Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.273
Filtrar
1.
J Neurodev Disord ; 16(1): 40, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020320

RESUMO

BACKGROUND: Tic disorder is a neuropsychiatric disorder characterized by involuntary movements or vocalizations. Previous studies utilizing diffusion-weighted imaging to explore white-matter alterations in tic disorders have reported inconsistent results regarding the affected tracts. We aimed to address this gap by employing a novel tractography technique for more detailed analysis. METHODS: We analyzed MRI data from 23 children with tic disorders and 23 healthy controls using TRActs Constrained by UnderLying Anatomy (TRACULA), an advanced automated probabilistic tractography method. We examined fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity, and mean diffusivity in 42 specific significant white matter tracts. RESULTS: Our findings revealed notable differences in the children with tic disorders compared to the control group. Specifically, there was a significant reduction in FA in the parietal part and splenium of the corpus callosum and the left corticospinal tract. Increased RD was observed in the temporal and splenium areas of the corpus callosum, the left corticospinal tract, and the left acoustic radiation. A higher mean diffusivity was also noted in the left middle longitudinal fasciculus. A significant correlation emerged between the severity of motor symptoms, measured by the Yale Global Tic Severity Scale, and FA in the parietal part of the corpus callosum, as well as RD in the left acoustic radiation. CONCLUSION: These results indicate a pattern of reduced interhemispheric connectivity in the corpus callosum, aligning with previous studies and novel findings in the diffusion indices changes in the left corticospinal tract, left acoustic radiation, and left middle longitudinal fasciculus. Tic disorders might involve structural abnormalities in key white matter tracts, offering new insights into their pathogenesis.


Assuntos
Imagem de Tensor de Difusão , Transtornos de Tique , Substância Branca , Humanos , Masculino , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Criança , Transtornos de Tique/diagnóstico por imagem , Transtornos de Tique/fisiopatologia , Transtornos de Tique/patologia , Adolescente , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Imagem de Difusão por Ressonância Magnética
2.
Biol Res ; 57(1): 48, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034395

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an irreversible progressive CNS pathology characterized by the loss of myelin (i.e. demyelination). The lack of myelin is followed by a progressive neurodegeneration triggering symptoms as diverse as fatigue, motor, locomotor and sensory impairments and/or bladder, cardiac and respiratory dysfunction. Even though there are more than fourteen approved treatments for reducing MS progression, there are still no cure for the disease. Thus, MS research is a very active field and therefore we count with different experimental animal models for studying mechanisms of demyelination and myelin repair, however, we still lack a preclinical MS model assembling demyelination mechanisms with relevant clinical-like signs. RESULTS: Here, by inducing the simultaneous demyelination of both callosal and cerebellar white matter fibers by the double-site injection of lysolecithin (LPC), we were able to reproduce CNS demyelination, astrocyte recruitment and increases levels of proinflammatory cytokines levels along with motor, locomotor and urinary impairment, as well as cardiac and respiratory dysfunction, in the same animal model. Single site LPC-injections either in corpus callosum or cerebellum only, fails in to reproduce such a complete range of MS-like signs. CONCLUSION: We here report that the double-site LPC injections treatment evoke a complex MS-like mice model. We hope that this experimental approach will help to deepen our knowledge about the mechanisms of demyelinated diseases such as MS.


Assuntos
Cerebelo , Corpo Caloso , Doenças Desmielinizantes , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Animais , Esclerose Múltipla/patologia , Corpo Caloso/patologia , Cerebelo/patologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/induzido quimicamente , Camundongos , Masculino , Lisofosfatidilcolinas , Citocinas/metabolismo , Bainha de Mielina/patologia
3.
BMJ Case Rep ; 17(7)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043462

