RESUMO
BACKGROUND: Propolis possesses many bioactive compounds that could modulate the gut microbiota and reduce the production of uremic toxins in patients with chronic kidney disease (CKD) undergoing hemodialysis (HD). This clinical trial aimed to evaluate the effects of propolis on the gut microbiota profile and uremic toxin plasma levels in HD patients. These are secondary analyses from a previous double-blind, randomized clinical study, with 42 patients divided into two groups: the placebo and propolis group received 400 mg of green propolis extract/day for eight weeks. Indole-3 acetic acid (IAA), indoxyl sulfate (IS), and p-cresyl sulfate (p-CS) plasma levels were evaluated by reversed-phase liquid chromatography, and cytokines were investigated using the multiplex assay (Bio-Plex Magpix®). The fecal microbiota composition was analyzed in a subgroup of patients (n = 6) using a commercial kit for fecal DNA extraction. The V4 region of the 16S rRNA gene was then amplified by the polymerase chain reaction (PCR) using short-read sequencing on the Illumina NovaSeq PE250 platform in a subgroup. Forty-one patients completed the study, 20 in the placebo group and 21 in the propolis group. There was a positive correlation between IAA and TNF-α (r = 0.53, p = 0.01), IL-2 (r = 0.66, p = 0.002), and between pCS and IL-7 (r = 0.46, p = 0.04) at the baseline. No significant changes were observed in the values of uremic toxins after the intervention. Despite not being significant, microbial evenness and observed richness increased following the propolis intervention. Counts of the Fusobacteria species showed a positive correlation with IS, while counts of Firmicutes, Lentisphaerae, and Proteobacteria phyla were negatively correlated with IS. Two months of propolis supplementation did not reduce the plasma levels of uremic toxins (IAA, IS, and p-CS) or change the fecal microbiota.
Assuntos
Suplementos Nutricionais , Fezes , Microbioma Gastrointestinal , Própole , Diálise Renal , Toxinas Urêmicas , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Toxinas Urêmicas/sangue , Método Duplo-Cego , Fezes/microbiologia , Fezes/química , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/sangue , Indicã/sangue , Ácidos Indolacéticos/sangue , Ésteres do Ácido Sulfúrico/sangue , Uremia/terapia , Uremia/sangue , Uremia/microbiologia , Citocinas/sangue , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , CresóisRESUMO
Modern hemodialysis employs weak acids as buffers to prevent bicarbonate precipitation with calcium or magnesium. Acetate, the most used acid, is linked to chronic inflammation and poor dialysis tolerance. Citrate has emerged as a potential alternative, though its effect on dialysis efficiency is not clear. This study aims to compare the efficacy of acetate- and citrate-based dialysates, focusing on protein-bound uremic toxins and dialysis doses. This single-center prospective crossover study includes prevalent patients participating in a thrice-weekly online hemodiafiltration program. Four dialysates were tested: two acetate-based (1.25 and 1.5 mmol/L calcium) and two citrate-based (1.5 mmol/L calcium with 0.5 and 0.75 mmol/L magnesium). Pre- and post-dialysis blood samples of eighteen patients were analyzed for urea, creatinine, p-cresyl sulfate, indoxyl sulfate, and albumin. Statistical significance was assessed using paired t-tests and repeated measures of ANOVA. There were no significant differences in dialysis dose (Kt), urea, creatinine, or indoxyl sulfate reduction ratios between acetate- and citrate-based dialysates. However, a significant decrease in the reduction ratio of p-cresyl sulfate was observed with the acetate dialysate containing 1.25 mmol/L calcium and the citrate dialysate with 0.5 mmol/L magnesium compared to the acetate dialysate containing 1.5 mmol/L calcium and the citrate dialysate with 0.75 mmol/L magnesium (51.56 ± 4.75 and 53.02 ± 4.52 vs. 65.25 ± 3.38 and 58.66 ± 4.16, p 0.007). No differences in dialysis dose were found between acetate- and citrate-based dialysates. However, citrate dialysates with lower calcium and magnesium concentrations may reduce the albumin displacement of p-cresyl sulfate. Further studies are needed to understand the observed differences and optimize the dialysate composition for the better clearance of protein-bound uremic toxins.
