Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6717, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112465

RESUMO

Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function - dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles. Here we show that light-gated recruitment of a solubilizing domain, maltose-binding protein (MBP), results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP by disrupting condensation of the oncogenic fusion protein FUS-CHOP and reverting FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.


Assuntos
Condensados Biomoleculares , Luz , Proteínas Ligantes de Maltose , Optogenética , Proteína FUS de Ligação a RNA , Solubilidade , Proteínas Ligantes de Maltose/metabolismo , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/genética , Humanos , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Optogenética/métodos , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/química , Células HeLa
2.
Science ; 385(6709): eadf4478, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39116228

RESUMO

Despite recent studies implicating liquid-like biomolecular condensates in diverse cellular processes, many biomolecular condensates exist in a solid-like state, and their function and regulation are less understood. We show that the tumor suppressor Merlin, an upstream regulator of the Hippo pathway, localizes to both cell junctions and medial apical cortex in Drosophila epithelia, with the latter forming solid-like condensates that activate Hippo signaling. Merlin condensation required phosphatidylinositol-4-phosphate (PI4P)-mediated plasma membrane targeting and was antagonistically controlled by Pez and cytoskeletal tension through plasma membrane PI4P regulation. The solid-like material properties of Merlin condensates are essential for physiological function and protect the condensates against external perturbations. Collectively, these findings uncover an essential role for solid-like condensates in normal physiology and reveal regulatory mechanisms for their formation and disassembly.


Assuntos
Condensados Biomoleculares , Proteínas de Drosophila , Drosophila melanogaster , Via de Sinalização Hippo , Neurofibromina 2 , Animais , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Junções Intercelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Condensados Biomoleculares/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(33): e2405964121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39121161

RESUMO

Ubiquitination is one of the most common posttranslational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity toward K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage-dependent manner, thus serving as an interpreter of the ubiquitin code.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Relacionadas à Autofagia , Ubiquitinação , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Ubiquitina/metabolismo , Ubiquitina/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Ubiquitinadas/metabolismo , Proteínas Ubiquitinadas/isolamento & purificação , Proteínas Ubiquitinadas/química , Separação de Fases
4.
Nature ; 632(8025): 647-655, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112699

RESUMO

Biomolecular condensates enable cell compartmentalization by acting as membraneless organelles1. How cells control the interactions of condensates with other cellular structures such as membranes to drive morphological transitions remains poorly understood. We discovered that formation of a tight-junction belt, which is essential for sealing epithelial tissues, is driven by a wetting phenomenon that promotes the growth of a condensed ZO-1 layer2 around the apical membrane interface. Using temporal proximity proteomics in combination with imaging and thermodynamic theory, we found that the polarity protein PATJ mediates a transition of ZO-1 into a condensed surface layer that elongates around the apical interface. In line with the experimental observations, our theory of condensate growth shows that the speed of elongation depends on the binding affinity of ZO-1 to the apical interface and is constant. Here, using PATJ mutations, we show that ZO-1 interface binding is necessary and sufficient for tight-junction belt formation. Our results demonstrate how cells exploit the collective biophysical properties of protein condensates at membrane interfaces to shape mesoscale structures.


Assuntos
Condensados Biomoleculares , Membrana Celular , Junções Íntimas , Molhabilidade , Animais , Cães , Humanos , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Compartimento Celular , Membrana Celular/metabolismo , Membrana Celular/química , Epitélio , Células HEK293 , Células Madin Darby de Rim Canino , Mutação , Ligação Proteica , Termodinâmica , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/química , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteômica
5.
Nat Commun ; 15(1): 6952, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138204

RESUMO

Biomolecular condensates play a significant role in chromatin activities, primarily by concentrating and compartmentalizing proteins and/or nucleic acids. However, their genomic landscapes and compositions remain largely unexplored due to a lack of dedicated computational tools for systematic identification in vivo. To address this, we develop CondSigDetector, a computational framework designed to detect condensate-like chromatin-associated protein co-occupancy signatures (CondSigs), to predict genomic loci and component proteins of distinct chromatin-associated biomolecular condensates. Applying this framework to mouse embryonic stem cells (mESC) and human K562 cells enable us to depict the high-resolution genomic landscape of chromatin-associated biomolecular condensates, and uncover both known and potentially unknown biomolecular condensates. Multi-omics analysis and experimental validation further verify the condensation properties of CondSigs. Additionally, our investigation sheds light on the impact of chromatin-associated biomolecular condensates on chromatin activities. Collectively, CondSigDetector provides an approach to decode the genomic landscape of chromatin-associated condensates, facilitating a deeper understanding of their biological functions and underlying mechanisms in cells.