RESUMO

Headache and neurological deficits with cerebrospinal fluid (CSF) lymphocytosis (HaNDL) is a rare condition characterised by recurrent episodes of headache and transient neurological deficits. This case report presents a young patient initially diagnosed with hemiplegic migraine, having a normal brain CT, with focal cerebral perfusion mismatch not restricted to a single vascular territory on CT angiography. Brain MRI revealed a cytotoxic lesion of the splenium in the corpus callosum (CLOCC), a feature also reported in migraine. However, recurrent headaches with neurological deficits prompted further investigations with CSF analysis and brain MRI, confirming HaNDL and demonstrating reversibility of CLOCC. Recognising HaNDL as a differential diagnosis is essential in patients with recurrent headaches with focal neurological deficits, given the differences in therapeutic approach. The relationship between migraine and HaNDL is not fully understood, but they may share a pathophysiological link. Awareness of this is crucial for accurate diagnosis.


Assuntos
Corpo Caloso , Cefaleia , Linfocitose , Imageamento por Ressonância Magnética , Humanos , Linfocitose/líquido cefalorraquidiano , Linfocitose/diagnóstico , Linfocitose/complicações , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Cefaleia/etiologia , Diagnóstico Diferencial , Adulto , Masculino , Feminino , Síndrome
5.
Artigo em Inglês | MEDLINE | ID: mdl-38928903

RESUMO

Ideational slippage-characterized by incorrect word usage and strained logic during dialogue-is common in aging and, at greater frequency, is an indicator of pre-clinical cognitive decline. Performance-based assessment of ideational slippage may be useful in the study of cognitive aging and Alzheimer's-disease-related pathology. In this preliminary study, we examine the association between corpus callosum volume and a performance-based assessment of ideational slippage in middle-aged and older adults (age 61-79 years). Ideational slippage was indexed from cognitive special scores using the Rorschach Inkblot Method (RIM), which are validated indices of deviant verbalization and logical inaccuracy (Sum6, WSum6). Among middle-aged and older adults, smaller splenium volume was associated with greater ideational slippage (ηp2 = 0.48), independent of processing speed and fluid intelligence. The observed negative associations are consistent with visuospatial perception and cognitive functions of the splenium. The effect was strongest with the splenium, and volumes of the genu and total white matter had small effects that were not statistically significant. Conclusions: Results are discussed with future application of RIM special scores for the assessment of pre-clinical cognitive decline and, based on observed effect sizes, power analyses are reported to inform future study planning.


Assuntos
Corpo Caloso , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Masculino , Corpo Caloso/fisiologia , Cognição , Envelhecimento/fisiologia , Disfunção Cognitiva
6.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38918041

RESUMO

Schizophrenia is associated with altered cortical circuitry. Although the schizophrenia risk gene NRG1 is known to affect the wiring of inhibitory interneurons, its role in excitatory neurons and axonal development is unclear. Here, we investigated the role of Nrg1 in the development of the corpus callosum, the major interhemispheric connection formed by cortical excitatory neurons. We found that deletion of Nrg1 impaired callosal axon development in vivo. Experiments in vitro and in vivo demonstrated that Nrg1 is cell-autonomously required for axonal outgrowth and that intracellular signaling of Nrg1 is sufficient to promote axonal development in cortical neurons and specifically in callosal axons. Furthermore, our data suggest that Nrg1 signaling regulates the expression of Growth Associated Protein 43, a key regulator of axonal growth. In conclusion, our study demonstrates that NRG1 is involved in the formation of interhemispheric callosal connections and provides a novel perspective on the relevance of NRG1 in excitatory neurons and in the etiology of schizophrenia.