Assuntos
Acetatos , Cálcio , Ácido Cítrico , Estudos Cross-Over , Hemodiafiltração , Magnésio , Toxinas Urêmicas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Magnésio/sangue , Estudos Prospectivos , Cálcio/sangue , Toxinas Urêmicas/sangue , Soluções para Diálise/química , Ureia/sangue , Indicã/sangue , Ésteres do Ácido Sulfúrico/sangue , Cresóis/sangue , Ligação Proteica , Uremia/terapia , Uremia/sangue , AdultoRESUMO
4-cresol (4-methylphenol, p-cresol) is a xenobiotic substance negatively correlated with type 2 diabetes and associated with health improvement in preclinical models of diabetes. We aimed at refining our understanding of the physiological role of this metabolite and identifying potential signalling mechanisms. Functional studies revealed that 4-cresol does not deteriorate insulin sensitivity in human primary adipocytes and exhibits an additive effect to that of insulin on insulin sensitivity in mouse C2C12 myoblasts. Experiments in mouse isolated islets showed that 4-cresol potentiates glucose induced insulin secretion. We demonstrated the absence of off target effects of 4-cresol on a panel of 44 pharmacological compounds. Screening large panels of 241 G protein-coupled receptors (GPCRs) and 468 kinases identified binding of 4-cresol only to TNK1, EIF2AK4 (GCN2) and RPS6KA3 (RSK2), a kinase strongly expressed in human and rat pancreatic islets. Islet expression of RPS6KA3 is reduced in spontaneously diabetic rats chronically treated with 4-cresol and Rps6ka3 deficient mice exhibit reduction in both body weight and fasting glycemia, modest improvement in glycemic control and enhanced insulin release in vivo. Similar to low doses of 4-cresol, incubation of isolated rat islets with low concentrations of the RPS6KA3 inhibitor BIX 02565 stimulates both glucose induced insulin secretion and ß-cell proliferation. These results provide further information on the role of low 4-cresol doses in the regulation of insulin secretion.
Assuntos
Cresóis , Secreção de Insulina , Insulina , Transdução de Sinais , Animais , Cresóis/farmacologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Camundongos , Insulina/metabolismo , Ratos , Masculino , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Glucose/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismoRESUMO
BACKGROUND: Recent studies have shown that consumption of resistant starch (RS) has beneficial effects on the gut microbiota and immune function in patients with chronic kidney disease (CKD). The objective of this study was to evaluate the effects of RS on inflammation, uremic toxins, and renal function in patients with CKD through a systematic review and meta-analysis. METHODS: This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-2020. We included randomized controlled trials comparing RS supplementation to placebo. The National Library of Medicine (PubMed), Excerpta Medica Database (Embase), Cochrane Library, Web of Science, China National Knowledge Internet (CNKI) databases, and two gray literature sources - Baidu and Research Gate, were used for search, up to 28 August 2024. There was no limitation on publication date, but only manuscripts published in English and Chinese were included. RESULTS: A total of 645 articles were retrieved. Ten articles met the inclusion criteria, and a total of 355 subjects were included. The analysis revealed that RS dietary intervention can significantly reduce indoxyl sulfate (IS) levels (SMD: -0.37, 95% confidence interval (CI): -0.70 to -0.04, p = .03) and blood urea nitrogen (BUN) levels (SMD: -0.30, 95% CI: -0.57 to -0.02, p = .03). There were no significant differences in the levels of interleukin-6 (IL-6), p-cresyl sulfate (p-CS), albumin, phosphorus, or tumor necrosis factor-α. CONCLUSIONS: The RS diet has potential beneficial effects on uremic toxin levels and renal function indices in patients with CKD. RS supplementation can reduce uremic toxin levels and improve renal function but does not reduce the inflammatory response in patients with CKD. Nevertheless, results should be cautiously interpreted, because of the limited sample size and different treatment dosages. Further research is necessary to corroborate the beneficial effects of RS2 supplementation in this population.
