Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.721
Filtrar
1.
Anal Chim Acta ; 1316: 342878, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969399

RESUMO

Fluorescence analysis has been regarded as one of the commonly used analytical methods because of its advantages of simple operation, fast response, low cost and high sensitivity. So far, various fluorescent probes, with noble metal nanoclusters, quantum dots, organic dyes and metal organic frameworks as representatives, have been widely reported. However, single fluorescent probe often suffers from some deficiencies, such as low quantum yield, poor chemical stability, low water solubility and toxicity. To overcome these disadvantages, the introduction of cyclodextrins into fluorescent probes has become a fascinating approach. This review (with 218 references) systematically covers the research progress of fluorescent composites based on cyclodextrins in recent years. Preparation strategies, fluorescence properties, response mechanisms and applications in sensing (ions, organic pollutants, bio-related molecules, temperature, pH) and bioimaging of fluorescent composites based on cyclodextrins are summarized in detail. Finally, the current challenges and future perspectives of these composites in relative research fields are discussed.


Assuntos
Ciclodextrinas , Corantes Fluorescentes , Ciclodextrinas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Imagem Óptica , Fluorescência , Animais
2.
Anal Chim Acta ; 1316: 342802, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969400

RESUMO

BACKGROUND: Cirrhosis represents the terminal stage of liver disease progression and timely intervention in a diseased liver can enhance the likelihood of recovery. Viscosity, a crucial parameter of the cellular microenvironment, is intricately linked to the advancement of cirrhosis. However, viscosity monitoring still faces significant challenges in achieving non-invasive and rapid early diagnosis of cirrhosis. Near-infrared (NIR) fluorescence imaging has the advantages of high sensitivity, non-destructive detection, and ignoring background fluorescence interference, plays an important role in diagnosing and treating various biological diseases. Hence, monitoring cellular viscosity changes with NIR fluorescence probe holds great significance in the early diagnosis of cirrhosis. RESULTS: In this study, the NIR fluorescence probe based on the intramolecular charge transfer (TICT) mechanism was developed for imaging applications in mouse model of liver cirrhosis. A molecular rotor-type viscosity-responsive probe was synthesized by linking dioxanthracene groups via carbon-carbon double bonds. The probe demonstrated remarkable sensitivity, high selectivity and photostability, with its responsiveness to viscosity largely unaffected by factors such as polarity, pH, and interfering ions. The probe could effectively detect various drug-induced changes in cellular viscosity, enabling the differentiation between normal cells and cancerous cells. Furthermore, the enhanced tissue penetration capabilities of probe facilitated its successful application in mouse model of liver cirrhosis, allowing for the assessment of liver disease severity based on fluorescence intensity and providing a powerful tool for early diagnosis of cirrhosis. SIGNIFICANCE: A NIR viscosity-sensitive fluorescent probe was specifically designed to effectively monitor alterations in cellular and organ viscosity, which could advance the understanding of the biological characteristics of cancer and provide theoretical support for the early diagnosis of cirrhosis. Overall, this probe held immense potential in monitoring viscosity-related conditions, expanding the range of biomedical tools available.


Assuntos
Corantes Fluorescentes , Cirrose Hepática , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Animais , Humanos , Camundongos , Imagem Óptica , Viscosidade , Raios Infravermelhos , Estrutura Molecular
3.
Anal Chim Acta ; 1316: 342860, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969429