Assuntos
Condensados Biomoleculares , Cromatina , Cromatina/metabolismo , Cromatina/genética , Humanos , Animais , Camundongos , Células K562 , Condensados Biomoleculares/metabolismo , Genômica/métodos , Células-Tronco Embrionárias Murinas/metabolismo , Biologia Computacional/métodos , Genoma
6.
PLoS Pathog ; 20(8): e1012413, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39146259

RESUMO

Microbes exhibit remarkable adaptability to environmental fluctuations. Signaling mechanisms, such as two-component systems and secondary messengers, have long been recognized as critical for sensing and responding to environmental cues. However, recent research has illuminated the potential of a physical adaptation mechanism in signaling-phase separation, which may represent a ubiquitous mechanism for compartmentalizing biochemistry within the cytoplasm in the context of bacteria that frequently lack membrane-bound organelles. This review considers the broader prospect that phase separation may play critical roles as rapid stress sensing and response mechanisms within pathogens. It is well established that weak multivalent interactions between disordered regions, coiled-coils, and other structured domains can form condensates via phase separation and be regulated by specific environmental parameters in some cases. The process of phase separation itself acts as a responsive sensor, influenced by changes in protein concentration, posttranslational modifications, temperature, salts, pH, and oxidative stresses. This environmentally triggered phase separation can, in turn, regulate the functions of recruited biomolecules, providing a rapid response to stressful conditions. As examples, we describe biochemical pathways organized by condensates that are essential for cell physiology and exhibit signaling features. These include proteins that organize and modify the chromosome (Dps, Hu, SSB), regulate the decay, and modification of RNA (RNase E, Hfq, Rho, RNA polymerase), those involved in signal transduction (PopZ, PodJ, and SpmX) and stress response (aggresomes and polyphosphate granules). We also summarize the potential of proteins within pathogens to function as condensates and the potential and challenges in targeting biomolecular condensates for next-generation antimicrobial therapeutics. Together, this review illuminates the emerging significance of biomolecular condensates in microbial signaling, stress responses, and regulation of cell physiology and provides a framework for microbiologists to consider the function of biomolecular condensates in microbial adaptation and response to diverse environmental conditions.


Assuntos
Bactérias , Condensados Biomoleculares , Transdução de Sinais , Estresse Fisiológico , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Bactérias/metabolismo , Condensados Biomoleculares/metabolismo , Proteínas de Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos
7.
Nat Commun ; 15(1): 6509, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095354

RESUMO

Microtubule organization in cells relies on targeting mechanisms. Cytoplasmic linker proteins (CLIPs) and CLIP-associated proteins (CLASPs) are key regulators of microtubule organization, yet the underlying mechanisms remain elusive. Here, we reveal that the C-terminal domain of CLASP2 interacts with a common motif found in several CLASP-binding proteins. This interaction drives the dynamic localization of CLASP2 to distinct cellular compartments, where CLASP2 accumulates in protein condensates at the cell cortex or the microtubule plus end. These condensates physically contact each other via CLASP2-mediated competitive binding, determining cortical microtubule targeting. The phosphorylation of CLASP2 modulates the dynamics of the condensate-condensate interaction and spatiotemporally navigates microtubule growth. Moreover, we identify additional CLASP-interacting proteins that are involved in condensate contacts in a CLASP2-dependent manner, uncovering a general mechanism governing microtubule targeting. Our findings not only unveil a tunable multiphase system regulating microtubule organization, but also offer general mechanistic insights into intricate protein-protein interactions at the mesoscale level.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Ligação Proteica , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Humanos , Fosforilação , Ligação Competitiva , Células HeLa , Condensados Biomoleculares/metabolismo , Células HEK293 , Animais
8.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999934

RESUMO

Biomolecular condensates (BMCs) exhibit physiological and pathological relevance in biological systems. Both liquid and solid condensates play significant roles in the spatiotemporal regulation and organization of macromolecules and their biological activities. Some pathological solid condensates, such as Lewy Bodies and other fibrillar aggregates, have been hypothesized to originate from liquid condensates. With the prevalence of BMCs having functional and dysfunctional roles, it is imperative to understand the mechanism of biomolecular condensate formation and initiation. Using the low-complexity domain (LCD) of heterogenous ribonuclear protein A1 (hnRNPA1) as our model, we monitored initial assembly events using dynamic light scattering (DLS) while modulating pH and salt conditions to perturb macromolecule and condensate properties. We observed the formation of nanometer-sized BMCs (nano-condensates) distinct from protein monomers and micron-sized condensates. We also observed that conditions that solubilize micron-sized protein condensates do not solubilize nano-condensates, indicating that the balance of forces that stabilize nano-condensates and micron-sized condensates are distinct. These findings provide insight into the forces that drive protein phase separation and potential nucleation structures of macromolecular condensation.


