Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.352
Filtrar
2.
Sci Rep ; 14(1): 21596, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285183

RESUMO

In the realm of disease vectors and agricultural pest management, insecticides play a crucial role in preserving global health and ensuring food security. The pervasive use, particularly of organophosphates (OPs), has given rise to a substantial challenge in the form of insecticide resistance. Carboxylesterases emerge as key contributors to OP resistance, owing to their ability to sequester or hydrolyze these chemicals. Consequently, carboxylesterase enzymes become attractive targets for the development of novel insecticides. Inhibiting these enzymes holds the potential to restore the efficacy of OPs against which resistance has developed. This study aimed to screen the FooDB library to identify potent inhibitory compounds targeting carboxylesterase, Ha006a from the agricultural pest Helicoverpa armigera. The ultimate objective is to develop effective interventions for pest control. The compounds with the highest scores underwent evaluation through docking studies and pharmacophore analysis. Among them, four phytochemicals-donepezil, protopine, 3',4',5,7-tetramethoxyflavone, and piperine-demonstrated favorable binding affinity. The Ha006a-ligand complexes were subsequently validated through molecular dynamics simulations. Biochemical analysis, encompassing determination of IC50 values, complemented by analysis of thermostability through Differential Scanning Calorimetry and interaction kinetics through Isothermal Titration Calorimetry was conducted. This study comprehensively characterizes Ha006a-ligand complexes through bioinformatics, biochemical, and biophysical methods. This investigation highlights 3',4',5,7-tetramethoxyflavone as the most effective inhibitor, suggesting its potential for synergistic testing with OPs. Consequently, these inhibitors offer a promising solution to OP resistance and address environmental concerns associated with excessive insecticide usage, enabling a significant reduction in their overuse.


Assuntos
Carboxilesterase , Inseticidas , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Animais , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Carboxilesterase/antagonistas & inibidores , Carboxilesterase/metabolismo , Carboxilesterase/química , Inseticidas/farmacologia , Inseticidas/química , Simulação de Dinâmica Molecular , Mariposas/enzimologia , Mariposas/efeitos dos fármacos , Controle de Pragas/métodos , Resistência a Inseticidas , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Helicoverpa armigera
3.
Sci Rep ; 14(1): 22220, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333195

RESUMO

Okra (Abelmoschus esculentus) is a prominent vegetable crop in Asia, confronting persistent threats from pests such as leafhoppers, whiteflies, and shoot and fruit borers. Conventional chemical control methods, despite their adverse ecological effects, remain the primary approach for pest management. Indiscriminate chemical use has led to reduced biodiversity among natural predators and the disruption of food webs in ecosystems. To address these challenges, this study assessed the efficacy of integrated (IM) and biointensive (BM) pest management modules in comparison to conventional chemical methods (CM) for mitigating insect damage to okra leaves and fruits, and subsequently, their impact on okra yield. Our result revealed that the BM exhibited the least effectiveness but outperformed untreated control plots significantly. In contrast, both IM and CM significantly reduced damage from sap-sucking insects and borer pests. Notably, plots treated with the chemical module found decreased populations of natural enemies. The IM demonstrated the lowest fruit infestation rate (5.06%), yielding the highest crop production (8.97 t ha-1), along with the maximum net return (Indian Rupees: 44,245) and incremental cost-benefit ratio (3.31). Thus, the study suggested that the implementation of integrated pest management practices can result in higher okra yields and greater economic benefits. These findings shed light on the potential of sustainable agricultural practices as a safer and more economically viable alternative to chemical-intensive pest control in okra cultivation.