RESUMO

BACKGROUND: Glutathione (GSH), a highly abundant thiol compound within cells, plays a critical role in physiological processes and exhibits close correlation with cancer. Among molecular imaging technologies, most probes have relatively short emission wavelengths and lack photoacoustic imaging (PA) capability, resulting in the inability to obtain tissue images with high penetration depth. The presence of GSH in the tumor microenvironment neutralizes ROS, diminishing the therapeutic effect of PDT, thus resulting in often unsatisfactory therapeutic efficacy. Therefore, it is imperative to develop a dual-modal probe for the detection of GSH and the diagnosis and treatment of cancer. RESULTS: In this study, we synthesized a novel dual-modal probe, Cy-Bio-GSH, utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging techniques for GSH detection. The probe integrates cyanine dye as the fluorophore, nitroazobenzene as the recognition moiety, and biotin as the tumor-targeting moiety. Upon reacting with GSH, the probe emits NIR fluorescence at 820 nm and generates a PA signal. Significantly, this reaction activates the photodynamic and photothermal properties of the probe. By depleting GSH and employing a synergistic photothermal therapy (PTT) treatment, the therapeutic efficacy of photodynamic therapy (PDT) is remarkably enhanced. In-vivo experiments confirm the capability of the probe to detect GSH via NIRF and PA imaging. Notably, the combined tumor-targeting ability and PDT/PTT synergistic therapy enhance therapeutic outcomes for tumors and facilitate their ablation. SIGNIFICANCE: A novel tumor-targeting and dual-modal imaging probe (Cy-Bio-GSH) is synthesized, exhibiting remarkable sensitivity and selectivity to GSH, enabling the visualization of GSH in cells and the differentiation between normal and cancer cells. Cy-Bio-GSH enhances PDT/PTT with effective killing of cancer cells and makes the ablation of tumors in mice. This work represents the first tumor-targeting probe for GSH detection, and provides crucial tool for cancer diagnosis and treatment by dual-modal imaging with improved PDT/PTT synergistic therapy.


Assuntos
Biotina , Glutationa , Técnicas Fotoacústicas , Fotoquimioterapia , Glutationa/química , Glutationa/metabolismo , Animais , Humanos , Camundongos , Biotina/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Imagem Óptica , Feminino , Terapia Fototérmica , Camundongos Nus , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico
4.
Luminescence ; 39(7): e4819, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956814

RESUMO

Mefenamic acid, renowned for its analgesic properties, stands as a reliable choice for alleviating mild to moderate pain. However, its versatility extends beyond pain relief, with ongoing research unveiling its promising therapeutic potential across diverse domains. A straightforward, environmentally friendly, and sensitive spectrofluorometric technique has been developed for the precise quantification of the analgesic medication, mefenamic acid. This method relies on the immediate reduction of fluorescence emitted by a probe upon interaction with varying concentrations of the drug. The fluorescent probe utilized, N-phenyl-1-naphthylamine (NPNA), was synthesized in a single step, and the fluorescence intensities were measured at 480 nm using synchronous fluorescence spectroscopy with a wavelength difference of 200 nm. Temperature variations and lifetime studies indicated that the quenching process was static. The calibration curve exhibited linearity within the concentration range of 0.50-9.00 µg/mL, with a detection limit of 60.00 ng/mL. Various experimental parameters affecting the quenching process were meticulously examined and optimized. The proposed technique was successfully applied to determine mefenamic acid in pharmaceutical formulations, plasma, and urine, yielding excellent recoveries ranging from 98% to 100.5%. The greenness of the developed method was evaluated using three metrics: the Analytical Eco-scale, AGREE, and the Green Analytical Procedure Index.


Assuntos
Corantes Fluorescentes , Ácido Mefenâmico , Espectrometria de Fluorescência , Ácido Mefenâmico/análise , Ácido Mefenâmico/química , Ácido Mefenâmico/urina , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Estrutura Molecular , Preparações Farmacêuticas/química , Preparações Farmacêuticas/análise , Limite de Detecção
5.
Anal Chem ; 96(26): 10724-10731, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952276