Assuntos
Axônios , Corpo Caloso , Neuregulina-1 , Transdução de Sinais , Animais , Neuregulina-1/metabolismo , Neuregulina-1/genética , Corpo Caloso/metabolismo , Axônios/metabolismo , Camundongos , Esquizofrenia/metabolismo , Esquizofrenia/genética , Esquizofrenia/etiologia , Esquizofrenia/patologia , Camundongos Knockout , Neurônios/metabolismo , Proteína GAP-43/metabolismo , Proteína GAP-43/genética , Camundongos Endogâmicos C57BL
7.
J Clin Neurophysiol ; 41(5): 473-477, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38922289

RESUMO

PURPOSE: The corpus callosum is crucial for interhemispheric interactions in the motor control of limb functions. Human and animal studies suggested spinal cord pathologies may induce cortical reorganization in sensorimotor areas. We investigate participation of the corpus callosum in executions of a simple motor task in patients with cervical spondylotic myelopathy (CSM) using transcranial magnetic stimulation. METHODS: Twenty patients with CSM with various MRI grades of severity of cord compression were compared with 19 normal controls. Ipsilateral silent period, contralateral silent period, central motor conduction time, and transcallosal conduction time (TCT) were determined. RESULTS: In both upper and lower limbs, TCTs were significantly increased for patients with CSM than normal controls ( p < 0.001 for all), without side-to-side differences. Ipsilateral silent period and contralateral silent period durations were significantly increased bilaterally for upper limbs in comparison to controls ( p < 0.01 for all), without side-to-side differences. There were no significant correlations of TCT with central motor conduction time nor severity of CSM for both upper and lower limbs ( p > 0.05 for all) bilaterally. CONCLUSIONS: Previous transcranial magnetic stimulation studies show increased motor cortex excitability in CSM; hence, increased TCTs observed bilaterally may be a compensatory mechanism for effective unidirectional and uniplanar execution of muscle activation in the distal limb muscles. Lack of correlation of TCTs with severity of CSM or central motor conduction time may be in keeping with a preexistent role of the corpus callosum as a predominantly inhibitory pathway for counteracting redundant movements resulting from increased motor cortex excitability occurring after spinal cord lesions.


Assuntos
Corpo Caloso , Potencial Evocado Motor , Espondilose , Estimulação Magnética Transcraniana , Humanos , Corpo Caloso/fisiopatologia , Corpo Caloso/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Espondilose/fisiopatologia , Potencial Evocado Motor/fisiologia , Adulto , Idoso , Vértebras Cervicais/fisiopatologia , Condução Nervosa/fisiologia , Doenças da Medula Espinal/fisiopatologia , Doenças da Medula Espinal/diagnóstico por imagem , Compressão da Medula Espinal/fisiopatologia
8.
Hum Brain Mapp ; 45(9): e26693, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924235

RESUMO

The corpus callosum (CC) is a large white matter fiber bundle in the brain and is involved in various cognitive, sensory, and motor processes. While implicated in various developmental and psychiatric disorders, much is yet to be uncovered about the normal development of this structure, especially in young children. Additionally, while sexual dimorphism has been reported in prior literature, observations have not necessarily been consistent. In this study, we use morphometric measures including surface tensor-based morphometry (TBM) to investigate local changes in the shape of the CC in children between the ages of 12 and 60 months, in intervals of 12 months. We also analyze sex differences in each of these age groups. We observed larger significant clusters in the earlier ages between 12 v 24 m and between 48 v 60 m and localized differences in the anterior region of the body of the CC. Sex differences were most pronounced in the 12 m group. This study adds to the growing literature of work aiming to understand the developing brain and emphasizes the utility of surface TBM as a useful tool for analyzing regional differences in neuroanatomical morphometry.


Assuntos
Corpo Caloso , Caracteres Sexuais , Humanos , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/anatomia & histologia , Masculino , Feminino , Lactente , Pré-Escolar , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos
9.
Mol Genet Genomic Med ; 12(6): e2475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38938072