Assuntos
Difusão Dinâmica da Luz , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/química , Domínios Proteicos , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Concentração de Íons de Hidrogênio
9.
Methods Mol Biol ; 2819: 455-475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028519

RESUMO

Liquid-liquid phase separation is a widespread organizing principle of live cells, including, for example, the spatiotemporal organization of bacterial chromatin. The biophysics of phase-separating systems is often studied in vitro to avoid the complexity of the live-cell environment and facilitate application of advanced biophysical methods. One attractive method for measuring, e.g., partition coefficients, in such systems is fluorescence correlation spectroscopy (FCS). FCS circumvents some of the limitations of the widespread confocal laser scanning microscopy image-based measurements. Here, we describe how to perform partition coefficient measurements in biological phase-separating systems. Our protocol details typical workflows for the preparation of in vitro reconstituted condensates, FCS data acquisition, and subsequent data analysis, including corrections of some common artifacts. Our recommendations should help avoid many pitfalls of partition coefficient determination in these challenging systems.


Assuntos
Condensados Biomoleculares , Espectrometria de Fluorescência , Espectrometria de Fluorescência/métodos , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Microscopia Confocal/métodos , Cromatina/metabolismo , Cromatina/química
10.
Mol Biol Cell ; 35(9): ar122, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39046778

RESUMO

Cellular condensates often consist of 10s to 100s of distinct interacting molecular species. Because of the complexity of these interactions, predicting the point at which they will undergo phase separation is daunting. Using experiments and computation, we therefore studied a simple model system consisting of polySH3 and polyPRM designed for pentavalent heterotypic binding. We tested whether the peak solubility product, or the product of the dilute phase concentration of each component, is a predictive parameter for the onset of phase separation. Titrating up equal total concentrations of each component showed that the maximum solubility product does approximately coincide with the threshold for phase separation in both experiments and models. However, we found that measurements of dilute phase concentration include small oligomers and monomers; therefore, a quantitative comparison of the experiments and models required inclusion of small oligomers in the model analysis. Even with the inclusion of small polyPRM and polySH3 oligomers, models did not predict experimental results. This led us to perform dynamic light scattering experiments, which revealed homotypic binding of polyPRM. Addition of this interaction to our model recapitulated the experimentally observed asymmetry. Thus, comparing experiments with simulation reveals that the solubility product can be predictive of the interactions underlying phase separation, even if small oligomers and low affinity homotypic interactions complicate the analysis.


Assuntos
Solubilidade , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Multimerização Proteica , Histonas/metabolismo , Histonas/química
11.
Nat Commun ; 15(1): 5418, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987300

RESUMO

Biomolecular condensates help cells organise their content in space and time. Cells harbour a variety of condensate types with diverse composition and many are likely yet to be discovered. Here, we develop a methodology to predict the composition of biomolecular condensates. We first analyse available proteomics data of cellular condensates and find that the biophysical features that determine protein localisation into condensates differ from known drivers of homotypic phase separation processes, with charge mediated protein-RNA and hydrophobicity mediated protein-protein interactions playing a key role in the former process. We then develop a machine learning model that links protein sequence to its propensity to localise into heteromolecular condensates. We apply the model across the proteome and find many of the top-ranked targets outside the original training data to localise into condensates as confirmed by orthogonal immunohistochemical staining imaging. Finally, we segment the condensation-prone proteome into condensate types based on an overlap with biomolecular interaction profiles to generate a Protein Condensate Atlas. Several condensate clusters within the Atlas closely match the composition of experimentally characterised condensates or regions within them, suggesting that the Atlas can be valuable for identifying additional components within known condensate systems and discovering previously uncharacterised condensates.


