Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.154
Filtrar
1.
J Med Virol ; 96(9): e29913, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39257039

RESUMO

This study aimed to investigate the impact of different types of nasal inflammation on the regulation of entry-associated genes of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus 229E (HCoV-229E), and influenza virus, in the nasal epithelium. Subjects were classified into three groups: control, eosinophilic chronic rhinosinusitis (ECRS), and noneosinophilic CRS (NECRS) groups. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2), alanyl aminopeptidase (ANPEP), dipeptidyl peptidase 4 (DPP4), and beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1), and beta-galactoside alpha-2,3-sialyltransferase 4 (ST3GAL4) were selected as key entry-associated genes for SARS-CoV-2, HCoV-229E, MERS-CoV, and influenza, respectively, and were evaluated. Brushing samples obtained from each group and human nasal epithelial cells cultured using an air-liquid interface system were treated for 7 days with typical inflammatory cytokines and analyzed using real-time polymerase chain reaction. Western blot analysis and confocal microscopy were performed. The entry-associated genes showed distinct regulation patterns in response to each interleukin-4 (IL-4), interleukin-13 (IL-13), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). Specifically, ACE2 significantly decreased in type 2 cytokines (IL-4 and IL-13), while TMPRSS2 significantly decreased in type 1 cytokines (TNF-α and IFN-γ). ANPEP significantly decreased in both types of cytokines. Remarkably, DPP4 significantly increased in type 2 cytokines and decreased in type 1 cytokines. Moreover, ST6GAL1 and ST3GAL4 significantly increased in type 2 cytokines and decreased in type 1 cytokines, particularly IFN-γ. These findings were supported by western blot analysis and confocal imaging results, especially for ACE2 and DPP4. The findings regarding differential regulation suggest that patients with ECRS, primarily mediated by type 2 inflammation, may have lower susceptibility to SARS-CoV-2 and HCoV-229E infections but higher susceptibility to MERS-CoV and influenza infections.


Assuntos
Citocinas , Mucosa Nasal , Internalização do Vírus , Humanos , Citocinas/genética , Citocinas/metabolismo , Mucosa Nasal/virologia , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Sinusite/virologia , Sinusite/genética , Sinusite/imunologia , SARS-CoV-2/imunologia , Rinite/virologia , Rinite/genética , Rinite/imunologia , Regulação da Expressão Gênica , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , COVID-19/imunologia , COVID-19/virologia , Coronavirus Humano 229E/genética , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia
2.
Front Immunol ; 15: 1358885, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39281686

RESUMO

Introduction: Middle East respiratory syndrome coronavirus (MERS-CoV) has emerged as a deadly pathogen with a mortality rate of up to 36.2%. MERS-CoV can cause severe respiratory tract disease and multiorgan failure. Therefore, therapeutic vaccines are urgently needed. This intensive review explores the human immune responses and their immunological mechanisms during MERS-CoV infection in the mucosa of the upper and lower respiratory tracts (URT and LRT, respectively). Objective: The aim of this study is to provide a valuable, informative, and critical summary of the protective immune mechanisms against MERS-CoV infection in the URT/LRT for the purpose of preventing and controlling MERS-CoV disease and designing effective therapeutic vaccines. Methods: In this review, we focus on the immune potential of the respiratory tract following MERS-CoV infection. We searched PubMed, Embase, Web of Science, Cochrane, Scopus, and Google Scholar using the following terms: "MERS-CoV", "B cells", "T cells", "cytokines", "chemokines", "cytotoxic", and "upper and lower respiratory tracts". Results: We found and included 152 studies in this review. We report that the cellular innate immune response, including macrophages, dendritic cells, and natural killer cells, produces antiviral substances such as interferons and interleukins to prevent the virus from spreading. In the adaptive and humoral immune responses, CD4+ helper T cells, CD8+ cytotoxic T cells, B cells, and plasma cells protect against MERS-CoV infection in URT and LRT. Conclusion: The human nasopharynx-associated lymphoid tissue (NALT) and bronchus-associated lymphoid tissue (BALT) could successfully limit the spread of several respiratory pathogens. However, in the case of MERS-CoV infection, limited research has been conducted in humans with regard to immunopathogenesis and mucosal immune responses due to the lack of relevant tissues. A better understanding of the immune mechanisms of the URT and LRT is vital for the design and development of effective MERS-CoV vaccines.


