Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
J Exp Biol ; 227(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39155685

RESUMO

In natural environments, two or more abiotic parameters often vary simultaneously, and interactions between co-varying parameters frequently result in unpredictable, non-additive biological responses. To better understand the mechanisms and consequences of interactions between multiple stressors, it is important to study their effects on not only fitness (survival and reproduction) but also performance and intermediary physiological processes. The splash-pool copepod Tigriopus californicus tolerates extremely variable abiotic conditions and exhibits a non-additive, antagonistic interaction resulting in higher survival when simultaneously exposed to high salinity and acute heat stress. Here, we investigated the response of T. californicus in activity and oxygen consumption under simultaneous manipulation of salinity and temperature to identify whether this interaction also arises in these sublethal measures of performance. Oxygen consumption and activity rates decreased with increasing assay salinity. Oxygen consumption also sharply increased in response to acute transfer to lower salinities, an effect that was absent upon transfer to higher salinities. Elevated temperature led to reduced rates of activity overall, resulting in no discernible impact of increased temperature on routine metabolic rates. This suggests that swimming activity has a non-negligible effect on the metabolic rates of copepods and must be accounted for in metabolic studies. Temperature also interacted with assay salinity to affect activity, and with acclimation salinity to affect routine metabolic rates upon acute salinity transfer, implying that the sublethal impacts of these co-varying factors are also not predictable from experiments that study them in isolation.


Assuntos
Copépodes , Consumo de Oxigênio , Salinidade , Temperatura , Animais , Copépodes/fisiologia , Copépodes/metabolismo , Natação
2.
Sci Rep ; 14(1): 15240, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956386

RESUMO

Major vault protein (MVP) is the main component of the vault complex, which is a highly conserved ribonucleoprotein complex found in most eukaryotic organisms. MVP or vaults have previously been found to be overexpressed in multidrug-resistant cancer cells and implicated in various cellular processes such as cell signaling and innate immunity. The precise function of MVP is, however, poorly understood and its expression and probable function in lower eukaryotes are not well characterized. In this study, we report that the Atlantic salmon louse expresses three full-length MVP paralogues (LsMVP1-3). Furthermore, we extended our search and identified MVP orthologues in several other ecdysozoan species. LsMVPs were shown to be expressed in various tissues at both transcript and protein levels. In addition, evidence for LsMVP to assemble into vaults was demonstrated by performing differential centrifugation. LsMVP was found to be highly expressed in cement, an extracellular material produced by a pair of cement glands in the adult female salmon louse. Cement is important for the formation of egg strings that serve as protective coats for developing embryos. Our results imply a possible novel function of LsMVP as a secretory cement protein. LsMVP may play a role in structural or reproductive functions, although this has to be further investigated.


Assuntos
Copépodes , Partículas de Ribonucleoproteínas em Forma de Abóbada , Animais , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Copépodes/metabolismo , Salmo salar/parasitologia , Salmo salar/metabolismo , Feminino , Filogenia , Sequência de Aminoácidos
3.
Environ Monit Assess ; 196(8): 711, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976165

RESUMO

The study investigates the pollution characteristics of 16 priority PAHs, accumulated in copepods from a major fishing harbour and its adjacent coastal waters of Veraval, west coast of India. The total PAH accumulation is in the range of 922.16-27,807.49 ng g-1 dw, with the mean concentration of 5776.59 ng g-1 dw. High concentrations of PAHs were present in the copepod samples from inside the harbour. Notably, there was no significant correlation between the lipid content of copepods and the accumulation of PAHs. The molecular diagnostic ratio method (MDR) indicates that the PAH sources are petrogenic in origin, while principal component analysis (PCA) points to petroleum, coal combustion and vehicular emission sources. Total cancerous PAHs (C-PAHs) in the study area dominate by 40% of the total PAHs identified; moreover, the bioaccumulation factor (BAF) is very high in the offshore area, which is also a fishing ground. The global relevance and magnitude of the present study in the Veraval, one of the prime seafood exporting hubs in India, should be dealt with utmost avidity as the accumulation status of PAHs in the zooplankton has never been explored in the Indian coastal waters. Moreover, the current study gives the foremost data on the bioaccumulation status of PAHs in copepods from the tropical waters of India.