Assuntos
Condensados Biomoleculares , Aprendizado de Máquina , Proteoma , Proteômica , Humanos , Proteômica/métodos , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Proteoma/metabolismo , Interações Hidrofóbicas e Hidrofílicas
12.
Methods Enzymol ; 700: 33-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971606

RESUMO

Biomolecular condensates play a major role in numerous cellular processes, including several that occur on the surface of lipid bilayer membranes. There is increasing evidence that cellular membrane trafficking phenomena, including the internalization of the plasma membrane through endocytosis, are mediated by multivalent protein-protein interactions that can lead to phase separation. We have recently found that proteins involved in the clathrin-independent endocytic pathway named Fast Endophilin Mediated Endocytosis can undergo liquid-liquid phase separation (LLPS) in solution and on lipid bilayer membranes. Here, the protein solution concentrations required for phase separation to be observed are significantly smaller compared to those required for phase separation in solution. LLPS is challenging to systematically characterize in cellular systems in general, and on biological membranes in particular. Model membrane approaches are more suitable for this purpose as they allow for precise control over the nature and amount of the components present in a mixture. Here we describe a method that enables the imaging of LLPS domain formation on solid supported lipid bilayers. These allow for facile imaging, provide long-term stability, and avoid clustering of vesicles and vesicle-attached features (such as buds and tethers) in the presence of multi-valent membrane interacting proteins.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Aciltransferases/metabolismo , Aciltransferases/química , Imagem Óptica/métodos , Membrana Celular/metabolismo , Membrana Celular/química , Endocitose , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo
13.
Nat Cell Biol ; 26(7): 1139-1153, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38992139

RESUMO

The mammalian Golgi is composed of stacks that are laterally connected into a continuous ribbon-like structure. The integrity and function of the ribbon is disrupted under stress conditions, but the molecular mechanisms remain unclear. Here we show that the ribbon is maintained by biomolecular condensates of RNA and the Golgi matrix protein GM130 (GOLGA2). We identify GM130 as a membrane-bound RNA-binding protein, which directly recruits RNA and associated RNA-binding proteins to the Golgi membrane. Acute degradation of RNA or GM130 in cells disrupts the ribbon. Under stress conditions, RNA dissociates from GM130 and the ribbon is disjointed, but after the cells recover from stress the ribbon is restored. When overexpressed in cells, GM130 forms RNA-dependent liquid-like condensates. GM130 contains an intrinsically disordered domain at its amino terminus, which binds RNA to induce liquid-liquid phase separation. These co-condensates are sufficient to link purified Golgi membranes, reconstructing lateral linking of stacks into a ribbon-like structure. Together, these studies show that RNA acts as a structural biopolymer that together with GM130 maintains the integrity of the Golgi ribbon.


Assuntos
Autoantígenos , Complexo de Golgi , Proteínas de Membrana , RNA , Complexo de Golgi/metabolismo , Humanos , Autoantígenos/metabolismo , Autoantígenos/genética , Autoantígenos/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/química , RNA/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Células HeLa , Condensados Biomoleculares/metabolismo , Ligação Proteica , Membranas Intracelulares/metabolismo , Animais , Células HEK293
14.
Structure ; 32(7): 854-855, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996511

RESUMO

In a recent issue of Nature Chemical Biology, Emmanouilidis et al. (2024) investigate the maturation of biomolecular condensates of FUS1-267 and probe the molecular details of droplet aging. They observe that the liquid-to-solid transition of the droplet is mediated at the surface by FUS1-267 molecules that have adopted ß-strand conformations.


Assuntos
Proteína FUS de Ligação a RNA , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/química , Biofísica , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Humanos , Conformação Proteica em Folha beta
15.
Nat Commun ; 15(1): 6244, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080253

RESUMO

Recent discoveries in biology have highlighted the importance of protein and RNA-based condensates as an alternative to classical membrane-bound organelles. Here, we demonstrate the design of pure RNA condensates from nanostructured, star-shaped RNA motifs. We generate condensates using two different RNA nanostar architectures: multi-stranded nanostars whose binding interactions are programmed via linear overhangs, and single-stranded nanostars whose interactions are programmed via kissing loops. Through systematic sequence design, we demonstrate that both architectures can produce orthogonal (distinct and immiscible) condensates, which can be individually tracked via fluorogenic aptamers. We also show that aptamers make it possible to recruit peptides and proteins to the condensates with high specificity. Successful co-transcriptional formation of condensates from single-stranded nanostars suggests that they may be genetically encoded and produced in living cells. We provide a library of orthogonal RNA condensates that can be modularly customized and offer a route toward creating systems of functional artificial organelles for the task of compartmentalizing molecules and biochemical reactions.


Assuntos
Aptâmeros de Nucleotídeos , Motivos de Nucleotídeos , RNA , RNA/química , RNA/metabolismo , RNA/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Nanoestruturas/química , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Conformação de Ácido Nucleico , Organelas/metabolismo
17.
Sci China Life Sci ; 67(9): 1792-1832, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39037698

RESUMO

Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.