Assuntos
Suplementos Nutricionais , Ensaios Clínicos Controlados Aleatórios como Assunto , Insuficiência Renal Crônica , Amido Resistente , Humanos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/terapia , Inflamação/sangue , Biomarcadores/sangue , Indicã/sangue , Cresóis/sangue , Ésteres do Ácido Sulfúrico/sangue , Toxinas Urêmicas/sangue , Interleucina-6/sangueRESUMO
The phenolic antioxidant 2,6-Di-tert-butyl-p-cresol (BHT) has been detected in various environments and is considered a potential threat to aquatic organisms. Algal-bacterial interactions are crucial for maintaining ecosystem balance and elemental cycling, but their response to BHT remains to be investigated. This study analyzed the physiological and biochemical responses of the microalga Isochrysis galbana and the changes of associated bacterial communities under different concentrations of BHT stress. Results showed that the biomass of I. galbana exhibited a decreasing trend with increasing BHT concentrations up to 40 mg/L. The reduction in chlorophyll, carotenoid, and soluble protein content of microalgal cells was also observed under BHT stress. The production of malondialdehyde and the activities of superoxide dismutase, peroxidase, and catalase were further determined. Scanning electron microscopy analysis revealed that BHT caused surface rupture of the algal cells and loss of intracellular nutrients. Proteomic analysis demonstrated the upregulation of photosynthesis and citric acid cycle pathways as a response to BHT stress. Additionally, BHT significantly increased the relative abundance of specific bacteria in the phycosphere, including Marivita, Halomonas, Marinobacter, and Alteromonas. Further experiments confirmed that these bacteria had the ability to utilize BHT as the sole carbon resource for growth, and genes related to the degradation of phenolic compounds were detected through pangenome analysis.
Assuntos
Bactérias , Cresóis , Microalgas , Proteoma , Estresse Fisiológico , Microalgas/metabolismo , Microalgas/genética , Cresóis/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Haptófitas/metabolismo , Haptófitas/genética , Proteômica , Fotossíntese , Antioxidantes/metabolismo , Biomassa , Clorofila/metabolismoRESUMO
Chronic kidney disease (CKD) is a very prevalent and insidious disease, particularly with initially poorly manifested symptoms that progressively culminate in the manifestation of an advanced stage of the condition. The gradual impairment of kidney function, particularly decreased filtration capacity, results in the retention of uremic toxins and affects numerous molecular mechanisms within the body. The dysbiotic intestinal microbiome plays a crucial role in the accumulation of protein-bound uremic toxins such as p-cresol (pC), indoxyl sulfate (IS), and p-cresyl sulfate (p-CS) through the ongoing fermentation process. The described phenomenon leads to an elevated level of oxidative stress and inflammation, subsequently resulting in tissue damage and complications, particularly an increase in cardiovascular risk, representing the predominant cause of mortality in chronic kidney disease (CKD). Therefore, exploring methods to reduce uremic toxins is currently a pivotal therapeutic strategy aimed at reducing the risk of organ damage in patients with chronic kidney disease (CKD). This review aims to summarize recent discoveries on modifying the composition of the intestinal microbiota through the introduction of special probiotic and synbiotic supplements for CKD therapy. The potential to connect the gut microbiota with CKD opens the possibility for further extensive research in this area, which could lead to the incorporation of synbiotics and probiotics into the fundamental treatment and prevention of CKD.
Assuntos
Microbioma Gastrointestinal , Taxa de Filtração Glomerular , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/metabolismo , Probióticos/uso terapêutico , Toxinas Urêmicas/metabolismo , Simbióticos , Animais , Estresse Oxidativo , Cresóis/metabolismo , Disbiose/microbiologia , Indicã/metabolismoRESUMO
Acute kidney injury (AKI) and chronic kidney disease (CKD) are major health concerns due to their increasing incidence and high mortality. They are interconnected syndromes; AKI without recovery evolves into acute kidney disease (AKD), which can indicate an AKI-to-CKD transition. Both AKI and CKD are associated with a risk of long-term cardiovascular complications, but whether vascular and cardiac dysfunctions can occur as early as the AKD period has not been studied extensively. In a mouse model of kidney injury (KI) with non-recovery, we performed vasoreactivity and echocardiography analyses on days 15 (D15) and 45 (D45) after KI. We determined the concentrations of two major gut-derived protein-bound uremic toxins known to induce cardiovascular toxicity-indoxyl sulfate (IS) and para-cresyl sulfate (PCS)-and the levels of inflammation and contraction markers on D7, D15, and D45. Mice with KI showed acute tubular and interstitial kidney lesions on D7 and D15 and chronic glomerulosclerosis on D45. They showed significant impairment of aorta relaxation and systolic-diastolic heart function, both on D15 and D45. Such dysfunction was associated with downregulation of the expression of two contractile proteins, αSMA and SERCA2a, with a more pronounced effect on D15 than on D45. KI was also followed by a rapid increase in IS and PCS serum concentrations and the expression induction of pro-inflammatory cytokines and endothelial adhesion molecules in serum and cardiovascular tissues. Therefore, these results highlight that AKD leads to early cardiac and vascular dysfunctions. How these dysfunctions could be managed to prevent cardiovascular events deserves further study.