Assuntos
Infecções por Coronavirus , Imunidade nas Mucosas , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/prevenção & controle , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , Citocinas/imunologia , Imunidade Inata , Animais , Sistema Respiratório/imunologia , Sistema Respiratório/virologia
3.
J Med Virol ; 96(9): e29917, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39279390

RESUMO

In the landscape of infectious diseases, human coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2 pose significant threats, characterized by severe respiratory illnesses and notable resistance to conventional treatments due to their rapid evolution and the emergence of diverse variants, particularly within SARS-CoV-2. This study investigated the development of broad-spectrum coronavirus vaccines using heterodimeric RBD-Fc proteins engineered through the "Knob-into-Hole" technique. We constructed various recombinant proteins incorporating the receptor-binding domains (RBDs) of different coronaviruses. Heterodimers combining RBDs from SARS-CoV-2 with those of SARS-CoV or MERS-CoV elicited superior neutralizing responses compared to homodimeric proteins in murine models. Additionally, heterotetrameric proteins, specifically D614G_Delta/BA.1_XBB.1.5-RBD and MERS_D614G/BA.1_XBB.1.5-RBD, elicited remarkable breadth and potency in neutralizing all known SARS-CoV-2 variants, SARS-CoV, related sarbecoviruses like GD-Pangolin and WIV1, and even MERS-CoV pseudoviruses. Furthermore, these heterotetrameric proteins also demonstrated enhanced cellular immune responses. These findings underscore the potential of recombinant hetero proteins as a universal vaccine strategy against current and future coronavirus threats.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camundongos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Vacinas contra COVID-19/imunologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/química , COVID-19/prevenção & controle , COVID-19/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Camundongos Endogâmicos BALB C , Feminino , Domínios Proteicos , Testes de Neutralização , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética
4.
Arch Microbiol ; 206(10): 393, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240318

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic disease affecting camels and humans. The live attenuated vaccine represents a candidate human vaccine because it can induce strong immune responses in immunized hosts. The attenuated vaccine strain of the highly pathogenic virus can also be used to produce a cell-based vaccine in the BSL2 GMP facility. In this study, we evaluated the reversion potential of pathogenicity to pathogenic wild-type virus to ensure the safety of the live attenuated vaccine strain. We passaged our previously developed cold-adapted live attenuated MERS-CoV vaccine strain at 22 °C (EMC2012-CA22°C) in Vero cells at 37 °C as often as 15 times to determine the potential of pathogenicity reversion in hDPP4 (human dipeptidyl peptidase 4)-transgenic mice, K18-hDPP4. The serial passage of EMC2012-CA22°C in Vero cells at 37 °C up to 15 times did not result in pathogenicity reversion to wild-type MERS-CoV. In K18-hDPP4 mice infected with this virus, no weight loss or mortality was observed, and no virus was detected in tissues such as the lung, kidney, brain, and nasal turbinate. In addition, mice immunized with this virus produced a robust neutralizing antibody response and were fully protected from lethal challenge with wild-type MERS-CoV. The cold-adapted attenuated MERS-CoV vaccine strain (EMC2012-CA22°C) was not reverted to wild-type pathogenic virus after 15 passages in Vero cells at 37 °C.


Assuntos
Temperatura Baixa , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas Atenuadas , Vacinas Virais , Animais , Chlorocebus aethiops , Células Vero , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas Atenuadas/imunologia , Camundongos , Vacinas Virais/imunologia , Vacinas Virais/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Camundongos Transgênicos , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Inoculações Seriadas , Dipeptidil Peptidase 4/genética , Feminino
5.
PLoS Pathog ; 20(8): e1012438, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141662

RESUMO

The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe and fatal acute respiratory disease in humans. High fatality rates and continued infectiousness remain a pressing concern for global health preparedness. Antibodies targeted at the receptor-binding domain (RBD) are major countermeasures against human viral infection. Here, we report four potent nanobodies against MERS-CoV, which are isolated from alpaca, and especially the potency of Nb14 is highest in the pseudotyped virus assay. Structural studies show that Nb14 framework regions (FRs) are mainly involved in interactions targeting a novel epitope, which is entirely distinct from all previously reported antibodies, and disrupt the protein-carbohydrate interaction between residue W535 of RBD and hDPP4 N229-linked carbohydrate moiety (hDPP4-N229-glycan). Different from Nb14, Nb9 targets the cryptic face of RBD, which is distinctive from the hDPP4 binding site and the Nb14 epitope, and it induces the ß5-ß6 loop to inflect towards a shallow groove of the RBD and dampens the accommodation of a short helix of hDPP4. The particularly striking epitopes endow the two Nbs administrate synergistically in the pseudotyped MERS-CoV assays. These results not only character unprecedented epitopes for antibody recognition but also provide promising agents for prophylaxis and therapy of MERS-CoV infection.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Coronavirus , Epitopos , Coronavírus da Síndrome Respiratória do Oriente Médio , Anticorpos de Domínio Único , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Humanos , Epitopos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Camelídeos Americanos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Camundongos , Receptores Virais/metabolismo , Receptores Virais/imunologia
6.
Sci Signal ; 17(850): eadn3785, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163389

