Fluorescência , Galinhas
14.
Sci Rep ; 14(1): 14562, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914625

RESUMO

Sugarcane bagasse fly ash, a residual product resulting from the incineration of biomass to generate power and steam, is rich in SiO2. Sodium silicate is a fundamental material for synthesizing highly porous silica-based adsorbents to serve circular practices. Aflatoxin B1 (AFB1), a significant contaminant in animal feeds, necessitates the integration of adsorbents, crucial for reducing aflatoxin concentrations during the digestive process of animals. This research aimed to synthesize aluminosilicate and zinc silicate derived from sodium silicate based on sugarcane bagasse fly ash, each characterized by a varied molar ratio of aluminum (Al) to silicon (Si) and zinc (Zn) to silicon (Si), respectively. The primary focus of this study was to evaluate their respective capacities for adsorbing AFB1. It was revealed that aluminosilicate exhibited notably superior AFB1 adsorption capabilities compared to zinc silicate and silica. Furthermore, the adsorption efficacy increased with higher molar ratios of Al:Si for aluminosilicate and Zn:Si for zinc silicate. The N2 confirmed AFB1 adsorption within the pores of the adsorbent. In particular, the aluminosilicate variant with a molar ratio of 0.08 (Al:Si) showcased the most substantial AFB1 adsorption capacity, registering at 88.25% after an in vitro intestinal phase. The adsorption ability is directly correlated with the presence of surface acidic sites and negatively charged surfaces. Notably, the kinetics of the adsorption process were best elucidated through the application of the pseudo-second-order model, effectively describing the behavior of both aluminosilicate and zinc silicate in adsorbing AFB1.


Assuntos
Aflatoxina B1 , Silicatos de Alumínio , Celulose , Cinza de Carvão , Saccharum , Silicatos , Compostos de Zinco , Silicatos/química , Adsorção , Silicatos de Alumínio/química , Saccharum/química , Aflatoxina B1/química , Cinza de Carvão/química , Celulose/química , Compostos de Zinco/química
15.
Int J Biol Macromol ; 272(Pt 2): 132912, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38851617

RESUMO

The unique molecular structure of cellulose makes it challenging to dissolve at room temperature (R.T.), and the dissolution mechanism remains unclear. In this study, we employed ZnCl2 aqueous solution for cellulose dissolution at R.T., proposing a novel four-stage dissolution mechanism. The efficient dissolution of cellulose in ZnCl2 aqueous solution at R.T. involves four indispensable stages: rapid migration of hydrated Zn2+ ions towards cellulose, sufficient penetration between cellulose sheets, strong interaction with cellulose hydroxyl groups, and effective dispersion of separated cellulose chains. The proposed four-stage dissolution mechanism was validated through theoretical calculations and experimental evidence. The hydrated Zn2+ ions in ZnCl2 + 3.5H2O solvent exhibited ideal migration, penetration, interaction, and dispersion abilities, resulting in efficient cellulose dissolution at R.T. Moreover, only slight degradation of cellulose occurred in ZnCl2 + 3.5H2O at R.T. Consequently, the regenerated cellulose materials obtained from ZnCl2 + 3.5H2O (R.T.) exhibited better mechanical properties. Notably, the solvent recovery rate reached about 95 % based on previous usage during five cycles. The solvent is outstanding for its green, low-cost, efficiency, simplicity, R.T. conditions and recyclability. This work contributes to a better understanding of the cellulose dissolution mechanisms within inorganic salt solvents at R.T., thereby guiding future development efforts towards greener and more efficient cellulosic solvents.


Assuntos
Celulose , Cloretos , Solubilidade , Temperatura , Água , Compostos de Zinco , Celulose/química , Compostos de Zinco/química , Cloretos/química , Água/química , Soluções , Solventes/química , Zinco/química
16.
Int J Nanomedicine ; 19: 5059-5070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836007

RESUMO

Purpose: The purpose of this study is to address the need for efficient drug delivery with high drug encapsulation efficiency and sustained drug release. We aim to create nanoparticle-loaded microgels for potential applications in treatment development. Methods: We adopted the process of ionic gelation to generate microgels from sodium alginate and carboxymethyl cellulose. These microgels were loaded with doxorubicin-conjugated amine-functionalized zinc ferrite nanoparticles (AZnFe-NPs). The systems were characterized using various techniques. Toxicity was evaluated in MCF-7 cells. In vitro release studies were conducted at different pH levels at 37 oC, with the drug release kinetics being analyzed using various models. Results: The drug encapsulation efficiency of the created carriers was as high as 70%. The nanoparticle-loaded microgels exhibited pH-responsive behavior and sustained drug release. Drug release from them was mediated via a non-Fickian type of diffusion. Conclusion: Given their high drug encapsulation efficiency, sustained drug release and pH-responsiveness, our nanoparticle-loaded microgels show promise as smart carriers for future treatment applications. Further development and research can significantly benefit the field of drug delivery and treatment development.


Assuntos
Preparações de Ação Retardada , Doxorrubicina , Portadores de Fármacos , Liberação Controlada de Fármacos , Compostos Férricos , Microgéis , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Humanos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Células MCF-7 , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Microgéis/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Alginatos/química , Aminas/química , Carboximetilcelulose Sódica/química , Nanopartículas/química , Zinco/química , Compostos de Zinco/química , Sobrevivência Celular/efeitos dos fármacos
17.
PLoS One ; 19(5): e0304032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787828

RESUMO

Heterostructure engineering is an effective technology to improve photo-electronic properties of two dimensional layered semiconductors. In this paper, based on first principles method, we studied the structure, stability, energy band, and optical properties of ZnSe/SnSe heterostructure change with film layer. Results show that all heterostructures are the type-II band arrangement, and the interlayer interaction is characterized by van der Waals. The electron concentration and charge density difference implies the electron (holes) transition from SnSe to monolayer ZnSe. By increasing the layer of SnSe films, the quantum effects are weakened leading to the band gap reduced, and eventually show metal properties. The optical properties also have obvious change, the excellent absorption ability of ZnSe/SnSe heterostructures mainly near the infrared spectroscopy. These works suggest that ZnSe/SnSe heterostructure has significant potential for future optoelectronic applications.