Assuntos
Abelmoschus , Animais , Controle de Pragas/métodos , Controle de Pragas/economia , Produtos Agrícolas/parasitologia , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Frutas , Produção Agrícola/métodos , Produção Agrícola/economia , Análise Custo-Benefício , Controle de Insetos/métodos , Controle de Insetos/economia , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/economia , Folhas de Planta/parasitologia
4.
J Hazard Mater ; 478: 135587, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39186843

RESUMO

Heavy metal contamination represents a critical global environmental concern. The movement of heavy metals through the food chain inevitably subjects insect natural enemies to heavy metal stress, leading to various adverse effects. This review assesses the risks posed by heavy metal exposure to insect natural enemies, evaluates how such exposure impacts their pest control efficacy, and investigates the mechanisms affecting their fitness. Heavy metals transfer and accumulate from soil to plants, then to herbivorous insects, and ultimately to their natural enemies, impeding growth, development, and reproduction of insect natural enemies. Typically, diminished growth and reproduction directly compromise the pest control efficacy of these natural enemies. Nonetheless, within tolerable limits, increased feeding may occur as these natural enemies strive to meet the energy demands for detoxification, potentially enhancing their pest control capabilities. The production of reactive oxygen species and oxidative damage caused by heavy metals in insect natural enemies, combined with disrupted energy metabolism in host insects, are key factors contributing to the reduced fitness of insect natural enemies. In summary, heavy metal pollution emerges as a significant abiotic factor adversely impacting the pest control performance of these beneficial insects.


Assuntos
Cadeia Alimentar , Insetos , Metais Pesados , Animais , Metais Pesados/toxicidade , Insetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Controle de Pragas/métodos
5.
Environ Res ; 261: 119722, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39098710

RESUMO

The expanding global population and the use of conventional agrochemical pesticides have led to the loss of crop yield and food shortages. Excessive pesticide used in agriculture risks life forms by contaminating soil and water resources, necessitating the use of nano agrochemicals. This article focuses on synthesis moiety and use of nanopesticides for enhanced stability, controlled release mechanisms, improved efficacy, and reduced pesticide residue levels. The current literature survey offered regulatory frameworks for commercial deployment of nanopesticides and evaluated societal and environmental impacts. Various physicochemical and biological processes, especially microorganisms and advanced oxidation techniques are important in treating pesticide residues through degradation mechanisms. Agricultural waste could be converted into nanofibers for sustainable composites production, new nanocatalysts, such as N-doped TiO2 and bimetallic nanoparticles for advancing pesticide degradation. Microbial and enzyme methods have been listed as emerging nanobiotechnology tools in achieving a significant reduction of chlorpyrifos and dimethomorph for the management of pesticide residues in agriculture. Moreover, cutting-edge biotechnological alternatives to conventional pesticides are advocated for promoting a transition towards more sustainable pest control methodologies. Application of nanopesticides could be critical in addressing environmental concern due to its increased mobility, prolonged persistence and ecosystem toxicity. Green synthesis of nanopesticides offers solutions to environmental risks associated and using genetic engineering techniques may induce pest and disease resistance for agricultural sustainability. Production of nanopesticides from biological sources is necessary to develop and implement comprehensive strategies to uphold agricultural productivity while safeguarding environmental integrity.


Assuntos
Agricultura , Praguicidas , Agricultura/métodos , Praguicidas/química , Controle de Pragas/métodos , Nanopartículas/química
6.
Pest Manag Sci ; 80(11): 5832-5842, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39022822

RESUMO

BACKGROUND: Ensuring the efficient recognition and management of crop pests is crucial for maintaining the balance in global agricultural ecosystems and ecological harmony. Deep learning-based methods have shown promise in crop pest recognition. However, prevailing methods often fail to address a critical issue: biased pest training dataset distribution stemming from the tendency to collect images primarily in certain environmental contexts, such as paddy fields. This oversight hampers recognition accuracy when encountering pest images dissimilar to training samples, highlighting the need for a novel approach to overcome this limitation. RESULTS: We introduce the Decoupled Feature Learning (DFL) framework, leveraging causal inference techniques to handle training dataset bias. DFL manipulates the training data based on classification confidence to construct different training domains and employs center triplet loss for learning class-core features. The proposed DFL framework significantly boosts existing baseline models, attaining unprecedented recognition accuracies of 95.33%, 92.59%, and 74.86% on the Li, DFSPD, and IP102 datasets, respectively. CONCLUSION: Extensive testing on three pest datasets using standard baseline models demonstrates the superiority of DFL in pest recognition. The visualization results show that DFL encourages the baseline models to capture the class-core features. The proposed DFL marks a pivotal step in mitigating the issue of data distribution bias, enhancing the reliability of deep learning in agriculture. © 2024 Society of Chemical Industry.