RESUMO

Carboxylesterase (CE), an enzyme widely present in organisms, is involved in various physiological and pathological processes. Changes in the levels of CEs in the liver may predict the presence of type 2 diabetes mellitus (T2DM). Here, a novel dicyanoisophorone (DCI)-based proximity-labeled far-red fluorescent probe DCI2F-Ac with endoplasmic reticulum targeting was proposed for real-time monitoring and imaging of the CEs activity. DCI2F-Ac featured very low cytotoxicity and biotoxicity and was highly selective and sensitive for CEs. Compared with traditional CEs probes, DCI2F-Ac was covalently anchored directly to CEs, thus effectively reducing the loss of in situ fluorescent signals due to diffusion. Through the "on-off" fluorescence signal readout, DCI2F-Ac was able to distinguish cell lines and screen for CEs inhibitors. In terms of endoplasmic reticulum (ER) stress, it was found that thapsigargin (Tg) induced upregulation of CEs levels but not tunicamycin (Tm), which was related to the calcium homeostasis of the ER. DCI2F-Ac could efficiently detect downregulated CEs in the livers of T2DM, and the therapeutic efficacy of metformin, acarbose, and a combination of these two drugs was assessed by tracking the fluctuation of CEs levels. The results showed that combining metformin and acarbose could restore CEs levels to near-normal levels with the best antidiabetic effect. Thus, the DCI2F-Ac probe provides a great opportunity to explore the untapped potential of CEs in liver metabolic disorders and drug efficacy assessment.


Assuntos
Carboxilesterase , Diabetes Mellitus Tipo 2 , Retículo Endoplasmático , Corantes Fluorescentes , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Carboxilesterase/metabolismo , Carboxilesterase/antagonistas & inibidores , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Animais , Camundongos , Imagem Óptica , Células Hep G2 , Estresse do Retículo Endoplasmático/efeitos dos fármacos
6.
J Med Chem ; 67(13): 10875-10890, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38946306

RESUMO

GPR84 is a promising therapeutic target and biomarker for a range of diseases. In this study, we reported the discovery of BINOL phosphate (BINOP) derivatives as GPR84 antagonists. By investigating the structure-activity relationship, we identified 15S as a novel GPR84 antagonist. 15S exhibits low nanomolar potency and high selectivity for GPR84, while its enantiomer 15R is less active. Next, we rationally designed and synthesized a series of GPR84 fluorogenic probes by conjugating Nile red and compound 15S. The leading hybrid, probe F8, not only retained GPR84 activity but also exhibited low nonspecific binding and a turn-on fluorescent signal in an apolar environment. F8 enabled visualization and detection of GPR84 in GPR84-overexpressing HEK293 cells and lipopolysaccharide-stimulated neutrophils. Furthermore, we demonstrated that F8 can detect upregulated GPR84 protein levels in mice models of inflammatory bowel disease and acute lung injury. Thus, compound F8 represents a promising tool for studying GPR84 functions.


Assuntos
Corantes Fluorescentes , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Células HEK293 , Relação Estrutura-Atividade , Camundongos , Camundongos Endogâmicos C57BL , Descoberta de Drogas , Lipopolissacarídeos/farmacologia
7.
Anal Chem ; 96(28): 11588-11594, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38967368

RESUMO

Fluorescence sensing and imaging techniques are being widely studied for detecting carbon monoxide (CO) in living organisms due to their speed, sensitivity, and ease of use to biological systems. Most fluorescent probes used for this purpose are based on heavy metal ions like Pd, with a few using elements like Ru, Rh, Ir, Os, Tb, and Eu. However, these metals can be expensive and toxic to cells. There is a need for more affordable and biologically safe fluorescent probes for CO detection. Drawing inspiration from the robust affinity exhibited by heme iron toward CO, in this work, a rhodamine derivative called RBF was developed for imaging CO in living cells by binding to Fe(III) and could be used for CO sensing. A Fe(III)-based fluorescent probe for CO imaging in living cells offers advantages of cost effectiveness, low toxicity, and ease of use. The fluorescence detection using the RBF-Fe system showed a direct correlation with increasing levels of CORM-3 (LOD = 146 nM) or the exposure time of CO gas, displaying reduced fluorescence. A CO test paper based on RBF-Fe was created for simple on-site CO detection, where fluorescence would diminish in response to CO exposure, allowing rapid (2 min) visual identification. Imaging of CO in living cells was successfully conducted using the probe system, showing a decrease in fluorescence intensity as CORM-3 concentrations increased, indicating its effectiveness in monitoring CO levels accurately within living cells.