Assuntos
Copépodes , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Copépodes/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Animais , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Índia , Bioacumulação , Água do Mar/química
4.
J Hazard Mater ; 474: 134789, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843636

RESUMO

Despite the great interest in the consequences of global change stressors on marine organisms, their interactive effects on cadmium (Cd) bioaccumulation/biotoxicity are very poorly explored, particularly in combination with the toxicokinetic model and molecular mechanism. According to the projections for 2100, this study investigated the impact of elevated pCO2 and increased temperature (isolated or joint) on Cd uptake dynamics and transcriptomic response in the marine copepod Tigriopus japonicus. Toxicokinetic results showed significantly higher Cd uptake in copepods under increased temperature and its combination with elevated pCO2 relative to the ambient condition, linking to enhanced Cd bioaccumulation. Transcriptome analysis revealed that, under increased temperature and its combination with elevated pCO2, up-regulated expression of Cd uptake-related genes but down-regulation of Cd exclusion-related genes might cause increased cellular Cd level, which not only activated detoxification and stress response but also induced oxidative stress and concomitant apoptosis, demonstrating aggravated Cd biotoxicity. However, these were less pronouncedly affected by elevated pCO2 exposure. Therefore, temperature seems to be a primary factor in increasing Cd accumulation and its toxicity in the future ocean. Our findings suggest that we should refocus the interactive effects between climate change stressors and Cd pollution, especially considering temperature as a dominant driver.


Assuntos
Cádmio , Copépodes , Poluentes Químicos da Água , Cádmio/toxicidade , Cádmio/farmacocinética , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/farmacocinética , Copépodes/efeitos dos fármacos , Copépodes/metabolismo , Copépodes/genética , Dióxido de Carbono/toxicidade , Dióxido de Carbono/metabolismo , Toxicocinética , Transcriptoma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Mudança Climática , Temperatura , Temperatura Alta
5.
Harmful Algae ; 135: 102628, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38830707

RESUMO

Diatoms of the genus Pseudo-nitzschia are widespread in marine waters. Some of them can produce the toxin domoic acid (DA) which can be responsible for amnesic shellfish poisoning (ASP) when transferred into the food web. These ASP events are of major concern, due to their ecological and socio-economic repercussions, particularly on the shellfish industry. Many studies have focused on the influence of abiotic factors on DA induction, less on the role of biotic interactions. Recently, the presence of predators has been shown to increase DA production in several Pseudo-nitzschia species, in particular in Arctic areas. In order to investigate the relationship between Pseudo-nitzschia species and grazers from the French coast, exposures between one strain of three species (P. australis, P. pungens, P. fraudulenta) and the copepod Temora longicornis were conducted for 5 days. Cellular and dissolved DA content were enhanced by 1,203 % and 1,556 % respectively after the 5-days exposure of P.australis whereas no DA induction was observed in P. pungens and P. fraudulenta. T. longicornis consumed all three Pseudo-nitzschia species. The copepod survival was not related to DA content. This study is an essential first step to better understanding the interactions between planktonic species from the French coast and highlights the potential key role of copepods in the Pseudo-nitzschia bloom events in the temperate ecosystems.


Assuntos
Copépodes , Diatomáceas , Ácido Caínico , Ácido Caínico/análogos & derivados , Ácido Caínico/metabolismo , Copépodes/fisiologia , Copépodes/metabolismo , Diatomáceas/metabolismo , Diatomáceas/fisiologia , Animais , França , Toxinas Marinhas/metabolismo
6.
Environ Sci Technol ; 58(20): 8760-8770, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717860

RESUMO

Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension. This allows highly sensitive rate measurements of oxygen utilization and subsequent characterization of single particles or small planktonic organisms, such as copepods, jellyfish, or protists. As this approach is nondestructive, it can be combined with several further measurements during and after the incubation, such as stable isotope additions and molecular analyses. This makes the instrument useful for ecologists, biogeochemists, and potentially other user groups such as aquaculture facilities. Here, we present the technical background of our newly developed apparatus and provide examples of how it can be utilized to determine oxygen production and consumption in small organisms and particles.