RESUMO

Coronaviruses rely on host proteases to activate the viral spike protein, which facilitates fusion with the host cell membrane and the release of viral genomic RNAs into the host cell cytoplasm. The distribution of specific host proteases in the host determines the host, tissue, and cellular tropism of these viruses. Here, we identified the kallikrein (KLK) family member KLK5 as a major host protease secreted by human airway cells and exploited by multiple human betacoronaviruses. KLK5 cleaved both the priming (S1/S2) and activation (S2') sites of spike proteins from various human betacoronaviruses in vitro. In contrast, KLK12 and KLK13 displayed preferences for either the S2' or S1/S2 site, respectively. Whereas KLK12 and KLK13 worked in concert to activate SARS-CoV-2 and MERS-CoV spike proteins, KLK5 by itself efficiently activated spike proteins from several human betacoronaviruses, including SARS-CoV-2. Infection of differentiated human bronchial epithelial cells (HBECs) with human betacoronaviruses induced an increase in KLK5 that promoted virus replication. Furthermore, ursolic acid and other related plant-derived triterpenoids that inhibit KLK5 effectively suppressed the replication of SARS-CoV, MERS-CoV, and SARS-CoV-2 in HBECs and mitigated lung inflammation in mice infected with MERS-CoV or SARS-CoV-2. We propose that KLK5 is a pancoronavirus host factor and a promising therapeutic target for current and future coronavirus-induced diseases.


Assuntos
Calicreínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Replicação Viral , Humanos , Calicreínas/metabolismo , Calicreínas/genética , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Camundongos , SARS-CoV-2/metabolismo , Betacoronavirus/metabolismo , Betacoronavirus/fisiologia , COVID-19/metabolismo , COVID-19/virologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Células HEK293 , Pulmão/virologia , Pulmão/metabolismo
7.
Math Biosci Eng ; 21(7): 6425-6470, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39176403

RESUMO

A new mathematical model for the transmission dynamics and control of the Middle Eastern respiratory syndrome (MERS), a respiratory virus caused by MERS-CoV coronavirus (and primarily spread to humans by dromedary camels) that first emerged out of the Kingdom of Saudi Arabia (KSA) in 2012, was designed and used to study the transmission dynamics of the disease in a human-camel population within the KSA. Rigorous analysis of the model, which was fitted and cross-validated using the observed MERS-CoV data for the KSA, showed that its disease-free equilibrium was locally asymptotically stable whenever its reproduction number (denoted by $ {\mathbb R}_{0M} $) was less than unity. Using the fixed and estimated parameters of the model, the value of $ {\mathbb R}_{0M} $ for the KSA was estimated to be 0.84, suggesting that the prospects for MERS-CoV elimination are highly promising. The model was extended to allow for the assessment of public health intervention strategies, notably the potential use of vaccines for both humans and camels and the use of face masks by humans in public or when in close proximity with camels. Simulations of the extended model showed that the use of the face mask by humans who come in close proximity with camels, as a sole public health intervention strategy, significantly reduced human-to-camel and camel-to-human transmission of the disease, and this reduction depends on the efficacy and coverage of the mask type used in the community. For instance, if surgical masks are prioritized, the disease can be eliminated in both the human and camel population if at least 45% of individuals who have close contact with camels wear them consistently. The simulations further showed that while vaccinating humans as a sole intervention strategy only had marginal impact in reducing the disease burden in the human population, an intervention strategy based on vaccinating camels only resulted in a significant reduction in the disease burden in camels (and, consequently, in humans as well). Thus, this study suggests that attention should be focused on effectively combating the disease in the camel population, rather than in the human population. Furthermore, the extended model was used to simulate a hybrid strategy, which combined vaccination of both humans and camels as well as the use of face masks by humans. This simulation showed a marked reduction of the disease burden in both humans and camels, with an increasing effectiveness level of this intervention, in comparison to the baseline scenario or any of the aforementioned sole vaccination scenarios. In summary, this study showed that the prospect of the elimination of MERS-CoV-2 in the Kingdom of Saudi Arabia is promising using pharmaceutical (vaccination) and nonpharmaceutical (mask) intervention strategies, implemented in isolation or (preferably) in combination, that are focused on reducing the disease burden in the camel population.