Assuntos
Compostos de Selênio , Compostos de Zinco , Compostos de Selênio/química , Compostos de Zinco/química , Semicondutores
18.
Nano Lett ; 24(22): 6706-6713, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775232

RESUMO

Three-photon fluorescence microscopy (3PFM) is a promising brain research tool with submicrometer spatial resolution and high imaging depth. However, only limited materials have been developed for 3PFM owing to the rigorous requirement of the three-photon fluorescence (3PF) process. Herein, under the guidance of a band gap engineering strategy, CdTe/CdSe/ZnS quantum dots (QDs) emitting in the near-infrared window are designed for constructing 3PF probes. The formation of type II structure significantly increased the three-photon absorption cross section of QDs and caused the delocalization of electron-hole wave functions. The time-resolved transient absorption spectroscopy confirmed that the decay of biexcitons was significantly suppressed due to the appropriate band gap alignment, which further enhanced the 3PF efficiency of QDs. By utilizing QD-based 3PF probes, high-resolution 3PFM imaging of cerebral vasculature was realized excited by a 1600 nm femtosecond laser, indicating the possibility of deep brain imaging with these 3PF probes.


Assuntos
Encéfalo , Pontos Quânticos , Pontos Quânticos/química , Encéfalo/diagnóstico por imagem , Fótons , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Compostos de Cádmio/química , Sulfetos/química , Camundongos , Compostos de Zinco/química , Telúrio/química , Compostos de Selênio/química , Humanos
19.
Sci Rep ; 14(1): 10066, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698009

RESUMO

The global threat of antibiotic resistance has increased the importance of the detection of antibiotics. Conventional methods to detect antibiotics are time-consuming and require expensive specialized equipment. Here, we present a simple and rapid biosensor for detecting ampicillin, a commonly used antibiotic. Our method is based on the fluorescent properties of chitosan-coated Mn-doped ZnS micromaterials combined with the ß-lactamase enzyme. The biosensors exhibited the highest sensitivity in a linear working range of 13.1-72.2 pM with a limit of detection of 8.24 pM in deionized water. In addition, due to the biological specificity of ß-lactamase, the proposed sensors have demonstrated high selectivity over penicillin, tetracycline, and glucose through the enhancing and quenching effects at wavelengths of 510 nm and 614 nm, respectively. These proposed sensors also showed promising results when tested in various matrices, including tap water, bottled water, and milk. Our work reports for the first time the cost-effective (Mn:ZnS)Chitosan micromaterial was used for ampicillin detection. The results will facilitate the monitoring of antibiotics in clinical and environmental contexts.


Assuntos
Ampicilina , Técnicas Biossensoriais , Quitosana , Manganês , Sulfetos , Compostos de Zinco , Ampicilina/análise , Ampicilina/química , Quitosana/química , Técnicas Biossensoriais/métodos , Compostos de Zinco/química , Manganês/química , Sulfetos/química , Antibacterianos/análise , Antibacterianos/química , beta-Lactamases/análise , beta-Lactamases/metabolismo , beta-Lactamases/química , Leite/química , Limite de Detecção , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Animais
20.
Int J Biol Macromol ; 271(Pt 2): 132689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806084

RESUMO

This work involves preparing zinc manganite nanoparticles (ZnMn2O4 NPs) using the Sol-gel method. Polymer nanocomposites of polyvinyl alcohol (PVA)/Sodium alginate (NaAlg)- ZnMn2O4 NPs were created using the solution casting technique. The polymer nanocomposites films were made with varying weight percentages of ZnMn2O4 nanoparticles. With the addition of nanofiller, the reduced direct and indirect energy band gap values and increased Urbach energy values were discovered in the UV-Vis data. XRD data showed a reduction in crystallinity degree with dopant. ZnMn2O4 NPs had a strong interaction with PVA/NaAlg blend, as confirmed by FTIR. The addition of ZnMn2O4 NPs led to improved thermal stability of the polymer nanocomposites films. Additionally, the nanocomposites films' mechanical characteristics were examined. The loading of ZnMn2O4 nanoparticles has been associated with an increasing trend in the mechanical properties of the nanocomposites, including its toughness, Young's modulus, Tensile strength (Ts), and elongation. The antibacterial activity of the nanocomposites against fungus and bacteria was studied. Additionally, PVA/NaAlg-ZnMn2O4 nanocomposites films had good antibacterial characteristics against environmental microorganisms such as Gram-positive (G+) S. aureus and Gram-negative(G-) E. coli bacteria as well as fungi C. albicans and A. niger. It was observed that the biodegradability of the nanocomposite films was lower compared to the pure PVA/NaAlg film. Compared to pure film, the water solubility was decreased upon the addition of ZnMn2O4 NPs. After ZnMn2O4 was added to the pure blend, the WVTR decreased. The produced polymer nanocomposites films appear to be a promising material for food packing, according to these results.


Assuntos
Alginatos , Antibacterianos , Embalagem de Alimentos , Nanocompostos , Álcool de Polivinil , Álcool de Polivinil/química , Nanocompostos/química , Embalagem de Alimentos/métodos , Alginatos/química , Antibacterianos/farmacologia , Antibacterianos/química , Resistência à Tração , Fenômenos Mecânicos , Fenômenos Ópticos , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...