Assuntos
Oxigênio , Oxigênio/metabolismo , Consumo de Oxigênio , Animais , Plâncton/metabolismo , Copépodes/metabolismo
7.
J Hazard Mater ; 474: 134655, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805822

RESUMO

Arsenic (As) can be transferred along the food chain, while little is known about the toxic effects of dietborne As on marine copepods. In this study, we investigated the short-term and long-term effects of waterborne and dietborne As exposure on the bioaccumulation and biotransformation, as well as developmental toxicity of Tigriopus japonicus. Under acute As exposure, As bioaccumulation increased and reached a plateau with increasing exposure concentration. Moreover, As accumulation at dietborne exposure was 4.3 and 5.7 times greater than that at control group for AsIII and AsV, respectively. At chronic As exposure, As accumulation increased continuously with exposure time, with a 2.8-day extension of development time and a 45% reduction in 10-d fecundity under dietborne exposure compared to control, whereas 2.3-day extension of development time and a 20% reduction in 10-d fecundity were observed under waterborne exposure. Among As species, inorganic As had the highest concentrations, but the proportion of inorganic As decreased from 89% to 63% during 4 to 21 d of exposure, suggesting the conversion of inorganic As to organic As. The organic As was dominated by arsenobetaine (AsB, 13-25%), followed by monomethylarsenic (MMA, 8-25%). These results suggest that dietborne exposure has more pronounced toxic effects on T. japonicus, but the toxicity of As could be reduced through biotransformation under chronic exposure. Therefore, the arsenic species should be considered when assessing As toxicity.


Assuntos
Arsênio , Biotransformação , Copépodes , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Copépodes/metabolismo , Copépodes/efeitos dos fármacos , Arsênio/toxicidade , Arsênio/metabolismo , Bioacumulação
8.
Mar Biotechnol (NY) ; 26(2): 243-260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294574

RESUMO

The caligid ectoparasite, Caligus rogercresseyi, is one of the main concerns in the Chilean salmon industry. The molecular mechanisms displayed by the parasite during the reproductive process represent an opportunity for developing novel control strategies. Vitellogenin is a multifunctional protein recognized as a critical player in several crustaceans' biological processes, including reproduction, embryonic development, and immune response. This study aimed to characterize the C. rogercresseyi vitellogenins, including discovering novel transcripts and regulatory mechanisms associated with microRNAs. Herein, vitellogenin genes were identified by homology analysis using the reference sea louse genome, transcriptome database, and arthropods vitellogenin-protein database. The validation of expression transcripts was conducted by RNA nanopore sequencing technology. Moreover, fusion gene profiling, miRNA target analysis, and functional validation were performed using luciferase assay. Six putative vitellogenin genes were identified in the C. rogercresseyi genome with high homology with other copepods vitellogenins. Furthermore, miR-996 showed a putative role in regulating the Cr_Vitellogenin1 gene, which is highly expressed in females. Moreover, vitellogenin-fusion genes were identified in adult stages and highly regulated in males, demonstrating sex-related expression patterns. In females, the identified fusion genes merged with several non-vitellogenin genes involved in biological processes of ribosome assembly, BMP signaling pathway, and biosynthetic processes. This study reports the genome array of vitellogenins in C. rogercresseyi for the first time, revealing the putative role of fusion genes and miRNA regulation in sea lice biology.


Assuntos
Copépodes , MicroRNAs , Vitelogeninas , Animais , Vitelogeninas/genética , Vitelogeninas/metabolismo , Copépodes/genética , Copépodes/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Masculino , Regulação da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica
9.
Dev Biol ; 504: 38-48, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37739119

RESUMO

The copepod species Acartia tonsa (Dana)(Crustacea) have the unique ability to induce quiescent embryonic dormancy if adverse environmental conditions occur; a characteristic shared by 41 other species belonging to the superfamily Centropagoida in the Calanoida order. However, the transcriptional changes characterizing this process are not known. Here, we compare the transcriptome of embryos in arrested quiescence with the normal development to identify pathways and differentially regulated transcripts involved in quiescent embryogenesis. Quiescence was induced by incubating eggs at 4 °C with anoxia for 26 h(hr), while eggs undergoing normal immediate development were incubated at 16.9 °C in normoxia for 7 h (where gastrulation occurs) or 14 h (where organogenesis occurs) before collecting for RNA extraction and analysis by RNA-sequencing. Results indicate that the expression profile of the quiescent embryo is not as different from the normal embryonic gastrulation as initially expected: None of the mapped transcripts is uniquely expressed in quiescence. Moreover, in quiescence a large proportion of the annotated transcripts display expression values halfway in-between the normal, immediate developmental stages of gastrulation and organogenesis. In depth comparison between the organogenesis stage and quiescent samples, reveal a high degree of divergence, confirming that a developmental arrest has been induced through quiescence. Specifically: Stress response transcripts are prominent in the quiescent phase with a transcript like the mammalian autophagy gene Sequestosome-1/p62 (SQSTM) being upregulated. The present analysis provides a better understanding of the molecular mechanisms characterizing the quiescent embryonic state of A. tonsa.