Assuntos
Injúria Renal Aguda , Modelos Animais de Doenças , Animais , Camundongos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Masculino , Indicã/sangue , Doenças Cardiovasculares/etiologia , Cresóis/sangue , Ésteres do Ácido Sulfúrico/sangue , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/fisiopatologia , Toxinas Urêmicas/metabolismo , EcocardiografiaRESUMO
The widespread use of herbicides like dinitro-o-cresol (DNOC) and veterinary drugs such as furaltadone (FLT) has surged to meet agricultural and animal husbandry demands, raising significant health and environmental concerns due to their extensive use and unregulated disposal. To address this issue, herein, we developed an imidazole-functionalized metal-organic framework (MOF)-based fluorometric dual sensor for rapid and selective detection of these analytes in aqueous medium. The present MOF-based probe demonstrated 82% fluorescence quenching upon DNOC introduction, whereas 89% quenching occurred in the presence of FLT. The probe exhibited notably high sensitivity, with the lowest ever reported limit of detection (LOD) of 0.5 nM for DNOC and 1.1 nM for FLT. The highest reported Stern-Volmer quenching constant (KSV) value of 5 × 107 M-1 and 2 × 107 M-1 for DNOC and FLT, respectively, further indicates the extraordinary sensitivity of the sensor towards these targeted analytes. The MOF showed a rapid response time of 5 s for both DNOC and FLT. The sensor also demonstrated outstanding selectivity even in the presence of interfering substances, proving effective in various complex environments such as serum, urine, wastewater, and different pH media. We thoroughly investigated the sensor's working mechanisms using different advanced analytical techniques to understand its high selectivity towards the targeted analytes. These findings underscore the sensor's practical and potential real-world applications, offering a valuable tool for environmental pollution monitoring and public health protection.
Assuntos
Antibacterianos , Corantes Fluorescentes , Herbicidas , Imidazóis , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Imidazóis/química , Antibacterianos/análise , Antibacterianos/química , Antibacterianos/farmacologia , Corantes Fluorescentes/química , Herbicidas/análise , Herbicidas/química , Animais , Humanos , Limite de Detecção , Poluentes Químicos da Água/análise , Espectrometria de Fluorescência , Cresóis/químicaRESUMO
Gliomas are highly malignant brain tumours that remain refractory to treatment. Treatment is typically surgical intervention followed by concomitant temozolomide and radiotherapy; however patient prognosis remains poor. Voltage gated ion channels have emerged as novel targets in cancer therapy and inhibition of a potassium selective subtype (hERG, Kv11.1) has demonstrated antitumour activity. Unfortunately blockade of hERG has been limited by cardiotoxicity, however hERG channel agonists have produced similar chemotherapeutic benefit without significant side effects. In this study, electrophysiological recordings suggest the presence of hERG channels in the anaplastic astrocytoma cell line SMA-560, and treatment with the hERG channel agonist NS1643, resulted in a significant reduction in the proliferation of SMA-560 cells. In addition, NS1643 treatment also resulted in a reduction of the secretion of matrix metalloproteinase-9 and SMA-560 cell migration. When combined with temozolomide, an additive impact was observed, suggesting that NS1643 may be a suitable adjuvant to temozolomide and limit the invasiveness of glioma.
