Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.990
Filtrar
1.
Neurobiol Dis ; 198: 106559, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852753

RESUMO

Parkinson's disease is caused by a selective vulnerability and cell loss of dopaminergic neurons of the Substantia Nigra pars compacta and, consequently, striatal dopamine depletion. In Parkinson's disease therapy, dopamine loss is counteracted by the administration of L-DOPA, which is initially effective in ameliorating motor symptoms, but over time leads to a burdening side effect of uncontrollable jerky movements, termed L-DOPA-induced dyskinesia. To date, no efficient treatment for dyskinesia exists. The dopaminergic and serotonergic systems are intrinsically linked, and in recent years, a role has been established for pre-synaptic 5-HT1a/b receptors in L-DOPA-induced dyskinesia. We hypothesized that post-synaptic serotonin receptors may have a role and investigated the effect of modulation of 5-HT4 receptor on motor symptoms and L-DOPA-induced dyskinesia in the unilateral 6-OHDA mouse model of Parkinson's disease. Administration of RS 67333, a 5-HT4 receptor partial agonist, reduces L-DOPA-induced dyskinesia without altering L-DOPA's pro-kinetic effect. In the dorsolateral striatum, we find 5-HT4 receptor to be predominantly expressed in D2R-containing medium spiny neurons, and its expression is altered by dopamine depletion and L-DOPA treatment. We further show that 5-HT4 receptor agonism not only reduces L-DOPA-induced dyskinesia, but also enhances the activation of the cAMP-PKA pathway in striatopallidal medium spiny neurons. Taken together, our findings suggest that agonism of the post-synaptic serotonin receptor 5-HT4 may be a novel therapeutic approach to reduce L-DOPA-induced dyskinesia.


Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Oxidopamina , Animais , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/farmacologia , Oxidopamina/toxicidade , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Antiparkinsonianos/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Piridinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Piperidinas , Pirimidinas
2.
PLoS One ; 19(6): e0305066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843228

RESUMO

A large body of evidence has shown that treatments that interfere with memory consolidation become ineffective when animals are subjected to an intense learning experience; this effect has been observed after systemic and local administration of amnestic drugs into several brain areas, including the striatum. However, the effects of amnestic treatments on the process of extinction after intense training have not been studied. Previous research demonstrated increased spinogenesis in the dorsomedial striatum, but not in the dorsolateral striatum after intense training, indicating that the dorsomedial striatum is involved in the protective effect of intense training. To investigate this issue, male Wistar rats, previously trained with low, moderate, or high levels of foot shock, were used to study the effect of tetrodotoxin inactivation of dorsomedial striatum on memory consolidation and subsequent extinction of inhibitory avoidance. Performance of the task was evaluated during seven extinction sessions. Tetrodotoxin produced a marked deficit of memory consolidation of inhibitory avoidance trained with low and moderate intensities of foot shock, but normal consolidation occurred when a relatively high foot shock was used. The protective effect of intense training was long-lasting, as evidenced by the high resistance to extinction exhibited throughout the extinction sessions. We discuss the possibility that increased dendritic spinogenesis in dorsomedial striatum may underly this protective effect, and how this mechanism may be related to the resilient memory typical of post-traumatic stress disorder (PTSD).


Assuntos
Aprendizagem da Esquiva , Corpo Estriado , Extinção Psicológica , Ratos Wistar , Tetrodotoxina , Animais , Masculino , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Ratos , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Corpo Estriado/fisiologia , Corpo Estriado/efeitos dos fármacos , Tetrodotoxina/farmacologia , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/fisiologia , Amnésia/fisiopatologia , Amnésia/prevenção & controle , Eletrochoque
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732120

RESUMO

Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Corpo Estriado , Doença de Parkinson , Receptor A2A de Adenosina , Animais , Ratos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos Sprague-Dawley , Receptor A2A de Adenosina/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Triazóis/farmacologia
4.
Eur J Neurosci ; 60(1): 3447-3465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38798086

RESUMO

As opposed to those requiring a single action for reward acquisition, tasks necessitating action sequences demand that animals learn action elements and their sequential order and sustain the behaviour until the sequence is completed. With repeated learning, animals not only exhibit precise execution of these sequences but also demonstrate enhanced smoothness and efficiency. Previous research has demonstrated that midbrain dopamine and its major projection target, the striatum, play crucial roles in these processes. Recent studies have shown that dopamine from the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) serve distinct functions in action sequence learning. The distinct contributions of dopamine also depend on the striatal subregions, namely the ventral, dorsomedial and dorsolateral striatum. Here, we have reviewed recent findings on the role of striatal dopamine in action sequence learning, with a focus on recent rodent studies.