Assuntos
Camelus , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Camelus/virologia , Arábia Saudita/epidemiologia , Animais , Humanos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Número Básico de Reprodução/estatística & dados numéricos , Simulação por Computador , Vacinas Virais , Modelos Biológicos , Máscaras , Modelos Teóricos
8.
J Virol ; 98(9): e0037624, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39189731

RESUMO

Three highly pathogenic coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, belonging to the genus beta-CoV, have caused outbreaks or pandemics. SARS-CoV-2 has evolved into many variants with increased resistance to the current vaccines. Spike (S) protein and its receptor-binding domain (RBD) fragment of these CoVs are important vaccine targets; however, the RBD of the SARS-CoV-2 Omicron variant is highly mutated, rending neutralizing antibodies elicited by ancestral-based vaccines targeting this region ineffective, emphasizing the need for effective vaccines with broad-spectrum efficacy against SARS-CoV-2 variants and other CoVs with pandemic potential. This study describes a pan-beta-CoV subunit vaccine, Om-S-MERS-RBD, by fusing the conserved and highly potent RBD of MERS-CoV into an RBD-truncated SARS-CoV-2 Omicron S protein, and evaluates its neutralizing immunogenicity and protective efficacy in mouse models. Om-S-MERS-RBD formed a conformational structure, maintained effective functionality and antigenicity, and bind efficiently to MERS-CoV receptor, human dipeptidyl peptidase 4, and MERS-CoV RBD or SARS-CoV-2 S-specific antibodies. Immunization of mice with Om-S-MERS-RBD and adjuvants (Alum plus monophosphoryl lipid A) induced broadly neutralizing antibodies against pseudotyped MERS-CoV, SARS-CoV, and SARS-CoV-2 original strain, as well as T-cell responses specific to RBD-truncated Omicron S protein. Moreover, the neutralizing activity against SARS-CoV-2 Omicron subvariants was effectively improved after priming with an Omicron-S-RBD protein. Adjuvanted Om-S-MERS-RBD protein protected mice against challenge with SARS-CoV-2 Omicron variant, MERS-CoV, and SARS-CoV, significantly reducing viral titers in the lungs. Overall, these findings indicated that Om-S-MERS-RBD protein could develop as an effective universal subunit vaccine to prevent infections with MERS-CoV, SARS-CoV, SARS-CoV-2, and its variants. IMPORTANCE: Coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, the respective causative agents of coronavirus disease 2019, SARS, and MERS, continually threaten human health. The spike (S) protein and its receptor-binding domain (RBD) fragment of these CoVs are critical vaccine targets. Nevertheless, the highly mutated RBD of SARS-CoV-2 variants, especially Omicron, significantly reduces the efficacy of current vaccines against SARS-CoV-2 variants. Here a protein-based pan-beta-CoV subunit vaccine is designed by fusing the potent and conserved RBD of MERS-CoV into an RBD-truncated Omicron S protein. The resulting vaccine maintained effective functionality and antigenicity, induced broadly neutralizing antibodies against all of these highly pathogenic human CoVs, and elicited Omicron S-specific cellular immune responses, protecting immunized mice from SARS-CoV-2 Omicron, SARS-CoV, and MERS-CoV infections. Taken together, this study rationally designed a pan-beta-CoV subunit vaccine with broad-spectrum efficacy, which has the potential for development as an effective universal vaccine against SARS-CoV-2 variants and other CoVs with pandemic potential.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Animais , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Vacinas de Subunidades Antigênicas/imunologia , Anticorpos Antivirais/imunologia , Humanos , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Camundongos Endogâmicos BALB C , Vacinas Virais/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Feminino
9.
Sci Rep ; 14(1): 19594, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179600

RESUMO

Coronavirus (CoV) possesses numerous functional cis-acting elements in its positive-strand genomic RNA. Although most of these RNA structures participate in viral replication, the functions of RNA structures in the genomic RNA of CoV in viral replication remain unclear. In this study, we investigated the functions of the higher-order RNA stem-loop (SL) structures SL5B, SL5C, and SL5D in the ORF1a coding region of Middle East respiratory syndrome coronavirus (MERS-CoV) in viral replication. Our approach, using reverse genetics of a bacterial artificial chromosome system, revealed that SL5B and SL5C play essential roles in the discontinuous transcription of MERS-CoV. In silico analyses predicted that SL5C interacts with a bulged stem-loop (BSL) in the 3' untranslated region, suggesting that the RNA structure of SL5C is important for viral RNA transcription. Conversely, SL5D did not affect transcription, but mediated the synthesis of positive-strand genomic RNA. Additionally, the RNA secondary structure of SL5 in the revertant virus of the SL5D mutant was similar to that of the wild-type, indicating that the RNA structure of SL5D can finely tune RNA replication in MERS-CoV. Our data indicate novel regulatory mechanisms of viral RNA transcription and replication by higher-order RNA structures in the MERS-CoV genomic RNA.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Conformação de Ácido Nucleico , RNA Viral , Transcrição Gênica , Replicação Viral , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral/genética , Fases de Leitura Aberta/genética , Humanos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Regiões 3' não Traduzidas/genética , Animais
10.
Org Biomol Chem ; 22(34): 7006-7016, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39135436