Assuntos
Condensados Biomoleculares , Neoplasias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Neoplasias/metabolismo , Condensados Biomoleculares/metabolismo , Organelas/metabolismo , Animais , Transição de Fase , Perda Auditiva/metabolismo , Doenças do Sistema Imunitário/metabolismo
18.
Plant Sci ; 347: 112178, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38971467

RESUMO

In response to the spatiotemporal coordination of various biochemical reactions and membrane-encapsulated organelles, plants appear to provide another effective mechanism for cellular organization by phase separation that allows the internal compartmentalization of cells to form a variety of membrane-less organelles. Most of the research on phase separation has centralized in various non-plant systems, such as yeast and animal systems. Recent studies have shown a remarkable correlation between the formation of condensates in plant systems and the formation of condensates in these systems. Moreover, the last decade has made new advances in phase separation research in the context of plant biology. Here, we provide an overview of the physicochemical forces and molecular factors that drive liquid-liquid phase separation in plant cells and the biochemical characterization of condensates. We then explore new developments in phase separation research specific to plants, discussing examples of condensates found in green plants and detailing their role in plant growth and development. We propose that phase separation may be a conserved organizational mechanism in plant evolution to help plants respond rapidly and effectively to various environmental stresses as sessile organisms.


Assuntos
Condensados Biomoleculares , Células Vegetais , Desenvolvimento Vegetal , Células Vegetais/metabolismo , Condensados Biomoleculares/metabolismo , Plantas/metabolismo , Organelas/metabolismo
19.
Redox Biol ; 75: 103282, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079387

RESUMO

The intermediate filament protein vimentin performs an essential role in cytoskeletal interplay and dynamics, mechanosensing and cellular stress responses. In pathology, vimentin is a key player in tumorigenesis, fibrosis and infection. Vimentin filaments undergo distinct and versatile reorganizations, and behave as redox sensors. The vimentin monomer possesses a central α-helical rod domain flanked by N- and C-terminal low complexity domains. Interactions between this type of domains play an important function in the formation of phase-separated biomolecular condensates, which in turn are critical for the organization of cellular components. Here we show that several oxidants, including hydrogen peroxide and diamide, elicit the remodeling of vimentin filaments into small particles. Oxidative stress elicited by diamide induces a fast dissociation of filaments into circular, motile dots, which requires the presence of the single vimentin cysteine residue, C328. This effect is reversible, and filament reassembly can occur within minutes of oxidant removal. Diamide-elicited vimentin droplets recover fluorescence after photobleaching. Moreover, fusion of cells expressing differentially tagged vimentin allows the detection of dots positive for both tags, indicating that vimentin dots merge upon cell fusion. The aliphatic alcohol 1,6-hexanediol, known to alter interactions between low complexity domains, readily dissolves diamide-elicited vimentin dots at low concentrations, in a C328 dependent manner, and hampers reassembly. Taken together, these results indicate that vimentin oxidation promotes a fast and reversible filament remodeling into biomolecular condensate-like structures, and provide primary evidence of its regulated phase separation. Moreover, we hypothesize that filament to droplet transition could play a protective role against irreversible damage of the vimentin network by oxidative stress.


Assuntos
Diamida , Peróxido de Hidrogênio , Filamentos Intermediários , Estresse Oxidativo , Vimentina , Vimentina/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Diamida/farmacologia , Peróxido de Hidrogênio/metabolismo , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Oxirredução
20.
Nat Commun ; 15(1): 5686, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971830

RESUMO

The assembly and disassembly of biomolecular condensates are crucial for the subcellular compartmentalization of biomolecules in the control of cellular reactions. Recently, a correlation has been discovered between the phase transition of condensates and their maturation (aggregation) process in diseases. Therefore, modulating the phase of condensates to unravel the roles of condensation has become a matter of interest. Here, we create a peptide-based phase modulator, JSF1, which forms droplets in the dark and transforms into amyloid-like fibrils upon photoinitiation, as evidenced by their distinctive nanomechanical and dynamic properties. JSF1 is found to effectively enhance the condensation of purified fused in sarcoma (FUS) protein and, upon light exposure, induce its fibrilization. We also use JSF1 to modulate the biophysical states of FUS condensates in live cells and elucidate the relationship between FUS phase transition and FUS proteinopathy, thereby shedding light on the effect of protein phase transition on cellular function and malfunction.


Assuntos
Peptídeos , Transição de Fase , Proteína FUS de Ligação a RNA , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/genética , Humanos , Peptídeos/química , Peptídeos/metabolismo , Amiloide/metabolismo , Amiloide/química , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...