Assuntos
Dopamina , Aprendizagem , Animais , Dopamina/metabolismo , Aprendizagem/fisiologia , Área Tegmentar Ventral/fisiologia , Corpo Estriado/fisiologia , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Humanos , Recompensa
5.
Pharmacol Biochem Behav ; 241: 173792, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38806117

RESUMO

Formosan wood mice (Apodemus semotus) are endemic rodents in Taiwan. Recently Formosan wood mice exhibit similar locomotor behaviors in the laboratory environment as in the field environment has shown. Contemporaneously, Formosan wood mice have higher moving distances of and central dopaminergic (DAergic) activities than C57BL/6 mice in behavioral test. This study tried to compare the behavioral responses between male Formosan wood mice and male C57BL/6 mice in the light-dark exploration tests. We also measured the levels of DA and 3,4-dihydroxyphenylacetic acid (DOPAC), the primary metabolite of DA, to assess the dopaminergic activity of the medial prefrontal cortex, striatum, and nucleus accumbens. Our data show that Formosan wood mice revealed higher exploration and central DAergic activities than did C57BL/6 mice in the light-dark exploration tests, and diazepam (an anxiolytics) treatment reduced the exploratory activity and central dopaminergic activities in Formosan wood mice, but not in C57BL/6 mice. After repeated exposure to light-dark exploration tests, the latency to dark zone was increased, and the duration in light zone as well as the central DAergic activity were decreased in C57BL/6 mice. This study provides comparative findings; Formosan wood mice showed the higher exploratory activities than C57BL/6 mice did, and their central DAergic activities were related to the behavioral responses in these two mice. This could potentially shed light on the reasons behind the prevalence of higher exploration and central dopaminergic activities. Using Formosan wood mice as a model to study human diseases related to hyperactivity adds significant value to the potential research.


Assuntos
Comportamento Animal , Dopamina , Comportamento Exploratório , Camundongos Endogâmicos C57BL , Murinae , Animais , Masculino , Camundongos , Dopamina/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Diazepam/farmacologia , Ansiolíticos/farmacologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos
6.
Neurobiol Learn Mem ; 212: 107937, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735637

RESUMO

Systemic manipulations that enhance dopamine (DA) transmission around the time of fear extinction can strengthen fear extinction and reduce conditioned fear relapse. Prior studies investigating the brain regions where DA augments fear extinction focus on targets of mesolimbic and mesocortical DA systems originating in the ventral tegmental area, given the role of these DA neurons in prediction error. The dorsal striatum (DS), a primary target of the nigrostriatal DA system originating in the substantia nigra (SN), is implicated in behaviors beyond its canonical role in movement, such as reward and punishment, goal-directed action, and stimulus-response associations, but whether DS DA contributes to fear extinction is unknown. We have observed that chemogenetic stimulation of SN DA neurons during fear extinction prevents the return of fear in contexts different from the extinction context, a form of relapse called renewal. This effect of SN DA stimulation is mimicked by a DA D1 receptor (D1R) agonist injected into the DS, thus implicating DS DA in fear extinction. Different DS subregions subserve unique functions of the DS, but it is unclear where in the DS D1R agonist acts during fear extinction to reduce renewal. Furthermore, although fear extinction increases neural activity in DS subregions, whether neural activity in DS subregions is causally involved in fear extinction is unknown. To explore the role of DS subregions in fear extinction, adult, male Long-Evans rats received microinjections of either the D1R agonist SKF38393 or a cocktail consisting of GABAA/GABAB receptor agonists muscimol/baclofen selectively into either dorsomedial (DMS) or dorsolateral (DLS) DS subregions immediately prior to fear extinction, and extinction retention and renewal were subsequently assessed drug-free. While increasing D1R signaling in the DMS during fear extinction did not impact fear extinction retention or renewal, DMS inactivation reduced later renewal. In contrast, DLS inactivation had no effect on fear extinction retention or renewal but increasing D1R signaling in the DLS during extinction reduced fear renewal. These data suggest that DMS and DLS activity during fear extinction can have opposing effects on later fear renewal, with the DMS promoting renewal and the DLS opposing renewal. Mechanisms through which the DS could influence the contextual gating of fear extinction are discussed.