Assuntos
Monóxido de Carbono , Compostos Férricos , Corantes Fluorescentes , Monóxido de Carbono/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Compostos Férricos/química , Compostos Férricos/análise , Imagem Óptica , Rodaminas/química , Células HeLa
8.
Luminescence ; 39(7): e4828, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004779

RESUMO

The antibiotic tetracycline can be efficiently used as medicine for the deterrence of bacterial infections in humans, animals, and plants. However, the unprecedented use of tetracycline is of great concern owing to its low biodegradability, extensive usage, and adverse impacts on the environment and water quality. In this study, a sensitive spectrofluorometric method was proposed for the direct determination of tetracycline, based on biocompatible fluorescent carbon dots (CDs). The synthesis of CDs was performed by adopting a green hydrothermal procedure from carrot juice without requiring surface passivation or outflowing any environmentally hazardous waste. X-ray diffraction analysis and transmission electron microscopy revealed amorphous spherical-shaped CDs that exhibited blue emission under blue illumination. The fabricated fluorescent probe directly detected tetracycline in the concentration range of 4.00 × 10-6 to 1.55 × 10-5 mol L-1 with an LOD of 1.33 × 10-6 mol L-1. The performance of the probe was assessed in a tap water sample, with recovery values between 80.70 and 103.60%. The method's greenness was evaluated using the Analytical Green metric approach (AGREE) and confirmed to be within the green range. The developed method is facile, rapid, cost-effective, and offers a wide linear range and satisfactory selectivity, making it potentially suitable for determining tetracycline in water applications.


Assuntos
Antibacterianos , Carbono , Daucus carota , Corantes Fluorescentes , Sucos de Frutas e Vegetais , Pontos Quânticos , Espectrometria de Fluorescência , Tetraciclina , Daucus carota/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Pontos Quânticos/química , Carbono/química , Antibacterianos/análise , Tetraciclina/análise , Sucos de Frutas e Vegetais/análise , Limite de Detecção
9.
Luminescence ; 39(7): e4826, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004784

RESUMO

Biocompatible and highly fluorescent phosphorus, nitrogen and sulfur carbon quantum dots (P,N,S-CQDs) were synthesized using a quick and ecologically friendly process inspired from plant sources. Garlic and red lentils were utilized as natural and inexpensive sources for efficient synthesis of the carbon-based quantum dots using green microwave-irradiation, which provides an ultrafast route for carbonization of the organic biomass and subsequent fabrication of P,N,S-CQDs within only 3 min. The formed P,N,S-CQDs showed excellent blue fluorescence at λem = 412 nm when excited at 325 nm with a quantum yield up to 26.4%. These fluorescent dots were used as a nano-sensor for the determination of the commonly used antibacterial and antiprotozoal drug, metronidazole (MTR). As MTR lacked native fluorescence and prior published techniques had several limitations, the proposed methodology became increasingly relevant. This approach affords sensitive detection with a wide linear range of 0.5-100.0 µM and LOD and LOQ values of 0.14 µM and 0.42 µM, respectively. As well as, it is cost-effective and ecologically benign. The MTT test was used to evaluate the in-vitro cytotoxicity of the fabricated P,N,S-CQDs. The findings supported a minimally cytotoxic impact and good biocompatibility, which provide a future perspective for the applicability of these CQDs in biomedical applications.