RESUMO

BACKGROUND: Spastic paraplegia 11 (SPG11) is the most prevalent form of autosomal recessive hereditary spastic paraplegia, resulting from biallelic pathogenic variants in the SPG11 gene (MIM *610844). METHODS: The proband is a 36-year-old female referred for genetic evaluation due to cognitive dysfunction, gait impairment, and corpus callosum atrophy (brain MRI was normal at 25-years-old). Diagnostic approaches included CGH array, next-generation sequencing, and whole transcriptome sequencing. RESULTS: CGH array revealed a 180 kb deletion located upstream of SPG11. Sequencing of SPG11 uncovered two rare single nucleotide variants: the novel variant c.3143C>T in exon 17 (in cis with the deletion), and the previously reported pathogenic variant c.6409C>T in exon 34 (in trans). Whole transcriptome sequencing revealed that the variant c.3143C>T caused exon 17 skipping. CONCLUSION: We report a novel sequence variant in the SPG11 gene resulting in exon 17 skipping, which, along with a nonsense variant, causes Spastic Paraplegia 11 in our proband. In addition, a deletion upstream of SPG11 was identified in the patient, whose implication in the phenotype remains uncertain. Nonetheless, the deletion apparently affects cis-regulatory elements of the gene, suggesting a potential new pathogenic mechanism underlying the disease in a subset of undiagnosed patients. Our findings further support the hypothesis that the origin of thin corpus callosum in patients with SPG11 is of progressive nature.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Feminino , Adulto , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/patologia , Éxons , Proteínas/genética , Códon sem Sentido , Corpo Caloso/patologia , Corpo Caloso/diagnóstico por imagem , Deleção de Sequência , Fenótipo
10.
Top Magn Reson Imaging ; 33(3): e0312, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836588

RESUMO

BACKGROUND: Altered size in the corpus callosum (CC) has been reported in individuals with autism spectrum disorder (ASD), but few studies have investigated younger children. Moreover, knowledge about the age-related changes in CC size in individuals with ASD is limited. OBJECTIVES: Our objective was to investigate the age-related size of the CC and compare them with age-matched healthy controls between the ages of 2 and 18 years. METHODS: Structural-weighted images were acquired in 97 male patients diagnosed with ASD; published data were used for the control group. The CC was segmented into 7 distinct subregions (rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus, and splenium) as per Witelson's technique using ITK-SNAP software. We calculated both the total length and volume of the CC as well as the length and height of its 7 subregions. The length of the CC measures was studied as both continuous and categorical forms. For the continuous form, Pearson's correlation was used, while categorical forms were based on age ranges reflecting brain expansion during early postnatal years. Differences in CC measures between adjacent age groups in individuals with ASD were assessed using a Student t-test. Mean and standard deviation scores were compared between ASD and control groups using the Welch t-test. RESULTS: Age showed a moderate positive association with the total length of the CC (r = 0.43; Padj = 0.003) among individuals with ASD. Among the subregions, a positive association was observed only in the anterior midbody of the CC (r = 0.41; Padj = 0.01). No association was found between the age and the height of individual subregions or with the total volume of the CC. In comparison with healthy controls, individuals with ASD exhibited shorter lengths and heights of the genu and splenium of the CC across wide age ranges. CONCLUSION: Overall, our results highlight a distinct abnormal developmental trajectory of CC in ASD, particularly in the genu and splenium structures, potentially reflecting underlying pathophysiological mechanisms that warrant further investigation.


Assuntos
Transtorno do Espectro Autista , Corpo Caloso , Imageamento por Ressonância Magnética , Humanos , Masculino , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Criança , Adolescente , Pré-Escolar , Feminino , Processamento de Imagem Assistida por Computador
11.
Exp Brain Res ; 242(7): 1761-1772, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822825