Assuntos
Copépodes , Animais , Copépodes/genética , Copépodes/metabolismo , Desenvolvimento Embrionário/genética , Gastrulação , Transcriptoma/genética , RNA/metabolismo , Mamíferos/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-36565589

RESUMO

The calanoid copepod Acartia tonsa (Dana) has attracted interest because of its use as a copepod model organism as well as its potential economic role as live fish larval feed. While the adult genome and transcriptome of A. tonsa has been investigated, no studies have been performed investigating the genome-wide transcriptional changes during the normal subitaneous embryogenesis. Thus, the aim of the current study was to investigate said transcriptional changes throughout A. tonsa embryonic development. RNA extraction and de novo transcriptome assembly for the subitaneous embryogenesis of the copepod was conducted. The assembly includes for the first-time samples describing quiescent development and overall helps establishing a framework for future studies on the molecular biology of our species of interest. Among the findings reported, sequences annotated to well-known developmental genes, were identified. At the same time are described the molecular changes and gene expression levels throughout the entire 42 h the embryonic development lasts. In conclusion, here we present the most complete genome-wide transcriptional map of early copepod embryonic development to date, enabling further use of A. tonsa as a model organism for crustacean development. Keywords: enrichment of pathways; subitaneous embryogenesis, comparative genomics; transcriptome assembly; invertebrate genomics.


Assuntos
Copépodes , Transcriptoma , Animais , Copépodes/genética , Copépodes/metabolismo , Desenvolvimento Embrionário/genética , Genoma , Larva
11.
Biol Bull ; 243(2): 171-183, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36548979

RESUMO

AbstractThe copepods of coastal seas are experiencing warming water temperatures, which increase their oxygen demand. In addition, many coastal seas are also losing oxygen because of deoxygenation due to cultural eutrophication. Warming coastal seas have changed copepod species' composition and biogeographic boundaries and, in many cases, resulted in copepod communities that have shifted in size distribution to smaller species. While increases in ambient water temperatures can explain some of these changes, deoxygenation has also been shown to result in reduced copepod growth rates, reduced size at adulthood, and altered species composition. In this review we focus on the interactive effects of temperature and dissolved oxygen on pelagic copepods, which dominate coastal zooplankton communities. The uniformity in ellipsoidal shape, the lack of external oxygen uptake organs, and the pathway of oxygen uptake through the copepod's integument make calanoid copepods ideal candidates for testing the use of an allometric approach to predict copepod size with increasing water temperatures and decreasing oxygen in coastal seas. Considering oxygen and temperature as a combined and interactive driver in coastal ecosystems will provide a unifying approach for future predictions of coastal copepod communities and their impact on fisheries and biogeochemical cycles. Given the prospect of increased oxygen limitation of copepods in warming seas, increased knowledge of the physiological ecology of present-day copepods in coastal deoxygenated zones can provide insights into the copepod communities that will inhabit a future warmer ocean.


Assuntos
Copépodes , Ecossistema , Animais , Copépodes/metabolismo , Temperatura , Oxigênio , Água/metabolismo
12.
Mar Drugs ; 20(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36355004

RESUMO

Living organisms deeply rely on the acquisition of chemical signals in any aspect of their life, from searching for food, mating and defending themselves from stressors. Copepods, the most abundant and ubiquitous metazoans on Earth, possess diversified and highly specified chemoreceptive structures along their body. The detection of chemical stimuli activates specific pathways, although this process has so far been analyzed only on a relatively limited number of species. Here, in silico mining of 18 publicly available transcriptomes is performed to delve into the copepod chemosensory genes, improving current knowledge on the diversity of this multigene family and on possible physiological mechanisms involved in the detection and analysis of chemical cues. Our study identifies the presence of ionotropic receptors, chemosensory proteins and gustatory receptors in copepods belonging to the Calanoida, Cyclopoida and Harpacticoida orders. We also confirm the absence in these copepods of odorant receptors and odorant-binding proteins agreeing with their insect specificity. Copepods have evolved several mechanisms to survive in the harsh marine environment such as producing proteins to respond to external stimulii. Overall, the results of our study open new possibilities for the use of the chemosensory genes as biomarkers in chemical ecology studies on copepods and possibly also in other marine holozooplankters.