Assuntos
Carbono , Corantes Fluorescentes , Alho , Metronidazol , Micro-Ondas , Pontos Quânticos , Pontos Quânticos/química , Alho/química , Carbono/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Metronidazol/análise , Metronidazol/química , Metronidazol/farmacologia , Humanos , Sobrevivência Celular/efeitos dos fármacos
10.
Luminescence ; 39(7): e4825, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961763

RESUMO

Herein, we have reported a red-emitting 4-methyl coumarin fused barbituric acid azo dye (4-MCBA) synthesized by conventional method. Density functional theory (DFT) studies of tautomer compounds were done using (B3LYP) with a basis set of 6-31G(d,p). NLO analysis has shown that tautomer has mean first-order hyperpolarisabilities (ß) value of 1.8188 × 10-30 esu and 1.0470 × 10-30 esu for azo and hydrazone forms, respectively, which is approximately nine and five times greater than the magnitude of urea. 4-MCBA exhibited two absorption peaks in the range of 290-317 and 379-394 nm, and emission spectra were observed at 536 nm. CV study demonstrated that the modified 4-MCBA/MGC electrode exhibited excellent electrochemical sensitivity towards the detection of catechol and the detection limit is 9.39 µM under optimum conditions. The 4-MCBA employed as a fluorescent probe for the visualisation of LFPs on various surfaces exhibited Level-I to level-II LFPs, with low background interference.


Assuntos
Barbitúricos , Catecóis , Cumarínicos , Técnicas Eletroquímicas , Barbitúricos/química , Catecóis/química , Catecóis/análise , Técnicas Eletroquímicas/instrumentação , Cumarínicos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Estrutura Molecular , Teoria da Densidade Funcional , Eletrodos
11.
Luminescence ; 39(6): e4798, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825785

RESUMO

Cellular hypoxia is a common pathological process in various diseases. Detecting cellular hypoxia is of great scientific significance for early diagnosis of tumors. The hypoxia fluorescence probe analysis method can efficiently and conveniently evaluate the hypoxia status in tumor cells. These probes are covalently linked by hypoxic recognition groups and organic fluorescent molecules. Currently, the fluorescent molecules used in these probes often exhibit the aggregation-caused quenching effect, which is not conducive to fluorescence imaging in water. Herein, an activatable hypoxia fluorescence probe was constructed by covalently linking aggregation-induced emission luminogens to the hypoxic recognition group azobenzene. It does not emit fluorescence in solution and in solid state under light excitation due to the presence of photosensitive azo bonds. It can be cleaved by intracellular azoreductase into fluorescent amino derivatives with aggregation-induced emission characteristic. As the concentration of oxygen in cells decreases, its fluorescence intensity increases, making it suitable for fluorescence imaging to detect hypoxic environment in live cancer cells. This work broadens the molecular design approach for activatable hypoxia fluorescent probes.


Assuntos
Hipóxia Celular , Corantes Fluorescentes , Imagem Óptica , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Estrutura Molecular , Compostos Azo/química , Células HeLa , Fluorescência
12.
Luminescence ; 39(6): e4756, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838075

RESUMO

A comprehensive review presents an illuminating exploration of the vast potential of isatin, an easily accessible organic compound. This review is a valuable resource, offering a concise yet comprehensive account of the recent breakthroughs in isatin applications in medicinal chemistry, fluorescence sensing, and organic synthesis. Moreover, it dives into the exciting advancements in isatin-based chemosensors, demonstrating their remarkable ability to detect and recognize diverse cations and anions with exceptional precision. Researchers and scientists in the fields of sensing and organic chemistry will find this review indispensable for sparking innovation and developing cutting-edge technologies with significant real-world impact.


Assuntos
Isatina , Isatina/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Estrutura Molecular
13.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930839

RESUMO

A tumor-targeting fluorescent probe has attracted increasing interest in fluorescent imaging for the noninvasive detection of cancers in recent years. Sulfonamide-containing naphthalimide derivatives (SN-2NI, SD-NI) were synthesized by the incorporation of N-butyl-4-ethyldiamino-1,8-naphthalene imide (NI) into sulfonamide (SN) and sulfadiazine (SD) as the tumor-targeting groups, respectively. These derivatives were further characterized by mass spectrometry (MS), nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV), and a fluorescence assay. In vitro properties, including cell cytotoxicity and the cell uptake of tumor cells, were also evaluated. Sulfonamide-containing naphthalimide derivatives possessed low cell cytotoxicity to B16F10 melanoma cells. Moreover, SN-2NI and SD-NI can be taken up highly by B16F10 cells and then achieve good green fluorescent images in B16F10 cells. Therefore, sulfonamide-containing naphthalimide derivatives can be considered to be the potential probes used to target fluorescent imaging in tumors.