RESUMO

BACKGROUND: Multiple sclerosis is a neurodegenerative disease that damages the myelin sheath within the central nervous system. Axonal demyelination, particularly in the corpus callosum, impacts communication between the brain's hemispheres in persons with multiple sclerosis (PwMS). Changes in interhemispheric communication may impair gait coordination which is modulated by communication across the corpus callosum to excite and inhibit specific muscle groups. To further evaluate the functional role of interhemispheric communication in gait and mobility, this study assessed the ipsilateral silent period (iSP), an indirect marker of interhemispheric inhibition and how it relates to gait adaptation in PwMS. METHODS: Using transcranial magnetic stimulation (TMS), we assessed interhemispheric inhibition differences between the more affected and less affected hemisphere in the primary motor cortices in 29 PwMS. In addition, these same PwMS underwent a split-belt treadmill walking paradigm, with the faster paced belt moving under their more affected limb. Step length asymmetry (SLA) was the primary outcome measure used to assess gait adaptability during split-belt treadmill walking. We hypothesized that PwMS would exhibit differences in iSP inhibitory metrics between the more affected and less affected hemispheres and that increased interhemispheric inhibition would be associated with greater gait adaptability in PwMS. RESULTS: No statistically significant differences in interhemispheric inhibition or conduction time were found between the more affected and less affected hemisphere. Furthermore, SLA aftereffect was negatively correlated with both average percent depth of silent period (dSP%AVE) (r = -0.40, p = 0.07) and max percent depth of silent period (dSP%MAX) r = -0.40, p = 0.07), indicating that reduced interhemispheric inhibition was associated with greater gait adaptability in PwMS. CONCLUSION: The lack of differences between the more affected and less affected hemisphere indicates that PwMS have similar interhemispheric inhibitory capacity irrespective of the more affected hemisphere. Additionally, we identified a moderate correlation between reduced interhemispheric inhibition and greater gait adaptability. These findings may indicate that interhemispheric inhibition may in part influence responsiveness to motor adaptation paradigms and the need for further research evaluating the neural mechanisms underlying the relationship between interhemispheric inhibition and motor adaptability.


Assuntos
Adaptação Fisiológica , Córtex Motor , Esclerose Múltipla , Estimulação Magnética Transcraniana , Humanos , Feminino , Masculino , Adulto , Adaptação Fisiológica/fisiologia , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Córtex Motor/fisiopatologia , Inibição Neural/fisiologia , Marcha/fisiologia , Corpo Caloso/fisiopatologia , Corpo Caloso/fisiologia , Lateralidade Funcional/fisiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/etiologia , Potencial Evocado Motor/fisiologia
12.
World Neurosurg ; 188: e555-e560, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823444

RESUMO

BACKGROUND: Geniculocalcarine fibers are thought to be exclusively ipsilateral. However, recent findings challenged this belief, revealing bilateral recruiting responses in occipitotemporoparietal regions upon unilateral stimulation of the lateral geniculate nucleus (LGN) in humans. This raised the intriguing possibility of bilateral projections to primary visual areas (V1). This study sought to explore the hypothetical decussation of the geniculocalcarine tract. METHODS: 40 healthy individuals' 7T magnetic resonance images from the Human Connectome Project were examined. Employing MRtrix3 software with the constrained spherical deconvolution algorithm, scans were processed. LGN served as the seed region and contralateral regions of interest (splenium of the corpus callosum, posterior commissure, LGN, V1, pulvinar, and superior colliculus) were defined to reconstruct the hypothetical decussated fibers. Tractography included contralateral V1 as the target region in all segmentations, excluding ipsilateral V1 to eliminate fibers leading to or originating from this area. Additionally, a segmentation of the tract originating from LGN and projecting to the ipsilateral V1 was performed. Mean fraction anisotropy and mean diffusivity metrics were extracted from the density maps. RESULTS: Observations revealed a substantial volume of decussated fibers between LGN and contralateral V1 via the splenium of the corpus callosum, albeit much smaller than ipsilateral fibers. The volume of ipsilateral fibers was similar in both sides. Left LGN-originating decussated fibers were more than double those originating from the right LGN. Tract segmentation to other regions of interests yielded no fibers. CONCLUSIONS: This study suggests a partial decussation of the fibers between LGN and V1, likely constituting the geniculocalcarine tract.