Assuntos
Produtos Agrícolas , Aprendizado Profundo , Animais , Controle de Pragas/métodos
7.
Curr Opin Insect Sci ; 65: 101235, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39019112

RESUMO

Pest arthropods cause significant crop damage or are vectors of pathogens for both plants and animals. The current standard of pest management prevents against crop losses and protects human and animal health, but shortcomings exist, such as insecticide resistance and environmental damage to nontarget organisms. New management methods are therefore needed. The development of new tools, such as site-specific gene editing, has accelerated the study of gene function and phenotype in nonmodel arthropod species and may enable the development of new strategies for pathogen and arthropod control. Here, the most recent developments in gene editing in arthropod pests are briefly reviewed. Additionally, technological advances that could be applicable to new species or enhance the success rates of gene editing in species with already established protocols are highlighted.


Assuntos
Artrópodes , Edição de Genes , Animais , Artrópodes/genética , Edição de Genes/métodos , Controle de Pragas/métodos , Agricultura/métodos
8.
Sci Rep ; 14(1): 16939, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043780

RESUMO

As climate change continues to modify temperature and rainfall patterns, risks from pests and diseases may vary as shifting temperature and moisture conditions affect the life history, activity, and distribution of invertebrates and diseases. The potential consequences of changing climate on pest management strategies must be understood for control measures to adapt to new environmental conditions. The redlegged earth mite (RLEM; Halotydeus destructor [Tucker]) is a major economic pest that attacks pastures and grain crops across southern Australia and is typically controlled by pesticides. TIMERITE® is a management strategy that relies on estimating the optimal timing (the TIMERITE® date) for effective chemical control of RLEM populations in spring. In this study, we assessed the efficacy of control at the TIMERITE® date from 1990 to 2020 across southern Australia using a simulation approach that incorporates historical climatic data and field experimental data on life history, seasonal abundance, and population level pesticide responses. We demonstrate that moisture and temperature conditions affect the life history of RLEM and that changes in the past three decades have gradually diminished the efficacy of the TIMERITE® strategy. Furthermore, we show that by incorporating improved climatic data into predictions and shifting the timing of control to earlier in the year, control outcomes can be improved and are more stable across changing climates. This research emphasises the importance of accounting for dynamic environmental responses when developing and implementing pest management strategies to ensure their long-term effectiveness. Suggested modifications to estimating the TIMERITE® date will help farmers maintain RLEM control outcomes amidst increasingly variable climatic conditions.


Assuntos
Mudança Climática , Ácaros , Controle de Pragas , Animais , Controle de Pragas/métodos , Austrália , Temperatura , Estações do Ano , Praguicidas
9.
J Ethnobiol Ethnomed ; 20(1): 71, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085935