Assuntos
Corpo Estriado , Extinção Psicológica , Medo , Receptores de Dopamina D1 , Animais , Medo/fisiologia , Medo/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Masculino , Ratos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Corpo Estriado/metabolismo , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Agonistas de Dopamina/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Substância Negra/efeitos dos fármacos , Substância Negra/fisiologia , Ratos Long-Evans , Dopamina/metabolismo , Dopamina/fisiologia
7.
Neuroscience ; 549: 65-75, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38750924

RESUMO

Recent evidence has supported a pathogenic role for neuroinflammation in Parkinson's disease (PD). Inflammatory response has been associated with symptoms and subtypes of PD. However, it is unclear whether immune changes are involved in the initial pathogenesis of PD, leading to the non-motor symptoms (NMS) observed in its prodromal stage. The current study aimed to characterize the behavioral and cognitive changes in a toxin-induced model of prodromal PD-like syndrome. We also sought to investigate the role of neuroinflammation in prodromal PD-related NMS. Male mice were subjected to bilateral intranasal infusion with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or saline (control group), followed by comprehensive behavioral, pathological and neurochemical analysis. Intranasal MPTP infusion was able to cause the loss of dopaminergic neurons in the substantia nigra (SN). In parallel, it induced impairment in olfactory discrimination and social memory consolidation, compulsive and anxiety-like behaviors, but did not influence motor performance. Iba-1 and GFAP expressions were increased in the SN, suggesting an activated state of microglia and astrocytes. Consistent with this, MPTP mice had increased levels of IL-10 and IL-17A, and decreased levels of BDNF and TrkA mRNA in the SN. The striatum showed increased IL-17A, BDNF, and NFG levels compared to control mice. In conclusion, neuroinflammation may play an important role in the early stage of experimental PD-like syndrome, leading to cognitive and behavioral changes. Our results also indicate that intranasal administration of MPTP may represent a valuable mouse model for prodromal PD.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Sintomas Prodrômicos , Substância Negra , Animais , Masculino , Substância Negra/metabolismo , Substância Negra/patologia , Substância Negra/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Doenças Neuroinflamatórias/patologia , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Camundongos , Microglia/metabolismo , Microglia/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ansiedade/etiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
8.
ACS Chem Neurosci ; 15(11): 2308-2321, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38747405

RESUMO

Considerable research efforts have been directed toward the symptom relief of Parkinson's disease (PD) by attenuating dopamine (DA) depletion. One common feature of these existing therapies is their unavailability of preventing the neurodegenerative process of dopaminergic neurons. (+)-Borneol, a natural highly lipid-soluble bicyclic monoterpene, has been reported to regulate the levels of monoamine neurotransmitters in the central nervous system and exhibit neuroprotective effects. However, the effect of (+)-borneol on the dopaminergic neuronal loss of methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice is not defined. Herein, we first report that 30 mg/kg (+)-borneol significantly attenuated the motor deficits of PD mice, which benefits from markedly increasing the level of DA and decreasing the metabolic rate of DA in the striatum of conscious and freely moving mouse detected by ultraperformance liquid chromatography tandem mass spectrometry online combined with in vivo brain microdialysis sampling. It is worth noting that the enhanced level of DA by (+)-borneol was enabled by the reduction in loss of tyrosine hydroxylase-immunoreactive dopaminergic neurons in the substantia nigra and striatum and promotion of reserpine- or nomifensine-induced DA release in PD mice. Interestingly, (+)-borneol evidently inhibited the decreased expression levels of DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) on the MPTP mouse model of PD. Moreover, (+)-borneol suppressed the neuroinflammation by inhibiting the production of IL-1ß, IL-6, and TNF-α and attenuated oxidative stress by decreasing the level of MDA and increasing the activities of SOD and GSH-px in PD mice. These findings demonstrate that (+)-borneol protects DA neurons by inhibiting neuroinflammation and oxidative stress. Further research work for the neuroprotection mechanism of (+)-borneol will focus on reactive oxygen species-mediated apoptosis. Therefore, (+)-borneol is a potential therapeutic candidate for retarding the neurodegenerative process of PD.


Assuntos
Canfanos , Dopamina , Neurônios Dopaminérgicos , Camundongos Endogâmicos C57BL , Microdiálise , Fármacos Neuroprotetores , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Microdiálise/métodos , Canfanos/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo
9.
Exp Neurol ; 378: 114833, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782350