Assuntos
Imagem de Tensor de Difusão , Corpos Geniculados , Vias Visuais , Humanos , Corpos Geniculados/diagnóstico por imagem , Corpos Geniculados/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Masculino , Feminino , Adulto , Vias Visuais/diagnóstico por imagem , Vias Visuais/anatomia & histologia , Córtex Visual Primário/diagnóstico por imagem , Córtex Visual Primário/anatomia & histologia , Conectoma/métodos , Adulto Jovem , Imageamento por Ressonância Magnética/métodos , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/anatomia & histologia
13.
Dev Neurobiol ; 84(3): 203-216, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38830696

RESUMO

Formation of the corpus callosum (CC), anterior commissure (AC), and postoptic commissure (POC), connecting the left and right cerebral hemispheres, is crucial for cerebral functioning. Collapsin response mediator protein 2 (CRMP2) has been suggested to be associated with the mechanisms governing this formation, based on knockout studies in mice and knockdown/knockout studies in zebrafish. Previously, we reported two cases of non-synonymous CRMP2 variants with S14R and R565C substitutions. Among the, the R565C substitution (p.R565C) was caused by the novel CRMP2 mutation c.1693C > T, and the patient presented with intellectual disability accompanied by CC hypoplasia. In this study, we demonstrate that crmp2 mRNA could rescue AC and POC formation in crmp2-knockdown zebrafish, whereas the mRNA with the R566C mutation could not. Zebrafish CRMP2 R566C corresponds to human CRMP2 R565C. Further experiments with transfected cultured cells indicated that CRMP2 with the R566C mutation could not bind to kinesin light chain 1 (KLC1). Knockdown of klc1a in zebrafish resulted in defective AC and POC formation, revealing a genetic interaction with crmp2. These findings suggest that the CRMP2 R566C mutant fails to bind to KLC1, preventing axonal elongation and leading to defective AC and POC formation in zebrafish and CC formation defects in humans. Our study highlights the importance of the interaction between CRMP2 and KLC1 in the formation of the forebrain commissures, revealing a novel mechanism associated with CRMP2 mutations underlying human neurodevelopmental abnormalities.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Proteínas do Tecido Nervoso , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Prosencéfalo/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Corpo Caloso/metabolismo , Humanos , Animais Geneticamente Modificados , Embrião não Mamífero
14.
Anat Histol Embryol ; 53(4): e13072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38859689

RESUMO

Three-dimensional morphometric data better show the structural and functional characteristics of the brain. The objective of this study was to estimate the volume of the cerebral structures of the sheep using design-based stereology. The brains of five sheep were used, fixed in formalin 10% and embedded in agar 6%. An average of 10-12 slab was obtained from each brain. All slabs were stained using Mulligan's method and photographs were recorded. The volume of the brain and its structures were estimated using the Cavalieri's estimator and the point counting system. The total volume was 70604.8 ± 132.45 mm3. The volume fractions of the grey and white matters were calculated as 42.55 ± 0.21% and 24.23 ± 0.51% of the whole brain, respectively. The fractional volume of the caudate nucleus and claustrum were estimated at 2.39 ± 0.08% and at 1.008 ± 0.057% of total brain volume. The volumes of corpus callosum, internal capsule and external capsule were 1.24 ± 0.053%, 3.63 ± 0.22% and 0.698 ± 0.049% of total cerebral volume, respectively. These data could help improve the veterinary comparative neuroanatomy knowledge and development of experimental studies in the field.