RESUMO

BACKGROUND: Pests and diseases are a major contributor to yield losses in sub-Saharan Africa, prompting smallholder farmers to seek cost-effective, accessible and ecologically friendly alternatives for crop protection. This study explored the management of pests and diseases affecting crops across eight selected villages in Ehlanzeni District, Mpumalanga Province, South Africa. METHODS: A total of 120 smallholder farmers were purposefully selected utilising the snowball technique. Information on the management of plant pests and diseases was collected through interviews and focus group discussions using semi-structured interview schedules. Ethnobotanical indices, including relative frequency of citation (RFC), use-value (UV) and informant consensus factor (Fic), were used to quantify and rank the plants used for crop protection in the study area. RESULTS: Twenty-three plant species (16 naturalised exotics and seven indigenous plants) belonging to 16 families were used for managing pests (vertebrates and invertebrates) and diseases (fungal and bacterial related) affecting crops in the study area. The dominant (100%) crops cultivated by the participants were Allium cepa L., Mangifera indica L., Solanum lycopersicum L. and Zea mays L. The RFC value ranged from 0.08 to 0.83 and the three most popular plants for crop protection were Capsium annuum L. (0.83), A. cepa (0.63) and Dichrostachys cinerea (L.) Wight & Arn. (0.43). In terms of the UV, the five most promising plants used as biocontrol were Tulbaghia violacea (0.13), A. cepa (0.12), C. annuum L. (0.09), Solanum campylacanthum Hochst. Ex A.Rich.(0.09) and Pinus pinaster (0.08). Based on the Fic, four categories were established and dominated by fungal diseases (0.64). Furthermore, T. violacea and A. cepa were the most often mentioned plants used against fungal conditions. Other categories cited were bacterial diseases (0.3), invertebrate pests (0.11) and vertebrate pests (0.14), an indication that smallholder farmers had limited agreement or common knowledge about the plants used for their management. The preparation methods included maceration (38%), decoction (38%) and burning (24%). Foliar application (67%) and soil drenching (33%) were used for administering plant extracts during the management of crop pests and diseases. CONCLUSION: The study highlights the importance of botanicals and associated indigenous knowledge among smallholder farmers in Mpumalanga Province, South Africa. It is pertinent to explore the valorisation of these botanicals by generating empirical data on their biological efficacies and phytochemical profiles.


Assuntos
Produtos Agrícolas , Etnobotânica , Fazendeiros , Doenças das Plantas , África do Sul , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Adulto , Idoso , Controle de Pragas/métodos , Agricultura/métodos
10.
Technol Cult ; 65(3): 819-842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034906

RESUMO

Only a few decades after its introduction to the United States in the mid-nineteenth century, the house sparrow was considered a pest that drove away native birds. Its downfall is representative of a story familiar to scholars of animals and technology who have studied the methods used to control or exclude unwanted species from both rural and urban areas. The case of the house sparrow, however, differs in a crucial respect: the birds made their homes in bird boxes, built technologies designed to attract avian species and bring them closer to humans. This article documents how bird boxes were used as tools to regulate avian life in the late nineteenth and early twentieth centuries in the United States and argues that they should be seen as a technology that mediates and regulates our relationship with nature by promoting or controlling certain aspects of living organisms.


Assuntos
Pardais , Animais , Estados Unidos , História do Século XX , História do Século XIX , Aves , Controle de Pragas/história , Controle de Pragas/métodos
11.
Small ; 20(40): e2402921, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38822715

RESUMO

The development of smart systems for pesticidal delivery presents a significant advancement in enhancing the utilization efficiency of pesticides and mitigating environmental risks. Here an acid-responsive pesticidal delivery system using microspheres formed by the self-assembly of halloysite clay nanotubes (HNTs) is proposed. Insecticide avermectin (AVM) and herbicide prometryn (PMT) are used as two models of hydrophobic pesticide and encapsulated within the porous microspheres, followed by a coating of tannic acid/iron (TA/FeIII) complex films to generate two controlled-release pesticides, named as HCEAT and HCEPT, resulting in the loading capacity of AVM and PMT being 113.3 and 120.3 mg g-1, respectively. Both HCEAT and HCEPT exhibit responsiveness to weak acid, achieving 24 h-release ratios of 85.8% and 80.5% at a pH of 5.5. The experiment and simulation results indicate that the coordination interaction between EDTA2- and Ca2+ facilitates the spherical aggregation of HNTs. Furthermore, these novel pesticide formulations demonstrate better resistance against ultraviolet (UV) irradiation, higher foliar affinity, and less leaching effect, with negligible impact of the carrier material on plants and terrestrial organisms. This work presents a promising approach toward the development of efficient and eco-friendly pesticide formulations, greatly contributing to the sustainable advancement of agriculture.