RESUMO

Gamma oscillations have been frequently observed in levodopa-induced dyskinesia (LID), manifest as broadband (60-120 Hz) and narrowband (80-110 Hz) gamma activity in cortico-striatal projection. We investigated the electrophysiological mechanisms and correlation of gamma oscillations with dyskinesia severity, while assessing the administration of fenobam, a selective metabotropic glutamate receptor 5 (mGluR5) antagonist, in regulating dyskinesia-associated gamma activity. We conducted simultaneous electrophysiological recordings in Striatum (Str) and primary motor cortex (M1), together with Abnormal Involuntary Movement Scale scoring (AIMs). Phase-amplitude coupling (PAC), power, coherence, and Granger causality analyses were conducted for electrophysiological data. The findings demonstrated increased beta oscillations with directionality from M1 to Str in parkinsonian state. During on-state dyskinesia, elevated broadband gamma activity was modulated by the phase of theta activity in Str, while M1 â†’ Str gamma causality mediated narrowband gamma oscillations in Str. Striatal gamma power (both periodic and aperiodic power), periodic power, peak frequency, and PAC at 80 min (corresponding to the peak dyskinesia) after repeated levodopa injections across recording days (day 30, 33, 36, 39, and 42) increased progressively, correlating with total AIMs. Additionally, a time-dependent parabolic trend of PAC, peak frequency and gamma power was observed after levodopa injection on day 42 from 20 to 120 min, which also correlated with corresponding AIMs. Fenobam effectively alleviates dyskinesia, suppresses enhanced gamma oscillations in the M1-Str directionality, and reduces PAC in Str. The temporal characteristics of gamma oscillations provide parameters for classifying LID severity. Antagonizing striatal mGluR5, a promising therapeutic target for dyskinesia, exerts its effects by modulating gamma activity.


Assuntos
Corpo Estriado , Discinesia Induzida por Medicamentos , Ritmo Gama , Animais , Ritmo Gama/efeitos dos fármacos , Ritmo Gama/fisiologia , Ratos , Masculino , Discinesia Induzida por Medicamentos/fisiopatologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Ratos Sprague-Dawley , Levodopa/efeitos adversos , Levodopa/farmacologia , Córtex Motor/efeitos dos fármacos , Córtex Motor/fisiopatologia , Imidazóis
10.
Brain Res ; 1839: 149017, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768935

RESUMO

Parkinson's disease (PD) is a complex disorder, primarily of idiopathic origin, with environmental stressors like rotenone and manganese linked to its development. This study explores their potential interaction and resulting neurotoxicity, aiming to understand how environmental factors contribute to PD. In an eight-day experiment, male Wistar rats weighing 280-300 g were subjected to rotenone, manganese, or a combination of both. Various parameters were assessed, including body weight, behavior, serum markers, tissue damage, protein levels (tyrosine hydroxylase, Dopamine- and cAMP-regulated neuronal phosphoprotein -DARPP-32-, and α-synuclein), and mitochondrial function. Manganese heightened rotenone's impact on reducing food intake without causing kidney or liver dysfunction. However, the combined exposure intensified neurotoxicity, which was evident in augmented broken nuclei and decreased tyrosine hydroxylase and DARPP-32 levels in the striatum. While overall mitochondrial function was preserved, co-administration reduced complex IV activity in the midbrain and liver. In conclusion, our findings revealed a parallel toxic effect induced by rotenone and manganese. Notably, while these substances do not target the same dopaminergic regions, a notable escalation in toxicity is evident in the striatum, the brain region where their toxic effects converge. This study highlights the need for further exploration regarding the interaction of environmental factors and their possible impact on the etiology of PD.


Assuntos
Manganês , Ratos Wistar , Rotenona , Tirosina 3-Mono-Oxigenase , Animais , Rotenona/toxicidade , Masculino , Manganês/toxicidade , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , alfa-Sinucleína/metabolismo , Síndromes Neurotóxicas/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos
11.
Synapse ; 78(4): e22294, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38813759

RESUMO

Major depressive disorder is one of the most prevalent mental health disorders, posing a global socioeconomic burden. Conventional antidepressant treatments have a slow onset of action, and 30% of patients show no clinically significant treatment response. The recently approved fast-acting antidepressant S-ketamine, an N-methyl-D-aspartate receptor antagonist, provides a new approach for treatment-resistant patients. However, knowledge of S-ketamine's mechanism of action is still being established. Depressed human subjects have lower striatal dopamine transporter (DAT) availability compared to healthy controls. Rodent studies report increased striatal dopamine concentration in response to acute ketamine administration. In vivo [18F]FE-PE2I ([18F]-(E)-N-(3-iodoprop-2-enyl)-2ß-carbofluoroethoxy-3ß-(4'-methyl-phenyl) nortropane) positron emission tomography (PET) imaging of the DAT has not previously been applied to assess the effect of acute subanesthetic S-ketamine administration on DAT availability. We applied translational in vivo [18F]FE-PE2I PET imaging of the DAT in healthy female rats to evaluate whether an acute subanesthetic intraperitoneal dose of 15 mg/kg S-ketamine alters DAT availability. We also performed [3H]GBR-12935 autoradiography on postmortem brain sections. We found no effect of acute S-ketamine administration on striatal DAT binding using [18F]FE-PE2I PET or [3H]GBR-12935 autoradiography. This negative result does not support the hypothesis that DAT changes are associated with S-ketamine's rapid antidepressant effects, but additional studies are warranted.