Assuntos
Encéfalo , Animais , Encéfalo/anatomia & histologia , Ovinos/anatomia & histologia , Imageamento Tridimensional/veterinária , Tamanho do Órgão , Corpo Caloso/anatomia & histologia , Corpo Caloso/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia
15.
Clin Neurol Neurosurg ; 242: 108316, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38762973

RESUMO

INTRODUCTION: Seizure disorders have often been found to be associated with corpus callosum injuries, but in most cases, they remain undiagnosed. Understanding the clinical, electrographic, and neuroradiological alternations can be crucial in delineating this entity. OBJECTIVE: This systematic review aims to analyze the effects of corpus callosum injuries on seizure semiology, providing insights into the neuroscientific and clinical implications of such injuries. METHODS: Adhering to the PRISMA guidelines, a comprehensive search across multiple databases, including PubMed/Medline, NIH, Embase, Cochrane Library, and Cross-ref, was conducted until September 25, 2023. Studies on seizures associated with corpus callosum injuries, excluding other cortical or sub-cortical involvements, were included. Machine learning (Random Forest) and deep learning (1D-CNN) algorithms were employed for data classification. RESULTS: Initially, 1250 articles were identified from the mentioned databases, and additional 350 were found through other relevant sources. Out of all these articles, 41 studies met the inclusion criteria, collectively encompassing 56 patients The most frequent clinical manifestations included generalized tonic-clonic seizures, complex partial seizures, and focal seizures. The most common callosal injuries were related to reversible splenial lesion syndrome and cytotoxic lesions. Machine learning and deep learning analyses revealed significant correlations between seizure types, semiological parameters, and callosal injury locations. Complete recovery was reported in the majority of patients post-treatment. CONCLUSION: Corpus callosum injuries have diverse impacts on seizure semiology. This review highlights the importance of understanding the role of the corpus callosum in seizure propagation and manifestation. The findings emphasize the need for targeted diagnostic and therapeutic strategies in managing seizures associated with callosal injuries. Future research should focus on expanding the data pool and exploring the underlying mechanisms in greater detail.


Assuntos
Corpo Caloso , Aprendizado de Máquina , Convulsões , Humanos , Corpo Caloso/diagnóstico por imagem , Convulsões/fisiopatologia , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/diagnóstico
16.
Brain Behav Immun ; 120: 99-116, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38705494

RESUMO

INTRODUCTION: Despite improved management of traumatic brain injury (TBI), it still leads to lifelong sequelae and disability, particularly in children. Chronic neuroinflammation (the so-called tertiary phase), in particular, microglia/macrophage and astrocyte reactivity, is among the main mechanisms suspected of playing a role in the generation of lesions associated with TBI. The role of acute neuroinflammation is now well understood, but its persistent effect and impact on the brain, particularly during development, are not. Here, we investigated the long-term effects of pediatric TBI on the brain in a mouse model. METHODS: Pediatric TBI was induced in mice on postnatal day (P) 7 by weight-drop trauma. The time course of neuroinflammation and myelination was examined in the TBI mice. They were also assessed by magnetic resonance, functional ultrasound, and behavioral tests at P45. RESULTS: TBI induced robust neuroinflammation, characterized by acute microglia/macrophage and astrocyte reactivity. The long-term consequences of pediatric TBI studied on P45 involved localized scarring astrogliosis, persistent microgliosis associated with a specific transcriptomic signature, and a long-lasting myelination defect consisting of the loss of myelinated axons, a decreased level of myelin binding protein, and severe thinning of the corpus callosum. These results were confirmed by reduced fractional anisotropy, measured by diffusion tensor imaging, and altered inter- and intra-hemispheric connectivity, measured by functional ultrasound imaging. In addition, adolescent mice with pediatric TBI showed persistent social interaction deficits and signs of anxiety and depressive behaviors. CONCLUSIONS: We show that pediatric TBI induces tertiary neuroinflammatory processes associated with white matter lesions and altered behavior. These results support our model as a model for preclinical studies for tertiary lesions following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Encéfalo , Modelos Animais de Doenças , Doenças Neuroinflamatórias , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/etiologia , Masculino , Encéfalo/metabolismo , Encéfalo/patologia , Astrócitos/metabolismo , Microglia/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Feminino , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Corpo Caloso/diagnóstico por imagem , Inflamação/metabolismo , Imagem de Tensor de Difusão/métodos
17.
Childs Nerv Syst ; 40(8): 2491-2495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38717604