Assuntos
Argila , Interações Hidrofóbicas e Hidrofílicas , Nanotubos , Praguicidas , Nanotubos/química , Argila/química , Concentração de Íons de Hidrogênio , Praguicidas/química , Plantas Daninhas , Ivermectina/química , Ivermectina/análogos & derivados , Controle de Pragas/métodos
12.
Pest Manag Sci ; 80(10): 5050-5063, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38856012

RESUMO

BACKGROUND: Integrated pest management (IPM) plays a crucial role in protecting agricultural environments and enhancing the quality of agricultural products. However, a major challenge in China is the conflicting understanding of IPM among farmers, leading to low adoption rates. This undermines farmers' ability to control pests and diseases while increasing risks to agricultural quality and safety. This study aimed to investigate the impact of cognitive conflicts on farmers' adoption of IPM in kiwifruit farms in Shaanxi and Sichuan provinces. Additionally, the study explored the moderating role of internet use in the relationship between cognitive conflicts and farmer adoption of IPM. Data were collected from 686 kiwifruit farms through field surveys in 2018. The binary Probit model and moderating effect models were used to assess the influence of internet use and cognitive conflict on farmer adoption of IPM. RESULTS: The study found that cognitive conflicts significantly hindered farmers' adoption of IPM. Higher levels of cognitive conflict were associated with lower likelihoods of adopting IPM. Internet use and frequency had positive effects on farmer adoption of IPM, promoting its implementation. Moreover, internet use and frequency helped alleviate the inhibitory effect of cognitive conflicts on farmer adoption IPM. CONCLUSION: This research enhances our understanding of cognitive conflicts among farmers when promoting IPM and provides viable strategies to improve the effectiveness of public sector promotion and stimulate farmers' willingness to adopt IPM. It emphasizes the importance of addressing cognitive conflicts and utilizing internet resources to enhance IPM adoption among kiwifruit growers in China. © 2024 Society of Chemical Industry.


Assuntos
Fazendeiros , Uso da Internet , Controle de Pragas , China , Fazendeiros/psicologia , Controle de Pragas/métodos , Uso da Internet/estatística & dados numéricos , Humanos , Cognição , Actinidia , Conflito Psicológico
13.
Pest Manag Sci ; 80(10): 5088-5098, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38855813

RESUMO

BACKGROUND: Environmentally-friendly crop protection practices are needed to enhance the sustainability of current agricultural systems. This is crucial in orchards which are extensively treated to impair various pests, at the expense of natural enemies. However, the effect of a shift towards softer pest management on the beneficial arthropod community is poorly documented. Earwigs (Dermaptera: Forficulidae) and spiders (Araneae) are relevant groups to assess such effects because they are highly sensitive to agricultural practices. They were monitored for 6 and 4 years, respectively, in apple orchards under three pest management regimes: Organic, Low-input and Conventional, with pest management being switched during the survey from a broad-spectrum insecticide schedule to mating disruption in the latter one, and more selective compounds in all orchards. RESULTS: The survey displayed that earwig abundance (mainly Forficula auricularia) that was initially very low in the Conventional orchard (annual mean 0.5-1.7 earwigs per shelter in the 2010-2012 period) increased to the same level as that of Low-input and Organic orchards (over 10 earwigs per shelter) in the same year that changes in pest management occurred. The epigeal and arboreal spider communities were not responsive, and no recovering was observed 4 years after change in practices. CONCLUSION: Predatory arthropod communities are differently affected over time by changes in pest management, most probably due to their biology (dispersion, reproduction rate, susceptibility to pesticides etc.). This outlines the importance of documenting the time required to recover after perturbations and build a natural enemy community to enhance pest control in a win-win perspective. © 2024 Society of Chemical Industry.