Assuntos
Copépodes , Animais , Copépodes/genética , Copépodes/metabolismo , Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Perfilação da Expressão Gênica , Transcriptoma/genética , Filogenia
13.
Mol Cancer ; 21(1): 191, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192757

RESUMO

BACKGROUND: In vivo gene editing of somatic cells with CRISPR nucleases has facilitated the generation of autochthonous mouse tumors, which are initiated by genetic alterations relevant to the human disease and progress along a natural timeline as in patients. However, the long and variable, orthotopic tumor growth in inner organs requires sophisticated, time-consuming and resource-intensive imaging for longitudinal disease monitoring and impedes the use of autochthonous tumor models for preclinical studies. METHODS: To facilitate a more widespread use, we have generated a reporter mouse that expresses a Cre-inducible luciferase from Gaussia princeps (GLuc), which is secreted by cells in an energy-consuming process and can be measured quantitatively in the blood as a marker for the viable tumor load. In addition, we have developed a flexible, complementary toolkit to rapidly assemble recombinant adenoviruses (AVs) for delivering Cre recombinase together with CRISPR nucleases targeting cancer driver genes. RESULTS: We demonstrate that intratracheal infection of GLuc reporter mice with CRISPR-AVs efficiently induces lung tumors driven by mutations in the targeted cancer genes and simultaneously activates the GLuc transgene, resulting in GLuc secretion into the blood by the growing tumor. GLuc blood levels are easily and robustly quantified in small-volume blood samples with inexpensive equipment, enable tumor detection already several months before the humane study endpoint and precisely mirror the kinetics of tumor development specified by the inducing gene combination. CONCLUSIONS: Our study establishes blood-based GLuc monitoring as an inexpensive, rapid, high-throughput and animal-friendly method to longitudinally monitor autochthonous tumor growth in preclinical studies.


Assuntos
Copépodes , Neoplasias Pulmonares , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Copépodes/genética , Copépodes/metabolismo , Edição de Genes , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Neoplasias Pulmonares/genética , Camundongos
14.
Mar Genomics ; 65: 100981, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35969942

RESUMO

Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[a]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 µM) and BaP (0.1 µM). In C. finmarchicus and C. glacialis, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3'-phosphoadenosine 5'-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in C. finmarchicus and C. glacialis but were not affected in C. hyperboreus. However, a larger number of genes and pathways were modulated in C. hyperboreus by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in C. finmarchicus and C. glacialis. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.


Assuntos
Copépodes , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidade , Copépodes/genética , Copépodes/metabolismo , Fenantrenos/metabolismo , Fenantrenos/toxicidade , Transcriptoma , Poluentes Químicos da Água/toxicidade , Xenobióticos
15.
Talanta ; 245: 123465, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35427949

RESUMO

This manuscript reports on a fully automatic sequential injection system incorporating a 3D printed module for real-time monitoring of the release of Metridia luciferase from a modified liver epithelial cell line. To this end, a simple and effective approach for the automation of flash-type chemiluminescence assays was developed. The 3D printed module comprised an apical and a basal compartment that enabled monitoring membrane processes on both sides of the cell monolayer aimed at elucidating the direction of luciferase release. A natural release was observed after transfection with the luciferase plasmid by online measurement of the elicited light from the reaction of the synthesized luciferase with the coelenterazine substrate. Model substances for acute toxicity from the group of cholic acids - chenodeoxycholic and deoxycholic acids - were applied at the 1.0 and 0.5 mmol L-1 levels. The tested cholic acids caused changes in cell membrane permeability that was accompanied by an increased luciferase release. The obtained kinetic profiles were evaluated based on the delay between the addition of the toxic substance and the increase of the chemiluminescence signal. All experiments were carried out in a fully automatic system in ca. 5 min per sample in 30 min intervals and no manual interventions were needed for a sampling period of at least 6 h.