RESUMO

The COVID-19 pandemic has spread throughout the whole globe, so it is imperative that all available resources be used to treat this scourge. In reality, the development of new pharmaceuticals has mostly benefited from natural products. The widespread medicinal usage of species in the Asteraceae family is extensively researched. In this study, compounds isolated from methanolic extract of Artemisia monosperma Delile, a wild plant whose grows in Egypt's Sinai Peninsula. Three compounds, stigmasterol 3-O-ß-D-glucopyranoside 1, rhamnetin 3, and padmatin 6, were first isolated from this species. In addition, five previously reported compounds, arcapillin 2, jaceosidin 4, hispidulin 5, 7-O-methyleriodictyol 7, and eupatilin 8, were isolated. Applying molecular modelling simulations revealed two compounds, arcapillin 2 and rhamnetin 3 with the best docking interactions and energies within SARS-CoV-2 Mpro-binding site (-6.16, and -6.70 kcal mol-1, respectively). The top-docked compounds (2-3) were further evaluated for inhibitory concentrations (IC50), and half-maximal cytotoxicity (CC50) of both SARS-CoV-2 and MERS-CoV. Interestingly, arcapillin showed high antiviral activity towards SARS-CoV-2 and MERS-CoV, with IC50 values of 190.8 µg mL-1 and 16.58 µg mL-1, respectively. These findings may hold promise for further preclinical and clinical research, particularly on arcapillin itself or in collaboration with other drugs for COVID-19 treatment.


Assuntos
Antivirais , Artemisia , Coronavírus da Síndrome Respiratória do Oriente Médio , Simulação de Acoplamento Molecular , SARS-CoV-2 , Artemisia/química , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , SARS-CoV-2/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Humanos , Chlorocebus aethiops , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Células Vero , Modelos Moleculares
11.
Viruses ; 16(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39066235

RESUMO

The RNA viruses SARS-CoV, SARS-CoV-2 and MERS-CoV encode the non-structural Nsp16 (2'-O-methyltransferase) that catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to the first ribonucleotide in mRNA. Recently, it has been found that breaking the bond between Nsp16 and SAM substrate results in the cessation of mRNA virus replication. To date, only a limited number of such inhibitors have been identified, which can be attributed to a lack of an effective "recipe". The aim of our study was to propose and verify a rapid and effective screening protocol dedicated to such purposes. We proposed four new indices describing structure-binding strength (structure-binding affinity, structure-hydrogen bonding, structure-steric and structure-protein-ligand indices) were then applied and shown to be extremely helpful in determining the degree of increase or decrease in binding affinity in response to a relatively small change in the ligand structure. After initial pre-selection, based on similarity to SAM, we limited the study to 967 compounds, so-called molecular chameleons. They were then docked in the Nsp16 protein pocket, and 10 candidate ligands were selected using the novel structure-binding affinity index. Subsequently the selected 10 candidate ligands and 8 known inhibitors and were docked to Nsp16 pockets from SARS-CoV-2, MERS-CoV and SARS-CoV. Based on the four new indices, the best ligands were selected and a new one was designed by tuning them. Finally, ADMET profiling and molecular dynamics simulations were performed for the best ligands. The new structure-binding strength indices can be successfully applied not only to screen and tune ligands, but also to determine the effectiveness of the ligand in response to changes in the target viral entity, which is particularly useful for assessing drug effectiveness in the case of alterations in viral proteins. The developed approach, the so-called chameleon strategy, has the capacity to introduce a novel universal paradigm to the field of drugs design, including RNA antivirals.