Assuntos
Malus , Aranhas , Animais , Aranhas/fisiologia , Aranhas/efeitos dos fármacos , Insetos/efeitos dos fármacos , Insetos/fisiologia , Controle de Pragas/métodos , Inseticidas/farmacologia , Controle de Insetos/métodos
14.
Pest Manag Sci ; 80(10): 5186-5199, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38934700

RESUMO

BACKGROUND: In order to address the issues of uneven pesticide deposition and low pesticide utilization in rubber gardens caused by the traditional diffuse plant protection spraying method, this study focuses on the air-assisted powder sprayer and proposes a variable pesticide application control system. A variable pesticide application decision-making model integrating the leaf area index (LAI) was designed based on powdery mildew control standards and individual rubber tree information. According to the target powder spraying accuracy requirements, a control model of the air velocity adjustment device was established and a fuzzy proportional-integral-differential (PID) air velocity control system was developed. RESULTS: The simulation results indicate that the wind speed control system exhibits a maximum overshoot of 2.18% and an average response time of 1.48 s. The field experiment conducted in a rubber plantation revealed that when the air-assisted powder sprayer operates in the variable powder spraying mode, the average response time of the control system is 2.5 s. The control accuracy of each executive mechanism exceeded 95.9%. The deposition coefficient of variation (CV) at different canopy heights was relatively consistent, with values of 35.38%, 36.26% and 36.90%. In comparison to the quantitative mode, the variable mode showed a significant 20.03% increase in the effective utilization rate of sulfur powder. CONCLUSION: These research findings provide valuable technical support for the advancement of mechanized variable powder spraying equipment in rubber tree cultivation. © 2024 Society of Chemical Industry.


Assuntos
Hevea , Pós , Doenças das Plantas/prevenção & controle , Ascomicetos/efeitos dos fármacos , Praguicidas , Controle de Pragas/métodos , Controle de Pragas/instrumentação , Fungicidas Industriais/administração & dosagem
15.
Nat Commun ; 15(1): 5384, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918388

RESUMO

Future trajectories of agricultural productivity need to incorporate environmental targets, including the reduction of pesticides use. Landscape features supporting natural pest control (LF-NPC) offer a nature-based solution that can serve as a partial substitute for synthetic pesticides, thereby supporting future productivity levels. Here, we introduce a novel approach to quantify the contribution of LF-NPC to agricultural yields and its associated economic value to crop production in a broad-scale context. Using the European Union as case study, we combine granular farm-level data, a spatially explicit map of LF-NPC potential, and a regional agro-economic supply and market model. The results reveal that farms located in areas characterized by higher LF-NPC potential experience lower productivity losses in a context of reduced synthetic pesticides use. Our analysis suggests that LF-NPC reduces yield gaps on average by four percentage points, and increases income by a similar magnitude. These results highlight the significance of LF-NPC for agricultural production and income, and provide a valuable reference point for farmers and policymakers aiming to successfully invest in landscape features to achieve pesticides reduction targets.


Assuntos
Agricultura , Produtos Agrícolas , União Europeia , Fazendas , Praguicidas , Agricultura/economia , Agricultura/métodos , Produtos Agrícolas/economia , Renda , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/economia , Produção Agrícola/economia , Produção Agrícola/métodos , Controle de Pragas/economia , Controle de Pragas/métodos
16.
PLoS One ; 19(6): e0304284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843129