Assuntos
Astrocitoma , Movimento Celular , Proliferação de Células , Canais de Potássio Éter-A-Go-Go , Metaloproteinase 9 da Matriz , Temozolomida , Humanos , Linhagem Celular Tumoral , Astrocitoma/tratamento farmacológico , Astrocitoma/patologia , Astrocitoma/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/genética , Temozolomida/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/genética , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Cresóis , Compostos de FenilureiaRESUMO
With the increasing incidence of chronic kidney disease, the effective control of protein-bound uremic toxins (PBUTs), which are difficult to remove through dialysis, has become a priority. In this study, the adsorption and diffusion behaviors of several metal-organic frameworks (MOFs) for PBUTs (indoxyl sulfate and p-cresyl sulfate) were studied by molecular dynamics (MD) simulations and umbrella sampling. For the NU series of MOFs, good correlations between the Gibbs free energy (ΔG) and the experimental clearance rates of PBUTs are found. For the adsorption behaviors, in terms of ΔG, DAJWET exhibits the best adsorption effect for indoxyl sulfate (IS), whereas NU-1000 shows the best effect for p-cresyl sulfate (pCS). Similar trends observed in the radial distribution function and mean square displacement results suggest that the π-π stacking interactions play a crucial role in the adsorption and diffusion of PBUTs by MOFs. Furthermore, it can be concluded that MOFs with highly conjugated groups (porphyrin rings and pyrene groups) tend to generate more PBUT attraction, and provide design principles for potential MOF candidates in the removal of PBUTs.
Assuntos
Cresóis , Estruturas Metalorgânicas , Simulação de Dinâmica Molecular , Adsorção , Estruturas Metalorgânicas/química , Difusão , Cresóis/química , Materiais Biocompatíveis/química , Ésteres do Ácido Sulfúrico/química , Indicã/química , TermodinâmicaRESUMO
Asthma exacerbation is a common clinical occurrence. The causal factors are not fully understood yet. Environmental pollution is linked to asthma exacerbation. The objective of this study is to elucidate the role of 3-methyl-4-nitrophenol (MNP), an environmental pollutant, in asthma exacerbation. In this study, an airway allergy mouse model was established with ovalbumin as a specific antigen with or without the presence of MNP. The results showed that, in a mouse model, the intensity of airway allergy was significantly increased by exposure to MNP. RNAseq results showed an increase in endoplasmic reticulum (ER) stress-associated molecules and the Osm expression in airway epithelial cells of mice with airway allergy. Exposure of epithelial cells to MNP in culture induced the expression of oncostatin M (OSM) and ER stress associated molecules. The OSM receptor was expressed by macrophages. OSM could drive macrophages to produce tumor necrosis factor-α (TNF-α). Inhibition of PERK, one of the key molecules of ER stress, or depletion of OSM receptor in macrophages, could effectively attenuate the MNP/ovalbumin protocol induced airway allergy. To sum up, by promoting ER stress, environmental pollutant MNP can cause airway epithelial cells to produce OSM. The latter induces macrophages to produce TNF-α, which can exacerbate airway allergy.
Assuntos
Asma , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Poluentes Ambientais , Oncostatina M , Animais , Camundongos , Oncostatina M/metabolismo , Asma/imunologia , Asma/metabolismo , Asma/induzido quimicamente , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/imunologia , Poluentes Ambientais/toxicidade , Poluentes Ambientais/efeitos adversos , Ovalbumina/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Inflamação/metabolismo , Inflamação/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Humanos , CresóisRESUMO
Increased protein-bound uremic toxins (PBUTs) in patients with chronic kidney disease (CKD) are associated with cardiovascular diseases (CVDs); however, whether retention of PBUTs causes CVD remains unclear. Previous studies assessing the impacts of PBUTs on the vasculature have relied on 2D cell cultures lacking in vivo microenvironments. Here, we investigated the impact of various PBUTs (p-cresol (PC), indoxyl sulfate (IS), and p-cresyl sulfate (PCS)) on microvascular function using an organ-on-a-chip (OOC). Human umbilical vein endothelial cells were used to develop 3D vessels. Chronic exposure to PC resulted in significant vascular leakage compared with controls, whereas IS or PCS treatment did not alter the permeability of 3D vessels. Increased permeability induced by PC was correlated with derangement of cell adherens junction complex, vascular endothelial (VE)-cadherin and filamentous (F)-actin. Additionally, PC decreased endothelial viability in a concentration-dependent manner with a lower IC50 in 3D vessels than in 2D cultures. IS slightly decreased cell viability, while PCS did not affect viability. PC induced inflammatory responses by increasing monocyte adhesion to endothelial surfaces of 3D vessels and IL-6 production. In conclusion, this study leveraged an OOC to determine the diverse effects of PBUTs, demonstrating that PC accumulation is detrimental to ECs during kidney insufficiency.