Assuntos
Antivirais , SARS-CoV-2 , Proteínas não Estruturais Virais , Ligantes , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Humanos , Ligação Proteica , COVID-19/virologia , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Metiltransferases/metabolismo , Metiltransferases/química , Metiltransferases/antagonistas & inibidores , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/química , Ligação de Hidrogênio , Replicação Viral/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos
13.
J Biomed Sci ; 31(1): 70, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003473

RESUMO

Coronaviruses employ various strategies for survival, among which the activation of endogenous or exogenous apoptosis stands out, with viral proteins playing a pivotal role. Notably, highly pathogenic coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV exhibit a greater array of non-structural proteins compared to low-pathogenic strains, facilitating their ability to induce apoptosis via multiple pathways. Moreover, these viral proteins are adept at dampening host immune responses, thereby bolstering viral replication and persistence. This review delves into the intricate interplay between highly pathogenic coronaviruses and apoptosis, systematically elucidating the molecular mechanisms underpinning apoptosis induction by viral proteins. Furthermore, it explores the potential therapeutic avenues stemming from apoptosis inhibition as antiviral agents and the utilization of apoptosis-inducing viral proteins as therapeutic modalities. These insights not only shed light on viral pathogenesis but also offer novel perspectives for cancer therapy.


Assuntos
Apoptose , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , COVID-19/virologia
14.
Int J Biol Macromol ; 276(Pt 1): 133706, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981557

RESUMO

Main proteases (Mpros) are a class of conserved cysteine hydrolases among coronaviruses and play a crucial role in viral replication. Therefore, Mpros are ideal targets for the development of pan-coronavirus drugs. X77, previously developed against SARS-CoV Mpro, was repurposed as a non-covalent tight binder inhibitor against SARS-CoV-2 Mpro during COVID-19 pandemic. Many novel inhibitors with favorable efficacy have been discovered using X77 as a reference, suggesting that X77 could be a valuable scaffold for drug design. However, the broad-spectrum performance of X77 and underlying mechanism remain less understood. Here, we reported the crystal structures of Mpros from SARS-CoV-2, SARS-CoV, and MERS-CoV, and several Mpro mutants from SARS-CoV-2 variants bound to X77. A detailed analysis of these structures revealed key structural determinants essential for interaction and elucidated the binding modes of X77 with different coronaviral Mpros. The potencies of X77 against these investigated Mpros were further evaluated through molecular dynamic simulation and binding free energy calculation. These data provide molecular insights into broad-spectrum inhibition against coronaviral Mpros by X77 and the similarities and differences of X77 when bound to various Mpros, which will promote X77-based design of novel antivirals with broad-spectrum efficacy against different coronaviruses and SARS-CoV-2 variants.


Assuntos
Proteases 3C de Coronavírus , Simulação de Dinâmica Molecular , SARS-CoV-2 , SARS-CoV-2/enzimologia , SARS-CoV-2/efeitos dos fármacos , Cristalografia por Raios X , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Antivirais/química , Antivirais/farmacologia , Humanos , Ligação Proteica , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , COVID-19/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Betacoronavirus/enzimologia , Betacoronavirus/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Sítios de Ligação , Infecções por Coronavirus/virologia , Infecções por Coronavirus/tratamento farmacológico , Pandemias , Pneumonia Viral/virologia , Pneumonia Viral/tratamento farmacológico
15.
Viruses ; 16(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066320

RESUMO

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) continues to be a global threat due to its ability to evolve and generate new subvariants, leading to new waves of infection. Additionally, other coronaviruses like Middle East respiratory syndrome coronavirus (MERS-CoV, formerly known as hCoV-EMC), which first emerged in 2012, persist and continue to present a threat of severe illness to humans. The continued identification of novel coronaviruses, coupled with the potential for genetic recombination between different strains, raises the possibility of new coronavirus clades of global concern emerging. As a result, there is a pressing need for pan-CoV therapeutic drugs and vaccines. After the extensive optimization of an HCV protease inhibitor screening hit, a novel 3CLPro inhibitor (MK-7845) was discovered and subsequently profiled. MK-7845 exhibited nanomolar in vitro potency with broad spectrum activity against a panel of clinical SARS-CoV-2 subvariants and MERS-CoV. Furthermore, when administered orally, MK-7845 demonstrated a notable reduction in viral burdens by >6 log orders in the lungs of transgenic mice infected with SARS-CoV-2 (K18-hACE2 mice) and MERS-CoV (K18-hDDP4 mice).