RESUMO

PURPOSE: To assess preferences and outcome expectations for vagus nerve stimulation (VNS) and corpus callosotomy (CC) surgeries in the treatment of atonic seizure in Lennox-Gastaut syndrome (LGS). METHODS: A total of 260 surveys were collected from patients are caregivers of LGS patients via Research Electronic Data Capture (REDCap). RESULTS: Respondents reported an average acceptable atonic seizure reduction rate of 55.9% following VNS and 74.7% following CC. 21.3% (n = 50) were willing to be randomized. Respondents reported low willingness for randomization and a higher seizure reduction expectation with CC. CONCLUSION: Our findings guide surgical approaches for clinicians to consider patient preference in order to design future studies comparing effectiveness between these two procedures.


Assuntos
Síndrome de Lennox-Gastaut , Preferência do Paciente , Estimulação do Nervo Vago , Humanos , Síndrome de Lennox-Gastaut/cirurgia , Feminino , Masculino , Criança , Estimulação do Nervo Vago/métodos , Adolescente , Preferência do Paciente/psicologia , Pré-Escolar , Corpo Caloso/cirurgia , Inquéritos e Questionários , Convulsões/cirurgia , Convulsões/psicologia , Adulto Jovem , Procedimentos Neurocirúrgicos/métodos , Resultado do Tratamento , Adulto , Lactente
18.
Comput Biol Med ; 177: 108622, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781645

RESUMO

Alzheimer's disease (AD) imposes a growing burden on public health due to its impact on memory, cognition, behavior, and social skills. Early detection using non-invasive brain magnetic resonance images (MRI) is vital for disease management. We introduce CCADD (Corpus Callosum-based Alzheimer's Disease Detection), a user-friendly webserver that automatically identifies and segments the corpus callosum (CC) region from brain MRI slices. Extracted shape and size-based features of CC are fed into Support Vector Machines (SVM), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), K-Nearest Neighbor (KNN), and Artificial Neural Network (ANN) classifiers to predict AD or Mild Cognitive Impairment (MCI). Exhaustive benchmarking on ADNI data reveals high prediction accuracies for different AD severity levels. CCADD empowers clinicians and researchers for AD detection. This server is available at: http://www.hpppi.iicb.res.in/add.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Doença de Alzheimer/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Internet , Encéfalo/diagnóstico por imagem , Software , Masculino , Idoso , Corpo Caloso/diagnóstico por imagem , Feminino , Disfunção Cognitiva/diagnóstico por imagem , Máquina de Vetores de Suporte
19.
Adv Tech Stand Neurosurg ; 49: 123-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38700683

RESUMO

Intraventricular tumors of the lateral and third ventricles are relatively rare, accounting for 1-2% of all primary brain tumors in most large series [1-4]. They can be uniquely challenging to approach due to their deep location, propensity to become large before they are discovered, and association with hydrocephalus [5, 6]. The surgeon's goal is to develop a route to these deep lesions that will cause the least morbidity, provide adequate working space, and achieve a complete resection. This must be performed with minimal manipulation of the neural structures encircling the ventricles, avoiding functional cortical areas, and acquiring early control of feeding vessels [7, 8].


Assuntos
Neoplasias do Ventrículo Cerebral , Humanos , Neoplasias do Ventrículo Cerebral/cirurgia , Neoplasias do Ventrículo Cerebral/patologia , Ventrículos Cerebrais/cirurgia , Corpo Caloso/cirurgia , Hidrocefalia/cirurgia , Ventrículos Laterais/cirurgia , Procedimentos Neurocirúrgicos/métodos
20.
Cell Stem Cell ; 31(6): 866-885.e14, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718796

RESUMO

Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.


Assuntos
Axônios , Corpo Caloso , Proteínas de Ligação a DNA , Organoides , Fatores de Transcrição , Humanos , Corpo Caloso/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Organoides/metabolismo , Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Transcrição Gênica , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...