Assuntos
Corantes Fluorescentes , Naftalimidas , Sulfonamidas , Naftalimidas/química , Naftalimidas/síntese química , Sulfonamidas/química , Sulfonamidas/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Camundongos , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Sobrevivência Celular/efeitos dos fármacos
14.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930841

RESUMO

The chemical reaction of 2-(methylsulfinyl)naphtho[2,3-d]thiazole-4,9-dione (3) using different amines, including benzylamine (4a), morpholine (4b), thiomorpholine (4c), piperidine (4d), and 4-methylpiperazine (4e), produced corresponding new tricyclic naphtho[2,3-d]thiazole-4,9-dione compounds (5a-e) in moderate-to-good yields. The photophysical properties and antimicrobial activities of these compounds (5a-e) were then characterized. Owing to the extended π-conjugated system of naphtho[2,3-d]thiazole-4,9-dione skeleton and substituent effect, 5a-e showed fluorescence both in solution and in the solid state. The introduction of nitrogen-containing heterocycles at position 2 of the thiazole ring on naphtho[2,3-d]thiazole-4,9-dione led to large bathochromic shifts in solution, and 5b-e exhibited orange-red fluorescence with emission maxima of over 600 nm in highly polar solvents. Staphylococcus aureus (S. aureus) is a highly pathogenic bacterium, and infection with its antimicrobial-resistant pathogen methicillin-resistant S. aureus (MRSA) results in serious clinical problems. In this study, we also investigated the antimicrobial activities of 5a-e against S. aureus, MRSA, and S. epidermidis. Compounds 5c with thiomorpholine group and 5e with 4-methylpiperazine group showed potent antimicrobial activity against these bacteria. These results will lead to the development of new fluorescent dyes with antimicrobial activity in the future.


Assuntos
Testes de Sensibilidade Microbiana , Tiazóis , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Staphylococcus/efeitos dos fármacos , Staphylococcus/crescimento & desenvolvimento , Estrutura Molecular , Relação Estrutura-Atividade , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia
15.
ACS Sens ; 9(6): 3387-3393, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38850514

RESUMO

Fatty acid amide hydrolase (FAAH) plays a crucial role in the metabolism of the endocannabinoid system by hydrolyzing a series of bioactive amides, whose abnormal levels are associated with neuronal disorders including Alzheimer's disease (AD). However, due to the lack of suitable quantitative sensing tools, real-time and accurate monitoring of the activity of FAAH in living systems remains unresolved. Herein, a novel enzyme-activated near-infrared two-photon ratiometric fluorescent probe (CANP) based on a naphthylvinylpyridine monofluorophore is successfully developed, in which the electron-withdrawing amide moiety is prone to be hydrolyzed to an electron-donating amine group under the catalysis of FAAH, leading to the activation of the intramolecular charge transfer process and the emergence of a new 80 nm red-shifted emission, thereby achieving a ratiometric luminescence response. Benefiting from the high selectivity, high sensitivity, and ratiometric response to FAAH, the probe CANP is successfully used to quantitatively monitor and image the FAAH levels in living neurons, by which an amyloid ß (Aß)-induced upregulation of endogenous FAAH activity is observed. Similar increases in FAAH activity are found in various brain regions of AD model mice, indicating a potential fatty acid amide metabolite-involved pathway for the pathological deterioration of AD. Moreover, our quantitative FAAH inhibition experiments further demonstrate the great value of CANP as an efficient visual probe for in situ and precise assessment of FAAH inhibitors in complex living systems, assisting the discovery of FAAH-related therapeutic agents.