Assuntos
Copépodes , Animais , Ácidos Cólicos , Copépodes/metabolismo , Cinética , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes
16.
PLoS One ; 17(3): e0266022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358250

RESUMO

Salmon lice are ectoparasites on salmonids and feed on blood, mucus, and skin from their hosts. This causes high annual costs for treatment and control for the aquaculture industry. Salmon lice have a life cycle consisting of eight life stages. Sex determination by eye is only possible from the sixth stage onwards. A molecular sex determination has not been carried out so far, even though few individual sex-linked SNPs have been reported. In the present study, we used known sex-specific SNPs as a basis to sequence the complete sex-specific gene variants and used the sequence information to develop a sex determination assay. This assay could be used to determine the developmental speed of the two sexes already in the earliest life stages. Additionally, we sampled salmon lice in the nauplius II stage, determined the sex of each individual, pooled their RNA according to their sex, and used RNA sequencing to search for differences in gene expression and further sex-specific SNPs. We succeeded in developing a sex-determination assay that works on DNA or RNA from even the earliest larval stages of the salmon louse after hatching. At these early developmental stages, male salmon lice develop slightly quicker than females. We detected several previously unknown, sex-specific SNPs in our RNA-data seq, but only very few genes showed a differential expression between the sexes. Potential connections between SNPs, gene expression, and development are discussed.


Assuntos
Copépodes , Doenças dos Peixes , Animais , Copépodes/metabolismo , Feminino , Doenças dos Peixes/parasitologia , Estágios do Ciclo de Vida/genética , Masculino , RNA/metabolismo , Caracteres Sexuais
17.
J Parasitol ; 108(1): 10-21, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995354

RESUMO

Globally, parasites are sensitive toward environmental changes, and, in some cases, they are even more sensitive than their hosts. However, there is limited knowledge on the physiological responses of parasites and their effects on their hosts in relation to environmental degradation. In this study, metallothioneins (MTs) were isolated and compared between the ectoparasite Lamproglena clariae and its host fish Clarias gariepinus. Differences in the levels of MTs in the parasite and host were compared to physicochemical water quality variables and metals to determine if MT expression was linked with changes in water quality. Clarias gariepinus individuals were sampled from 2 sites of differing water quality along the Vaal River using gill nets and assessed for L. clariae. Gill, muscle, and liver tissue of the host and L. clariae were collected and stored in liquid nitrogen for analysis of MT. Water and sediment samples were collected for metal analysis by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry. Nutrient levels and water hardness in water samples were assessed using spectrophotometry. MTs were quantified using spectrophotometry and size exclusion chromatography in the host and parasite, respectively. Infections by L. clariae differed between sites, with higher parasite intensity at the unpolluted Vaal Dam site. Concentrations of MT in host tissues and L. clariae were significantly higher at the polluted site, below the Vaal River Barrage, compared to the Vaal Dam site. Parasite MT concentrations were significantly lower compared to concentrations in the liver and gill tissue of C. gariepinus individuals. In conclusion, differences in the concentrations of MT and infection biology of L. clariae reflected the state of the environment and support the usefulness of this parasite and other Lamproglena spp. as bioindicators.


Assuntos
Peixes-Gato/parasitologia , Copépodes/metabolismo , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Metalotioneína/metabolismo , Qualidade da Água , Animais , Cromatografia em Gel/veterinária , Copépodes/patogenicidade , Ectoparasitoses/parasitologia , Biomarcadores Ambientais , Brânquias/química , Brânquias/parasitologia , Fígado/química , Metalotioneína/análise , Músculos/química , Coelhos
18.
PLoS One ; 16(11): e0259371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34748608

RESUMO

The marine copepod, Tigriopus californicus, produces the red carotenoid pigment astaxanthin from yellow dietary precursors. This 'bioconversion' of yellow carotenoids to red is hypothesized to be linked to individual condition, possibly through shared metabolic pathways with mitochondrial oxidative phosphorylation. Experimental inter-population crosses of lab-reared T. californicus typically produces low-fitness hybrids is due in large part to the disruption of coadapted sets nuclear and mitochondrial genes within the parental populations. These hybrid incompatibilities can increase variability in life history traits and energy production among hybrid lines. Here, we tested if production of astaxanthin was compromised in hybrid copepods and if it was linked to mitochondrial metabolism and offspring development. We observed no clear mitonuclear dysfunction in hybrids fed a limited, carotenoid-deficient diet of nutritional yeast. However, when yellow carotenoids were restored to their diet, hybrid lines produced less astaxanthin than parental lines. We observed that lines fed a yeast diet produced less ATP and had slower offspring development compared to lines fed a more complete diet of algae, suggesting the yeast-only diet may have obscured effects of mitonuclear dysfunction. Astaxanthin production was not significantly associated with development among lines fed a yeast diet but was negatively related to development in early generation hybrids fed an algal diet. In lines fed yeast, astaxanthin was negatively related to ATP synthesis, but in lines fed algae, the relationship was reversed. Although the effects of the yeast diet may have obscured evidence of hybrid dysfunction, these results suggest that astaxanthin bioconversion may still be related to mitochondrial performance and reproductive success.