Assuntos
Corpo Estriado , Proteínas da Membrana Plasmática de Transporte de Dopamina , Ketamina , Ratos Sprague-Dawley , Animais , Ketamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Feminino , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/diagnóstico por imagem , Ratos , Tomografia por Emissão de Pósitrons , Autorradiografia
12.
Eur J Pharmacol ; 975: 176635, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38734296

RESUMO

BACKGROUND: Degeneration of the nigrostriatal dopaminergic pathway has been seen as a significant cause of movement disability in Parkinson's disease (PD) patients. However, the exact reason for these degenerative changes has remained obscure. In recent years, incretins have been neuroprotective in various pathologies. In the current study, we have investigated the neuroprotective potential of alogliptin (Alo), a dipeptidyl peptidase-IV (DPP-IV) inhibitor, in a lipopolysaccharide (LPS) induced experimental model of PD. EXPERIMENTAL APPROACH: LPS (5µg/5 µl) was infused intranigrally to induce PD in experimental rats. Post-LPS infusion, these animals were treated with Alo for 21 days in three successive dosages of 10, 20, and 40 mg/kg/day/per oral. The study is well supported with the determinations of motor functions biochemical, neurochemical, and histological analysis. KEY RESULTS: Intranigral infusion of LPS in rats produced motor deficit. It was accompanied by oxidative stress, elevation in neuroinflammatory cytokines, altered neurochemistry, and degenerative changes in the striatal brain region. While Alo abrogated LPS-induced biochemical/neurochemical alterations, improved motor functions, and preserved neuronal morphology in LPS-infused rats. CONCLUSION: The observed neuroprotective potential of Alo may be due to its antioxidant and anti-inflammatory actions and its ability to modulate monoaminergic signals. Nonetheless, current findings suggest that improving the availability of incretins through DPP-IV inhibition is a promising strategy for treating Parkinson's disease.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Lipopolissacarídeos , Fármacos Neuroprotetores , Estresse Oxidativo , Piperidinas , Uracila , Animais , Uracila/análogos & derivados , Uracila/farmacologia , Uracila/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Masculino , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Modelos Animais de Doenças , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Citocinas/metabolismo , Atividade Motora/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia
13.
Behav Brain Res ; 468: 115040, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38723675

RESUMO

Neurotoxins have been extensively investigated, particularly in the field of neuroscience. They induce toxic damage, oxidative stress, and inflammation on neurons, triggering neuronal dysfunction and neurodegenerative diseases. Here we demonstrate the neuroprotective effect of a silicon (Si)-based hydrogen-producing agent (Si-based agent) in a juvenile neurotoxic mouse model induced by 6-hydroxydopamine (6-OHDA). The Si-based agent produces hydrogen in bowels and functions as an antioxidant and anti-inflammatory agent. However, the effects of the Si-based agent on neural degeneration in areas other than the lesion and behavioral alterations caused by it are largely unknown. Moreover, the neuroprotective effects of Si-based agent in the context of lactation and use during infancy have not been explored in prior studies. In this study, we show the neuroprotective effect of the Si-based agent on 6-OHDA during lactation period and infancy using the mouse model. The Si-based agent safeguards against the degradation and neuronal cell death of dopaminergic neurons and loss of dopaminergic fibers in the striatum (STR) and ventral tegmental area (VTA) caused by 6-OHDA. Furthermore, the Si-based agent exhibits a neuroprotective effect on the length of axon initial segment (AIS) in the layer 2/3 (L2/3) neurons of the medial prefrontal cortex (mPFC). As a result, the Si-based agent mitigates hyperactive behavior in a juvenile neurotoxic mouse model induced by 6-OHDA. These results suggest that the Si-based agent serves as an effective neuroprotectant and antioxidant against neurotoxic effects in the brain, offering the possibility of the Si-based agent as a neuroprotectant for nervous system diseases.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos , Hidrogênio , Fármacos Neuroprotetores , Oxidopamina , Silício , Animais , Fármacos Neuroprotetores/farmacologia , Oxidopamina/farmacologia , Camundongos , Silício/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Hidrogênio/farmacologia , Hidrogênio/administração & dosagem , Masculino , Síndromes Neurotóxicas/tratamento farmacológico , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Camundongos Endogâmicos C57BL
14.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791173