Assuntos
Amidoidrolases , Encéfalo , Corantes Fluorescentes , Neurônios , Amidoidrolases/metabolismo , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neurônios/metabolismo , Camundongos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/análise , Humanos , Piridinas/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Fótons
16.
Anal Chim Acta ; 1315: 342798, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879217

RESUMO

BACKGROUND: MMP-9 plays a crucial role in regulating the degradation of proteins within the extracellular matrix (ECM). This process closely correlates with the occurrence, development, invasion, and metastasis of various tumors, each exhibiting diverse levels of MMP-9 expression. However, the accuracy of detection results using the single-mode method is compromised due to the coexistence of multiple biologically active substances in the ECM. RESULTS: Therefore, in this study, a tri-modal detection system is proposed to obtain more accurate information by cross-verifying the results. Herein, we developed a tri-modal assay using the ZIF-8@Au NPs@S QDs composite as a multifunctional signal probe, decorated with DNA for the specific capture of MMP9. Notably, the probe demonstrated high conductivity, fluorescence response and mimicked enzyme catalytic activity. The capture segments of hybrid DNA specifically bind to MMP9 in the presence of MMP9, causing the signal probe to effortlessly detach the sensor interface onto the sample solution. Consequently, the sensor current performance is weakened, with the colorimetric and fluorescent signals becoming stronger with increasing MMP9 concentration. Notably, the detection range of the tri-modal sensor platform spans over 10 orders of magnitude, verifying notable observations of MMP-9 secretion in four tumor cell lines with chemotherapeutic drugs. Furthermore, the reliability of the detection results can be enhanced by employing pairwise comparative analysis. SIGNIFICANCE: This paper presents an effective strategy for detecting MMP9, which can be utilized for both the assessment of MMP-9 in cell lines and for analyzing the activity and mechanisms involved in various tumors.


Assuntos
Antineoplásicos , Colorimetria , Técnicas Eletroquímicas , Matriz Extracelular , Metaloproteinase 9 da Matriz , Estruturas Metalorgânicas , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/análise , Humanos , Colorimetria/métodos , Técnicas Eletroquímicas/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Estruturas Metalorgânicas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Espectrometria de Fluorescência , Ouro/química , Técnicas Biossensoriais/métodos
17.
Anal Chim Acta ; 1312: 342748, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834262

RESUMO

Diabetes mellitus is a disorder that affects lipid metabolism. Abnormalities in the lipid droplets (LDs) can lead to disturbances in lipid metabolism, which is a significant feature of diabetic patients. Nevertheless, the correlation between diabetes and the polarity of LDs has received little attention in the scientific literature. In order to detect LDs polarity changes in diabetes illness models, we created a new fluorescence probe LD-DCM. This probe has a stable structure, high selectivity, and minimal cytotoxicity. The probe formed a typical D-π-A molecular configuration with triphenylamine (TPA) and dicyanomethylene-4H-pyran (DCM) as electron donor and acceptor parts. The LD-DCM molecule has an immense solvatochromic effect (λem = 544-624 nm), fluorescence enhancement of around 150 times, and a high sensitivity to polarity changes within the linear range of Δf = 0.28 to 0.32, all due to its distinctive intramolecular charge transfer effect (ICT). In addition, LD-DCM was able to monitor the accumulation of LDs and the reduction of LDs polarity in living cells when stimulated by oleic acid, lipopolysaccharide, and high glucose. More importantly, LD-DCM has also been used effectively to detect polarity differences in organs from diabetic, drug-treated, and normal mice. The results showed that the liver polarity of diabetic mice was lower than that of normal mice, while the liver polarity of drug-treated mice was higher than that of diabetic mice. We believe that LD-DCM has the potential to serve as an efficient instrument for the diagnosis of disorders that are associated with the polarity of LDs.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Camundongos , Humanos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Imagem Óptica , Masculino , Estrutura Molecular
18.
Luminescence ; 39(6): e4811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924260