RESUMO

Agricultural pests and diseases pose major losses to agricultural productivity, leading to significant economic losses and food safety risks. However, accurately identifying and controlling these pests is still very challenging due to the scarcity of labeling data for agricultural pests and the wide variety of pest species with different morphologies. To this end, we propose a two-stage target detection method that combines Cascade RCNN and Swin Transformer models. To address the scarcity of labeled data, we employ random cut-and-paste and traditional online enhancement techniques to expand the pest dataset and use Swin Transformer for basic feature extraction. Subsequently, we designed the SCF-FPN module to enhance the basic features to extract richer pest features. Specifically, the SCF component provides a self-attentive mechanism with a flexible sliding window to enable adaptive feature extraction based on different pest features. Meanwhile, the feature pyramid network (FPN) enriches multiple levels of features and enhances the discriminative ability of the whole network. Finally, to further improve our detection results, we incorporated non-maximum suppression (Soft NMS) and Cascade R-CNN's cascade structure into the optimization process to ensure more accurate and reliable prediction results. In a detection task involving 28 pest species, our algorithm achieves 92.5%, 91.8%, and 93.7% precision in terms of accuracy, recall, and mean average precision (mAP), respectively, which is an improvement of 12.1%, 5.4%, and 7.6% compared to the original baseline model. The results demonstrate that our method can accurately identify and localize farmland pests, which can help improve farmland's ecological environment.


Assuntos
Algoritmos , Animais , Agricultura/métodos , Controle de Pragas/métodos , Redes Neurais de Computação , Fazendas , Produtos Agrícolas/parasitologia
17.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 198-200, 2024 May 09.
Artigo em Chinês | MEDLINE | ID: mdl-38857966

RESUMO

OBJECTIVE: To examine the effect of ground cage use on Oncomelania hupensis spread, so as to provide insights into precision snail control. METHODS: Twenty ground cages that were frequently used to capture rice field eels were purchased, including 11 packaging tape-made cages, 7 plastic cages and 2 nylon rope-made cages. The eel-capturing activity was mimicked, and 20 ground cages were assigned in settings with relatively high (1.00 snail/0.1 m2 and higher) and low snail densities (< 1.00 snail/0.1 m2) in Xindai Township, Pinghu City, Zhejiang Province during the period from 15 : 00 to 8 : 00 of the following day on April 13, 26 and 28. The numbers of snails carried by different types of ground cages were compared in settings with different types of snail densities using the rank-sum test. RESULTS: A total of 11 cage-times were assigned in settings with a high snail density, and a total of 77 snails were captured, with a mean number of 7 snails in each cage-time and 2.15 snails in 0.1 m2 ground cage. The mean numbers of snails carried by packaging tape-made and plastic cages were 2.47 snails/0.1 m2 cage and 0.37 snails/0.1 m2 cage, respectively. A total of 24 cage-times were assigned in settings with a low snail density, and a total of 8 snails were captured, with a mean number of 0.33 snails in each cage-time and 0.09 snails in 0.1 m2 ground cage. The mean numbers of snails carried by packaging tape-made cages were 0.12 snails/0.1 m2 cage; however, no snails were carried by plastic or nylon rope-made cages. The number of snails carried by ground cages was higher in settings with a high snail density than in settings with a low snail density (Z = -4.019, P < 0.01), and the number of snails carried by packaging tape-made cages was higher in settings with a high snail density than in settings with a low snail density (Z = -4.086, P < 0.01). No significant differences were found in the numbers of snails carried by different types of ground cages. CONCLUSIONS: The use of ground cage in snail habitats is a contributor to snail spread.


Assuntos
Caramujos , Animais , Caramujos/fisiologia , Controle de Pragas/métodos , Controle de Pragas/instrumentação , China
18.
Arch Insect Biochem Physiol ; 116(2): e22124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860794

RESUMO

Pesticides are widely used for pest control to promote sustained and stable growth of agricultural production. However, indiscriminate pesticide usage poses a great threat to environmental and human health. In recent years, nanotechnology has shown the ability to increase the performance of conventional pesticides and has great potential for improving adhesion to crop foliage, solubility, stability, targeted delivery, and so forth. This review discusses two types of nanopesticides, namely, carrier-free nanopesticides and carrier-based nanopesticides, that can precisely release necessary and sufficient amounts of active ingredients. At first, the basic characterization and preparation methods of these two distinct types of nanopesticides are briefly summarized. Subsequently, current applications and future perspectives on scientific examples and strategies for promoting the usage efficacy and reducing the environmental risks of these nanopesticides were also described. Overall, nanopesticides can promote higher crop yields and lay the foundation for sustainable agriculture and global food security.