RESUMO

Astrocytes actively participate in neurotransmitter homeostasis by bidirectional communication with neuronal cells, a concept named the tripartite synapse, yet their role in dopamine (DA) homeostasis remains understudied. In the present study, we investigated the kinetic and molecular mechanisms of DA transport in cultured striatal astrocytes of adult rats. Kinetic uptake experiments were performed using radiolabeled [3H]-DA, whereas mRNA expression of the dopamine, norepinephrine, organic cation and plasma membrane monoamine transporters (DAT, NET, OCTs and PMAT) and DA receptors D1 and D2 was determined by qPCR. Additionally, astrocyte cultures were subjected to a 24 h treatment with the DA receptor agonist apomorphine, the DA receptor antagonist haloperidol and the DA precursor L-DOPA. [3H]-DA uptake exhibited temperature, concentration and sodium dependence, with potent inhibition by desipramine, nortriptyline and decynium-22, suggesting the involvement of multiple transporters. qPCR revealed prominent mRNA expression of the NET, the PMAT and OCT1, alongside lower levels of mRNA for OCT2, OCT3 and the DAT. Notably, apomorphine significantly altered NET, PMAT and D1 mRNA expression, while haloperidol and L-DOPA had a modest impact. Our findings demonstrate that striatal astrocytes aid in DA clearance by multiple transporters, which are influenced by dopaminergic drugs. Our study enhances the understanding of regional DA uptake, paving the way for targeted therapeutic interventions in dopaminergic disorders.


Assuntos
Astrócitos , Corpo Estriado , Dopamina , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Dopamina/metabolismo , Ratos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Haloperidol/farmacologia , Cinética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Apomorfina/farmacologia , Células Cultivadas , Masculino , Receptores de Dopamina D1/metabolismo , Transporte Biológico/efeitos dos fármacos , Levodopa/farmacologia
15.
Acta Neuropathol Commun ; 12(1): 75, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745295

RESUMO

In Parkinson's disease and other synucleinopathies, fibrillar forms of α-synuclein (aSyn) are hypothesized to structurally convert and pathologize endogenous aSyn, which then propagates through the neural connections, forming Lewy pathologies and ultimately causing neurodegeneration. Inoculation of mouse-derived aSyn preformed fibrils (PFFs) into the unilateral striatum of wild-type mice causes widespread aSyn pathologies in the brain through the neural network. Here, we used the local injection of antisense oligonucleotides (ASOs) against Snca mRNA to confine the area of endogenous aSyn protein reduction and not to affect the PFFs properties in this model. We then varied the timing and location of ASOs injection to examine their impact on the initiation and propagation of aSyn pathologies in the whole brain and the therapeutic effect using abnormally-phosphorylated aSyn (pSyn) as an indicator. By injecting ASOs before or 0-14 days after the PFFs were inoculated into the same site in the left striatum, the reduction in endogenous aSyn in the striatum leads to the prevention and inhibition of the regional spread of pSyn pathologies to the whole brain including the contralateral right hemisphere. ASO post-injection inhibited extension from neuritic pathologies to somatic ones. Moreover, injection of ASOs into the right striatum prevented the remote regional spread of pSyn pathologies from the left striatum where PFFs were inoculated and no ASO treatment was conducted. This indicated that the reduction in endogenous aSyn protein levels at the propagation destination site can attenuate pSyn pathologies, even if those at the propagation initiation site are not inhibited, which is consistent with the original concept of prion-like propagation that endogenous aSyn is indispensable for this regional spread. Our results demonstrate the importance of recruiting endogenous aSyn in this neural network propagation model and indicate a possible potential for ASO treatment in synucleinopathies.


Assuntos
Camundongos Endogâmicos C57BL , Rede Nervosa , Oligonucleotídeos Antissenso , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/administração & dosagem , Camundongos , Rede Nervosa/metabolismo , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Masculino , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , RNA Mensageiro/metabolismo
16.
Behav Brain Res ; 468: 115035, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703793

RESUMO

Parkinson's Disease is a progressive neurodegenerative disorder characterized by motor symptoms resulting from the loss of nigrostriatal dopaminergic neurons. Kisspeptins (KPs) are a family of neuropeptides that are encoded by the Kiss-1 gene, which exert their physiological effects through interaction with the GPR54 receptor. In the current investigation, we investigated the prospective protective effects of central KP-54 treatments on nigrostriatal dopaminergic neurons and consequent motor performance correlates in 6-hydroxydopamine (6-OHDA)-lesioned rats. Male adult Sprague Dawley rats underwent stereotaxic injection of 6-OHDA into the right medial forebrain bundle to induce hemiparkinsonism. Following surgery, rats received chronic central treatments of nasal or intracerebroventricular KP-54 (logarithmically increasing doses) for seven consecutive days. Motor performance was evaluated seven days post-surgery utilizing the open field test and catalepsy test. The levels of dopamine in the striatum were determined with mass spectrometry. Immunohistochemical analysis was conducted to assess the immunoreactivities of tyrosine hydroxylase (TH) and the GPR54 in the substantia nigra. The dose-response curve revealed a median effective dose value of ≈3 nmol/kg for both central injections. Due to its non-invasive and effective nature, nasal administration was utilized in the second phase of our study. Chronic administration of KP-54 (3nmol/kg, nasally) significantly protected 6-OHDA-induced motor deficits. Nasal KP-54 attenuated the loss of nigrostriatal dopaminergic neurons induced by 6-OHDA. Additionally, significant correlations were observed between motor performance and nigrostriatal dopamine levels. Immunohistochemical analysis demonstrated the localization of the GPR54 within TH-positive nigral cells. These findings suggest the potential efficacy of central KP-54 on motor impairments in hemiparkinsonism.