Assuntos
Cresóis , Células Endoteliais da Veia Umbilical Humana , Inflamação , Humanos , Cresóis/metabolismo , Cresóis/toxicidade , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Indicã/metabolismo , Indicã/toxicidade , Caderinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Toxinas Urêmicas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Ésteres do Ácido Sulfúrico/metabolismoRESUMO
Phenol and p-cresol are two common toxic small molecules related to various diseases. Existing reports confirmed that high L-tyrosine in the daily diet can increase the concentration of phenolic compounds in blood and urine. L-tyrosine is a common component of protein-rich foods. Some anaerobic bacteria in the gut can convert non-toxic l-tyrosine into these two toxic phenolic compounds, phenol and p-cresol. Existing methods have been constructed for measuring the concentration of phenolic compound in feces. However, there is still a lack of direct visual evidence to measure the phenolic compounds in the intestine. In this study, we aimed to construct a whole-cell biosensor for phenolic compounds detection based on the dmpR, the regulator from the phenol metabolism cluster. The commensal bacterium Citrobacter amalonaticus PS01 was selected and used as the chassis. Compared with the biosensor based on ECN1917, the biosensor PS01[dmpR] could better implant into the mouse gut through gavage and showed a higher sensitive to phenolic compound. And the concentration of phenolic compounds in the intestines could be observed with the help of in vivo imaging system using PS01[dmpR]. This paper demonstrated endogenous phenol synthesis in the gut and the strategy of using commensal bacteria to construct whole-cell biosensors for detecting small molecule compounds in the intestines.
Assuntos
Técnicas Biossensoriais , Intestinos , Animais , Citrobacter/metabolismo , Cresóis/metabolismo , Cresóis/toxicidade , Fenóis/toxicidade , Camundongos , Fenol/análise , Fenol/toxicidade , Tirosina/metabolismoRESUMO
Two new p-cresol-2,6-bis(amide-tether-dpa4-X) ligands (HL4-X, X = MeO and Cl) and their dicopper complexes [Cu2(µ-1,1-OAc)(µ-1,3-OAc)(L4-MeO)]Y (Y = PF6 1a, OAc 1b) and [Cu2(µ-1,3-OAc)2(L4-Cl)]Y (Y = ClO4 2a, OAc 2b) were synthesized. The electronic and hydrophobic effects of the MeO and Cl groups were examined compared with nonsubstituted complex [Cu2(µ-1,1-OAc)(µ-1,3-OAc)(L)]+ (3). The electronic effects were found in crystal structures, spectroscopic characterization, and redox potentials of these complexes. 1b and 2b were reduced to Cu(I)Cu(I) with sodium ascorbate and reductively activated O2 to produce H2O2 and HOâ¢. The H2O2 release and HO⢠generation are promoted by the electronic effects. The hydrophobic effects increased the lipophilicity of 1b and 2b. Cellular ROS generation of 1b, 2b, and 3 was visualized by DCFH-DA. To examine the intracellular behavior, boron dipyrromethene (Bodipy)-modified complexes 4B and 5B corresponding to 1b and 2b were synthesized. These support that 1b and 2b are localized at the ER and Golgi apparatus. The cytotoxicity of 1b and 2b against various cell lines was examined by MTT assay. 1b and 2b were 7- and 41-fold more cytotoxic than 3. 1b generated ROS selectively in cancer cell but 2b nonselectively in cancer and normal cells, causing cancer- and normal-cell-selective cytotoxicity, respectively.
Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre , Interações Hidrofóbicas e Hidrofílicas , Espécies Reativas de Oxigênio , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Espécies Reativas de Oxigênio/metabolismo , Cobre/química , Cobre/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Cresóis/química , Cresóis/farmacologia , Cresóis/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Elétrons , Amidas/química , Amidas/farmacologia , Amidas/síntese químicaRESUMO
Biotrickling filter (BTF) is often used for purification of waste gas from swine houses, with vital information still needed regarding interaction effects among multiple gas pollutants removal and also the formation of byproducts especially nitrous oxide (N2O, a strong greenhouse gas) due to the relative high NH3 concentration level compared to other gases. In this study, gas removal and N2O production were compared between two BTFs, where the inlet gas of BTF-1 contained NH3 and H2S while p-cresol was additionally supplied to BTF-2. At inlet load (IL) between 3.67 and 18.91 g m-3 h-1, removal efficiencies of NH3 exceeded 95% for both BTFs. As alternative strategy, adding thiosulfate improved H2S removal. Interestingly, presence of p-cresol to some extent promoted H2S removal at IL of 0.56 g m-3 h-1possibly due to effect on pH value of circulating solution. Similar to NH3, removal efficiencies of p-cresol were higher than 95% at an average IL of 2.98 g m-3 h-1. Gas residence time, pH of circulating solution and inlet loading were identified as key factors affecting BTF performance, but the response of individual gas compound to these factors was not consistent. Overall, p-cresol enhanced N2O generation although the effects were not always significant. High-throughput sequencing results showed that Proteobacteria accounted for the largest proportion of relative abundance and BTF-2 had much richer microbial diversity compared to BTF-1. Thermomonas, Comamonas, Rhodanobacter and other bacterial genus capable of denitrification were detected in both BTFs, and their corresponding abundances in BTF-2 (10.9%, 8.7% and 5.2%) were all greater than those in BTF-1 (0.4%, 0.3% and 2.0%), indicating that more denitrification may occur within BTF-2 and higher N2O could have been generated. This study provided evidence that organic gas components, served as carbon source, may increase the N2O production from BTF when treating waste gases containing NH3.
Assuntos
Poluentes Atmosféricos , Amônia , Cresóis , Sulfeto de Hidrogênio , Óxido Nitroso , Amônia/metabolismo , Cresóis/metabolismo , Óxido Nitroso/metabolismo , Sulfeto de Hidrogênio/metabolismo , Poluentes Atmosféricos/metabolismo , Suínos , Animais , Filtração/métodos , Biodegradação AmbientalRESUMO
Cigarette butts (CBs) are small residues with mixed composition. Produced in large amounts, their accumulation in the environment has become alarming. It is possible to classify more than 7000 chemical components generated either in the burning process or when distilled from the tobacco. The aim of this work was to describe the rate of release of phenolic compounds from CBs, to determine the content of these compounds in freshly smoked CBs and to monitor the release of phenols from CBs into fresh natural waters. The kinetics of release of selected phenolic compounds (hydroquinone, resorcinol, pyrocatechol, phenol, guaiacol, o-cresol, m-cresol, p-cresol) into water was monitored for 48 h. More than 90% of the content was extracted within 10 h for all analytes. The phenolic content was determined in the CBs of five different brands. The total content of phenols determined for each sample of freshly smoked CB was 215-861 µg/CB. For all CBs analysed, phenol, pyrocatechol and hydroquinone were the most abundant analytes, accounting for up to 75% of the content of all phenols determined. Phenol was the most abundant analyte (64.6-267.8 µg/CB) in all analysed samples. The content of pyrocatechol, the second most abundant analyte, was 45.6-221.2 µg/CB and the third most abundant analyte was hydroquinone (41.71-157.5 µg/CB). Monitoring the release of phenols from CBs into fresh natural waters (river, stream, pond) under steady and slight moving conditions showed that the kinetics of release is not influenced by the type of water. On the contrary, the process of decomposition of the released compounds is influenced by the type of water. The maximum concentrations of individual phenols in CBs extracts were comparable to those determined via laboratory extraction, thus indicating that within 72 h, most of the phenolic compounds are released from CBs into natural water. This research provides missing information on the phenolic content in CBs and the rate of release into water. It thus complements previously published information on CBs as a source of environmental contamination.