Assuntos
Antivirais , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Tratamento Farmacológico da COVID-19 , Inibidores de Proteases/farmacologia , COVID-19/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia
17.
Lancet Microbe ; 5(9): 100866, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053480

RESUMO

BACKGROUND: Although dromedary camels (Camelus dromedarius) are known to be the host reservoir for MERS-CoV, the virus causing Middle East respiratory syndrome (MERS), zoonotic transmission pathways and camel subpopulations posing highest transmission risk are poorly understood. Extensively managed herds, ubiquitous across the Arabian Peninsula, present a major potential source of primary infection. In this study we aimed to address key knowledge gaps regarding MERS epidemiology among high-risk communities associated with such herds, which is essential information for effective control strategies. METHODS: We did a cross-sectional study between Sept 27, 2017, and Oct 11, 2018, among members of livestock-owning households in southern Jordan (Aqaba East, Aqaba West, Ma'an East, and Ma'an West regions), with random selection of households (house and tent dwellings) from Ministry of Agriculture lists via computer-generated randomisation lists. Household visits were done, with questionnaires administered to household members regarding potential risk factors for MERS-CoV exposure in the past 6 months and blood samples and nasal and oral swabs collected, alongside physical examination data including blood pressure and blood glucose. Children younger than 5 years and individuals without capacity to provide informed consent were excluded. Serum was tested for IgG antibodies to MERS-CoV spike protein (S1 subunit) and nucleocapsid (N) protein with in-house indirect ELISAs, and viral RNA was detected in nasal and oral samples by RT-PCR. The primary outcome was evidence of MERS-CoV exposure (ascertained by seropositive status on S1 or N ELISAs, or a positive swab sample on RT-PCR); secondary outcomes were potential associations between possible risk factors and seropositive status. RT-PCR data were to be presented descriptively. Seroprevalence estimates were obtained at the individual and household levels, and associations between hypothetical risk factors and seropositive status were assessed with use of mixed-effects logistic regression. FINDINGS: We sampled 879 household members (median age 27 years [IQR 16-44]; 471 [54%] males and 408 [46%] females) from 204 households. 72 (8%) household members were seropositive on S1 ELISA (n=25, 3%) or N ELISA (n=52, 6%). No positive nasal or oral swab samples were identified on RT-PCR. Within-household clustering was identified for seropositivity on S1 ELISA (intraclass correlation coefficient 0·88 [0·35-0·96]) but not N ELISA (0·00 [0·00-0·27]). On multivariable analysis, S1 ELISA seropositivity was associated with frequently (≥weekly) interacting with young (age <1 year) camels (adjusted odds ratio [ORadj] 3·85 [95% CI 1·41-11·61], p=0·011), with frequent kissing and petting (ORadj 4·56 [1·55-15·42], p=0·0074), and frequent feeding and watering (ORadj 4·97 [1·80-15·29], p=0·0027) of young camels identified as risk activities. Attending camel races (ORadj 3·73 [1·11-12·47], p=0·029), frequently feeding and watering camels of any age (ORadj 3·18 [1·12-10·84], p=0·040), and elevated blood glucose (>150 mg/dL; ORadj 4·59 [1·23-18·36], p=0·021) were also associated with S1 ELISA seropositivity. Among individuals without history of camel contact, S1 ELISA seropositivity was associated with sharing a household with an S1 ELISA-positive household member (ORadj 8·92 [1·06-92·99], p=0·044), and with sharing a household with an S1 ELISA-positive household member with history of camel contact (ORadj 24·74 [2·72-306·14], p=0·0050). N ELISA seropositivity was associated with age (categorical, p=0·0069), a household owning a young camel (age <18 months; ORadj 1·98 [1·02-4·09], p=0·043), and frequently feeding and watering camels of any age (ORadj 1·98 [1·09-3·69]; p=0·025). INTERPRETATION: The study findings highlight the importance of effective MERS-CoV surveillance and control strategies among camel-owning communities in Jordan and the Arabian Peninsula. Juvenile dromedaries pose increased risk for zoonotic MERS-CoV transmission and should be prioritised for vaccination once such vaccines become available. Among high-risk communities, vaccination strategies should prioritise camel-owning households, particularly individuals engaged in camel husbandry or racing, and household members who are older or diabetic, with evidence to suggest secondary within-household transmission. FUNDING: UK Medical Research Council and US National Institute of Allergy and Infectious Diseases.


Assuntos
Anticorpos Antivirais , Camelus , Infecções por Coronavirus , Ensaio de Imunoadsorção Enzimática , Características da Família , Gado , Coronavírus da Síndrome Respiratória do Oriente Médio , Estudos Transversais , Jordânia/epidemiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Humanos , Feminino , Adulto , Fatores de Risco , Masculino , Animais , Pessoa de Meia-Idade , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/sangue , Camelus/virologia , Adulto Jovem , Adolescente , Anticorpos Antivirais/sangue , Anticorpos Antivirais/análise , Gado/virologia , Criança , Estudos Soroepidemiológicos , Pré-Escolar , Idoso
18.
Virol Sin ; 39(4): 619-631, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969340