Assuntos
Administração Intranasal , Corpo Estriado , Dopamina , Neurônios Dopaminérgicos , Kisspeptinas , Oxidopamina , Transtornos Parkinsonianos , Ratos Sprague-Dawley , Substância Negra , Animais , Masculino , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Dopamina/metabolismo , Oxidopamina/farmacologia , Ratos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Kisspeptinas/administração & dosagem , Kisspeptinas/farmacologia , Kisspeptinas/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças , Atividade Motora/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
17.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664012

RESUMO

l-DOPA-induced dyskinesia (LID) is a debilitating motor side effect arising from chronic dopamine (DA) replacement therapy with l-DOPA for the treatment of Parkinson's disease. LID is associated with supersensitivity of striatal dopaminergic signaling and fluctuations in synaptic DA following each l-DOPA dose, shrinking the therapeutic window. The heterogeneous composition of the striatum, including subpopulations of medium spiny output neurons (MSNs), interneurons, and supporting cells, complicates the identification of cell(s) underlying LID. We used single-nucleus RNA sequencing (snRNA-seq) to establish a comprehensive striatal transcriptional profile during LID development. Male hemiparkinsonian mice were treated with vehicle or l-DOPA for 1, 5, or 10 d, and striatal nuclei were processed for snRNA-seq. Analyses indicated a limited population of DA D1 receptor-expressing MSNs (D1-MSNs) formed three subclusters in response to l-DOPA treatment and expressed cellular markers of activation. These activated D1-MSNs display similar transcriptional changes previously associated with LID; however, their prevalence and transcriptional behavior were differentially influenced by l-DOPA experience. Differentially expressed genes indicated acute upregulation of plasticity-related transcription factors and mitogen-activated protein kinase signaling, while repeated l-DOPA-induced synaptic remodeling, learning and memory, and transforming growth factor-ß (TGF-ß) signaling genes. Notably, repeated l-DOPA sensitized Inhba, an activin subunit of the TGF-ß superfamily, in activated D1-MSNs, and its pharmacological inhibition impaired LID development, suggesting that activin signaling may play an essential role in LID. These data suggest distinct subsets of D1-MSNs become differentially l-DOPA-responsive due to aberrant induction of molecular mechanisms necessary for neuronal entrainment, similar to processes underlying hippocampal learning and memory.


Assuntos
Corpo Estriado , Discinesia Induzida por Medicamentos , Levodopa , Camundongos Endogâmicos C57BL , Animais , Levodopa/efeitos adversos , Levodopa/toxicidade , Discinesia Induzida por Medicamentos/metabolismo , Masculino , Camundongos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
18.
Behav Pharmacol ; 35(4): 201-210, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38660812

RESUMO

microRNAs (miRNAs) play a significant role in the pathophysiology of Parkinson's disease. In this study, we evaluated the neuroprotective effect of thymoquinone on the expression profiles of miRNA and cognitive functions in the 6-hydroxydopamine (6-OHDA)-induced Parkinson's model. Male adult Wistar albino rats (200-230 g, n  = 36) were randomly assigned to six groups: Sham, thymoquinone (10 mg/kg, p.o.), 6-OHDA, 6-OHDA + thymoquinone (10 mg/kg), 6-OHDA + thymoquinone (20 mg/kg), and 6-OHDA + thymoquinone (50 mg/kg). Behavioral changes were detected using the open field and the elevated plus maze tests. The mature 728 miRNA expressions were evaluated by miRNA microarray (GeneChip miRNA 4.0). Ten miRNAs were selected (rno-miR-212-5p, rno-miR-146b-5p, rno-miR-150-5p, rno-miR-29b-2-5p, rno-miR-126a-3p, rno-miR-187-3p, rno-miR-34a-5p, rno-miR-181d-5p, rno-miR-204-3p, and rno-miR-30c-2-3p) and confirmed by real-time PCR. Striatum samples were stained with hematoxylin-eosin to determine the effect of dopaminergic lesions. One-way ANOVA test and independent sample t -test were used for statistical analyses. rno-miR-204-3p was upregulated at 6-OHDA and downregulated at the 50 mg/kg dose of thymoquinone. In conclusion, thymoquinone at a dose of 50 mg/kg ameliorates symptoms of Parkinson's disease in a 6-OHDA rat model by downregulation of miR-204-3p. Also, the results showed that thymoquinone can improve locomotor activity and willing exploration and decreased anxiety. Therefore, thymoquinone can be used as a therapeutic agent.