Assuntos
Carotenoides/metabolismo , Copépodes/genética , Aptidão Genética , Animais , Organismos Aquáticos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Copépodes/metabolismo , Hibridização Genética , Invertebrados , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Xantofilas/metabolismo
19.
Mar Biotechnol (NY) ; 23(5): 710-723, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34564738

RESUMO

The role of miRNAs in pharmacological responses through gene regulation related to drug metabolism and the detoxification system has recently been determined for terrestrial species. However, studies on marine ectoparasites have scarcely been conducted to investigate the molecular mechanisms of pesticide resistance. Herein, we explored the sea louse Caligus rogercresseyi miRNome responses exposed to delousing drugs and the interplaying with coding/non-coding RNAs. Drug sensitivity in sea lice was tested by in vitro bioassays for the pesticides azamethiphos, deltamethrin, and cypermethrin. Ectoparasites strains with contrasting susceptibility to these compounds were used. Small-RNA sequencing was conducted, identifying 2776 novel annotated miRNAs, where 163 mature miRNAs were differentially expressed in response to the drug testing. Notably, putative binding sites for miRNAs were found in the ADME genes associated with the drugs' absorption, distribution, metabolism, and excretion. Interactions between the miRNAs and long non-coding RNAs (lncRNAs) were also found, suggesting putative molecular gene regulation mechanisms. This study reports putative miRNAs correlated to the coding/non-coding RNAs modulation, revealing novel pharmacological mechanisms associated with drug resistance in sea lice species.


Assuntos
Antiparasitários/farmacologia , Copépodes/efeitos dos fármacos , Resistência a Medicamentos/genética , MicroRNAs/metabolismo , Animais , Copépodes/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Doenças dos Peixes/parasitologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Organotiofosfatos/farmacologia , Piretrinas/farmacologia , RNA Longo não Codificante/genética , Salmo salar/parasitologia
20.
PLoS One ; 16(8): e0255837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34398912

RESUMO

Unusually warm conditions recently observed in the Pacific Arctic region included a dramatic loss of sea ice cover and an enhanced inflow of warmer Pacific-derived waters. Moored sediment traps deployed at three biological hotspots of the Distributed Biological Observatory (DBO) during this anomalously warm period collected sinking particles nearly continuously from June 2017 to July 2019 in the northern Bering Sea (DBO2) and in the southern Chukchi Sea (DBO3), and from August 2018 to July 2019 in the northern Chukchi Sea (DBO4). Fluxes of living algal cells, chlorophyll a (chl a), total particulate matter (TPM), particulate organic carbon (POC), and zooplankton fecal pellets, along with zooplankton and meroplankton collected in the traps, were used to evaluate spatial and temporal variations in the development and composition of the phytoplankton and zooplankton communities in relation to sea ice cover and water temperature. The unprecedented sea ice loss of 2018 in the northern Bering Sea led to the export of a large bloom dominated by the exclusively pelagic diatoms Chaetoceros spp. at DBO2. Despite this intense bloom, early sea ice breakup resulted in shorter periods of enhanced chl a and diatom fluxes at all DBO sites, suggesting a weaker biological pump under reduced ice cover in the Pacific Arctic region, while the coincident increase or decrease in TPM and POC fluxes likely reflected variations in resuspension events. Meanwhile, the highest transport of warm Pacific waters during 2017-2018 led to a dominance of the small copepods Pseudocalanus at all sites. Whereas the export of ice-associated diatoms during 2019 suggested a return to more typical conditions in the northern Bering Sea, the impact on copepods persisted under the continuously enhanced transport of warm Pacific waters. Regardless, the biological pump remained strong on the shallow Pacific Arctic shelves.


Assuntos
Ciclo do Carbono , Animais , Regiões Árticas , Clorofila A/análise , Copépodes/crescimento & desenvolvimento , Copépodes/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Ecossistema , Camada de Gelo , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Temperatura , Zooplâncton/crescimento & desenvolvimento , Zooplâncton/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...