RESUMO

A unique feature of coronaviruses is their utilization of self-encoded nonstructural protein 16 (nsp16), 2'-O-methyltransferase (2'-O-MTase), to cap their RNAs through ribose 2'-O-methylation modification. This process is crucial for maintaining viral genome stability, facilitating efficient translation, and enabling immune escape. Despite considerable advances in the ultrastructure of SARS-CoV-2 nsp16/nsp10, insights into its molecular mechanism have so far been limited. In this study, we systematically characterized the 2'-O-MTase activity of nsp16 in SARS-CoV-2, focusing on its dependence on nsp10 stimulation. We observed cross-reactivity between nsp16 and nsp10 in various coronaviruses due to a conserved interaction interface. However, a single residue substitution (K58T) in SARS-CoV-2 nsp10 restricted the functional activation of MERS-CoV nsp16. Furthermore, the cofactor nsp10 effectively enhanced the binding of nsp16 to the substrate RNA and the methyl donor S-adenosyl-l-methionine (SAM). Mechanistically, His-80, Lys-93, and Gly-94 of nsp10 interacted with Asp-102, Ser-105, and Asp-106 of nsp16, respectively, thereby effectively stabilizing the SAM binding pocket. Lys-43 of nsp10 interacted with Lys-38 and Gly-39 of nsp16 to dynamically regulate the RNA binding pocket and facilitate precise binding of RNA to the nsp16/nsp10 complex. By assessing the conformational epitopes of nsp16/nsp10 complex, we further determined the critical residues involved in 2'-O-MTase activity. Additionally, we utilized an in vitro biochemical platform to screen potential inhibitors targeting 2'-O-MTase activity. Overall, our results significantly enhance the understanding of viral 2'-O methylation process and mechanism, providing valuable targets for antiviral drug development.


Assuntos
Metiltransferases , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Metiltransferases/metabolismo , Metiltransferases/genética , Metiltransferases/química , Humanos , RNA Viral/genética , RNA Viral/metabolismo , COVID-19/virologia , Ligação Proteica , S-Adenosilmetionina/metabolismo , Metilação , Betacoronavirus/enzimologia , Betacoronavirus/genética , Modelos Moleculares , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Proteínas Virais Reguladoras e Acessórias
19.
Cell Rep ; 43(8): 114530, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39058596

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012 and causes human infections in endemic regions. Vaccines and therapeutics in development against MERS-CoV focus on the spike (S) glycoprotein to prevent viral entry into target cells. These efforts are limited by a poor understanding of antibody responses elicited by infection. Here, we analyze S-directed antibody responses in plasma collected from MERS-CoV-infected individuals. We observe that binding and neutralizing antibodies peak 1-6 weeks after symptom onset/hospitalization, persist for at least 6 months, and neutralize human and camel MERS-CoV strains. We show that the MERS-CoV S1 subunit is immunodominant and that antibodies targeting S1, particularly the receptor-binding domain (RBD), account for most plasma neutralizing activity. Antigenic site mapping reveals that plasma antibodies frequently target RBD epitopes, whereas targeting of S2 subunit epitopes is rare. Our data reveal the humoral immune responses elicited by MERS-CoV infection, which will guide vaccine and therapeutic design.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Coronavírus da Síndrome Respiratória do Oriente Médio , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Animais , Epitopos Imunodominantes/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Mapeamento de Epitopos , Camelus/imunologia , Feminino
20.
Expert Rev Respir Med ; 18(5): 295-307, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38881206

RESUMO

INTRODUCTION: An important respiratory pathogen that has led to multiple hospital outbreaks both inside and outside of the Arabian Peninsula is the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Given the elevated case fatality rate, there exists a pressing requirement for efficacious therapeutic agents. AREAS COVERED: This is an updated review of the developments in MERS treatment approaches. Using databases like PubMed, Embase, Cochrane, Scopus, and Google Scholar, a thorough search was carried out utilizing keywords like 'MERS,' 'MERS-CoV,' and 'Middle East respiratory syndrome' in conjunction with 'treatment' or 'therapy' from Jan 2012 to Feb 2024. EXPERT OPINION: MERS-CoV is a highly pathogenic respiratory infection that emerged in 2012 and continues to pose a significant public health threat. Despite ongoing efforts to control the spread of MERS-CoV, there is currently no specific antiviral treatment available. While many agents have been tested both in vivo and in vitro, none of them have been thoroughly examined in extensive clinical trials. Only case reports, case series, or cohort studies have been made available as clinical studies. However, there is a limited number of randomized-controlled trials. Because cases are irregular and sporadic, conducting a large prospective randomized trials for establishing an efficacious treatment might be difficult.


Assuntos
Antivirais , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Antivirais/uso terapêutico , Animais , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...