RESUMO

Water pollution has become a serious issue, and mercury(II) ion (Hg(II)) is highly toxic even at low concentrations. Therefore, Hg(II) concentration should be strictly monitored. This study evaluated pyrazoline compounds as fluorescence chemosensor agents for Hg(II) detection. These compounds were prepared from vanillin via etherification, Claisen-Schmidt, and cyclocondensation reactions, to yield benzothiazole-pyrazoline-styrene hybrid compounds. The hybrid compound without styrene was successfully synthesized in 97.70% yield with limit of detection (LoD) and limit of quantification (LoQ) values of 323.5 and 1078 µM, respectively. Conversely, the hybrid compound was produced in 97.29% yield with the LoD and LoQ values of 8.94 and 29.79 nM, respectively. Further spectroscopic investigations revealed that Hg(II) ions can either chelate with three nitrogen of pyridine, pyrazoline, and benzothiazole structures or two oxygen of vanillin and styrene. Furthermore, the hybrid compound was successfully applied in the direct quantification of Hg(II) ions in tap and underground water samples with a validity of 91.63% and 86.08%, respectively, compared with mercury analyzer measurement. The regeneration of pyrazoline was also easily achieved via the addition of an ethylenediaminetetraacetic acid solution. These findings show the promising application of the benzothiazole-pyrazoline-styrene hybrid compound for Hg(II) monitoring in real environmental samples.


Assuntos
Benzotiazóis , Corantes Fluorescentes , Limite de Detecção , Mercúrio , Pirazóis , Benzotiazóis/química , Pirazóis/química , Mercúrio/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Estireno/química , Espectrometria de Fluorescência , Poluentes Químicos da Água/análise , Estrutura Molecular , Íons/análise
19.
Chem Commun (Camb) ; 60(53): 6793-6796, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38869018

RESUMO

We report an integrated ratiometric lysosomal nitric oxide (NO) nanoprobe based on engineered semiconducting polymer dots (Pdots), LyNO-Pdots, which consist of a newly designed NO-responsive dye, a fluorescent conjugated polymer and two functional polymers. The developed probe LyNO-Pdots exhibit high specificity and stability, good photostability and favorable blood-brain barrier (BBB) penetration ability. The LyNO-Pdots are successfully applied to ratiometric imaging of lysosomal NO variations in brain-derived endothelial cells, brain tissues and mice brains with Alzheimer's disease (AD). The results demonstrate that the NO content in the brains of AD mice is considerably higher than that in normal mice.


Assuntos
Doença de Alzheimer , Encéfalo , Corantes Fluorescentes , Lisossomos , Óxido Nítrico , Imagem Óptica , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Polímeros/química , Barreira Hematoencefálica/metabolismo , Pontos Quânticos/química
20.
J Mater Chem B ; 12(25): 6155-6163, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38842019

RESUMO

Advanced glycation end products (AGEs) play a pivotal role in the aging process, regarded as a hallmark of aging. Despite their significance, the absence of adequate monitoring tools has hindered the exploration of the relationship between AGEs and aging. Here, we present a novel AGE-selective probe, AGO, for the first time. AGO exhibited superior sensitivity in detecting AGEs compared to the conventional method of measuring autofluorescence from AGEs. Furthermore, we validated AGO's ability to detect AGEs based on kinetics, demonstrating a preference for ribose-derived AGEs. Lastly, AGO effectively visualized glycation products in a collagen-based mimicking model of glycation. We anticipate that this study will enhance the molecular tool sets available for comprehending the physiological processes of AGEs during aging.


Assuntos
Corantes Fluorescentes , Produtos Finais de Glicação Avançada , Produtos Finais de Glicação Avançada/análise , Produtos Finais de Glicação Avançada/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Colágeno/química , Colágeno/metabolismo , Estrutura Molecular , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...