Assuntos
Controle de Pragas , Praguicidas , Praguicidas/química , Controle de Pragas/métodos , Animais , Nanotecnologia/métodos , Nanopartículas/química , Controle de Insetos/métodos , Produtos Agrícolas
19.
Int J Biol Macromol ; 274(Pt 2): 133388, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925193

RESUMO

Traditional chemical pesticide dosage forms and crude application methods have resulted in low pesticide utilization, increased environmental pollution, and the development of resistance. Compared to traditional pesticides, nanopesticides enhance the efficiency of pesticide utilization and reduce the quantity required, thereby decreasing environmental pollution. Herein, Cry1Ac insecticidal crystal protein from Bacillus thuringiensis Subsp. Kurstaki HD-73 was encapsulated in a metal-organic framework (zeolite imidazolate framework-8, ZIF-8) through biomimetic mineralization to obtain Cry1Ac@ZIF-8 nanopesticides. The Cry1Ac@ZIF-8 nanopesticides exhibited a dodecahedral porous structure, and the introduction of Cry1Ac did not affect the intrinsic crystal structure of ZIF-8. The indoor toxicity analysis revealed that the toxicity of Cry1Ac towards Ostrinia furnacalis (Guenée), Helicoverpa armigera Hubner, and Spodoptera litura Fabricius was not affected by ZIF-8 encapsulation. Surprisingly, Cry1Ac@ZIF-8 still exhibited excellent pest management efficacy even after exposure to heat, UV irradiation, and long-term storage. More importantly, the encapsulation of ZIF-8 significantly enhanced the internal absorption performance of Cry1Ac in maize leaves and extended its persistence period. Thus, ZIF-8 could potentially serve as a promising carrier for the preparation of nanopesticides with enhanced applicability, stability, and persistence period, providing a powerful strategy to improve the application of Cry1Ac in future agricultural pest management.


Assuntos
Toxinas de Bacillus thuringiensis , Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Endotoxinas/química , Toxinas de Bacillus thuringiensis/química , Proteínas Hemolisinas/química , Proteínas de Bactérias/química , Animais , Bacillus thuringiensis/química , Inseticidas/química , Inseticidas/farmacologia , Controle de Pragas/métodos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Biomimética
20.
Environ Monit Assess ; 196(6): 572, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38777911

RESUMO

This study analyzes arthropod biomass and abundance to track the changes in arthropod occurrence in relation to pesticide use in three winter wheat cropping systems managed at different intensities (organic, conventional, and hybrid). Arthropod occurrence was surveyed using three collection tools: sweeping nets, eclector traps, and yellow traps. Sampling was conducted over three years from 2020 to 2022 with 588 samples collected. The wet weight of the captured organisms was determined and arthropod abundance calculated. The application of a NOcsPS (no chemical-synthetic pesticides) strategy, a new hybrid cultivation method realized with optimized use of nitrogen fertilizers but without chemical-synthetic pesticides, showed a higher arthropod occurrence and performed more convincingly regarding produced arthropod biomass and abundance than the other cropping variants. The results also demonstrate a dependence of the obtained insect indices on the collection method. Although arthropod biomass and abundance correlated for all collection methods, the combination of various methods as well as multiple procedures of sample analysis gives a more realistic and comprehensive view of the impact of the wheat cultivation systems on the arthropod fauna than one-factor analyses.


Assuntos
Artrópodes , Monitoramento Ambiental , Fertilizantes , Nitrogênio , Triticum , Triticum/crescimento & desenvolvimento , Animais , Nitrogênio/análise , Monitoramento Ambiental/métodos , Agricultura/métodos , Praguicidas/análise , Controle de Pragas/métodos , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...