Assuntos
Benzoquinonas , Regulação para Baixo , MicroRNAs , Oxidopamina , Doença de Parkinson , Animais , Masculino , Ratos , Benzoquinonas/farmacologia , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , MicroRNAs/metabolismo , MicroRNAs/genética , Fármacos Neuroprotetores/farmacologia , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Ratos Wistar
19.
J Stroke Cerebrovasc Dis ; 33(6): 106578, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636320

RESUMO

BACKGROUND: Notch1 signaling inhibiton with N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester] (DAPT) treatment could promote brain recovery and the intervention effect is different between striatum (STR) and cortex (CTX), which might be accounted for different changes of glial activities, but the in-depth mechanism is still unknown. The purpose of this study was to identify whether DAPT could modulate microglial subtype shifts and astroglial-endfeet aquaporin-4 (AQP4) mediated waste solute drainage. METHODS: Sprague-Dawley rats (n=10) were subjected to 90min of middle cerebral artery occlusion (MCAO) and were treated with DAPT (n=5) or act as control with no treatment (n=5). Two groups of rats underwent MRI scans at 24h and 4 week, and sacrificed at 4 week after stroke for immunofluorescence (IF). RESULTS: Compared with control rats, MRI data showed structural recovery in ipsilateral STR but not CTX. And IF showed decreased pro-inflammatory M1 microglia and increased anti-inflammatory M2 microglia in striatal lesion core and peri-lesions of STR, CTX. Meanwhile, IF showed decreased AQP4 polarity in ischemic brain tissue, however, AQP4 polarity in striatal peri-lesions of DAPT treated rats was higher than that in control rats but shows no difference in cortical peri-lesions between control and treated rats. CONCLUSIONS: The present study indicated that DAPT could promote protective microglia subtype shift and striatal astrocyte mediated waste solute drainage, that the later might be the major contributor of waste solute metabolism and one of the accounts for discrepant recovery of STR and CTX.


Assuntos
Aquaporina 4 , Astrócitos , Dipeptídeos , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Microglia , Ratos Sprague-Dawley , Receptor Notch1 , Recuperação de Função Fisiológica , Transdução de Sinais , Animais , Aquaporina 4/metabolismo , Receptor Notch1/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Dipeptídeos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Fatores de Tempo , Fármacos Neuroprotetores/farmacologia , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/fisiopatologia , AVC Isquêmico/patologia
20.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673763

RESUMO

Chronic ethanol exposure often triggers neuroinflammation in the brain's reward system, potentially promoting the drive for ethanol consumption. A main marker of neuroinflammation is the microglia-derived monocyte chemoattractant protein 1 (MCP1) in animal models of alcohol use disorder in which ethanol is forcefully given. However, there are conflicting findings on whether MCP1 is elevated when ethanol is taken voluntarily, which challenges its key role in promoting motivation for ethanol consumption. Here, we studied MCP1 mRNA levels in areas implicated in consumption motivation-specifically, the prefrontal cortex, hippocampus, and striatum-as well as in the cerebellum, a brain area highly sensitive to ethanol, of C57BL/6 mice subjected to intermittent and voluntary ethanol consumption for two months. We found a significant increase in MCP1 mRNA levels in the cerebellum of mice that consumed ethanol compared to controls, whereas no significant changes were observed in the prefrontal cortex, hippocampus, or striatum or in microglia isolated from the hippocampus and striatum. To further characterize cerebellar neuroinflammation, we measured the expression changes in other proinflammatory markers and chemokines, revealing a significant increase in the proinflammatory microRNA miR-155. Notably, other classical proinflammatory markers, such as TNFα, IL6, and IL-1ß, remained unaltered, suggesting mild neuroinflammation. These results suggest that the onset of neuroinflammation in motivation-related areas is not required for high voluntary consumption in C57BL/6 mice. In addition, cerebellar susceptibility to neuroinflammation may be a trigger to the cerebellar degeneration that occurs after chronic ethanol consumption in humans.


Assuntos
Consumo de Bebidas Alcoólicas , Cerebelo , Quimiocina CCL2 , Corpo Estriado , Etanol , Hipocampo , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/patologia , Camundongos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Cerebelo/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Masculino , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Corpo Estriado/efeitos dos fármacos , Etanol/efeitos adversos , Consumo de Bebidas Alcoólicas/efeitos adversos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...