Assuntos
Fenóis , Fenóis/análise , Produtos do Tabaco/análise , Nicotiana/química , Cresóis/análise , Catecóis/químicaRESUMO
Gut microbiota-derived uremic toxins (UT) accumulate in patients with chronic kidney disease (CKD). Dietary phosphorus and protein restriction are common in CKD treatment, but the relationship between dietary phosphorus, a key nutrient for the gut microbiota, and protein-derived UT is poorly studied. Thus, we explored the relationship between dietary phosphorus and serum UT in CKD rats. For this exploratory study, we used serum samples from a larger study on the effects of dietary phosphorus on intestinal phosphorus absorption in nephrectomized (Nx, n = 22) or sham-operated (sham, n = 18) male Sprague Dawley rats. Rats were randomized to diet treatment groups of low or high phosphorus (0.1% or 1.2% w/w, respectively) for 1 week, with serum trimethylamine oxide (TMAO), indoxyl sulfate (IS), and p-cresol sulfate (pCS) analyzed by LC-MS. Nx rats had significantly higher levels of serum TMAO, IS, and pCS compared to sham rats (all p < 0.0001). IS showed a significant interaction between diet and CKD status, where serum IS was higher with the high-phosphorus diet in both Nx and sham rats, but to a greater extent in the Nx rats. Serum TMAO (p = 0.24) and pCS (p = 0.34) were not affected by dietary phosphorus levels. High dietary phosphorus intake for 1 week results in higher serum IS in both Nx and sham rats. The results of this exploratory study indicate that reducing dietary phosphorus intake in CKD may have beneficial effects on UT accumulation.
Assuntos
Proteínas Alimentares , Fósforo na Dieta , Toxinas Urêmicas , Animais , Masculino , Ratos , Cresóis/sangue , Microbioma Gastrointestinal/efeitos dos fármacos , Indicã/sangue , Metilaminas/sangue , Nefrectomia , Ratos Sprague-Dawley , Insuficiência Renal Crônica/metabolismo , Ésteres do Ácido Sulfúrico/sangue , Proteínas Alimentares/metabolismoRESUMO
OBJECTIVE: To delineate the efficacy and safety profile of hemodiafiltration with endogenous reinfusion (HFR) for uremic toxin removal in patients undergoing maintenance hemodialysis (MHD). METHODS: Patients who have been on MHD for a period of at least 3 months were enrolled. Each subject underwent one HFR and one hemodiafiltration (HDF) treatment. Blood samples were collected before and after a single HFR or HDF treatment to test uremic toxin levels and to calculate clearance rate. The primary efficacy endpoint was to compare uremic toxin levels of indoxyl sulfate (IS), λ-free light chains (λFLC), and ß2-microglobulin (ß2-MG) before and after HFR treatment. Secondary efficacy endpoints was to compare the levels of urea, interleukin-6 (IL-6), P-cresol, chitinase-3-like protein 1 (YKL-40), leptin (LEP), hippuric acid (HPA), trimethylamine N-oxide (TMAO), asymmetric dimethylarginine (ADMA), tumor necrosis factor-α (TNF-α), fibroblast growth factor 23 (FGF23) before and after HFR treatment. The study also undertook a comparative analysis of uremic toxin clearance between a single HFR and HDF treatment. Meanwhile, the lever of serum albumin and branched-chain amino acids before and after a single HFR or HDF treatment were compared. In terms of safety, the study was meticulous in recording vital signs and the incidence of adverse events throughout its duration. RESULTS: The study enrolled 20 patients. After a single HFR treatment, levels of IS, λFLC, ß2-MG, IL-6, P-cresol, YKL-40, LEP, HPA, TMAO, ADMA, TNF-α, and FGF23 significantly decreased (p < 0.001 for all). The clearance rates of λFLC, ß2-MG, IL-6, LEP, and TNF-α were significantly higher in HFR compared to HDF (p values: 0.036, 0.042, 0.041, 0.019, and 0.036, respectively). Compared with pre-HFR and post-HFR treatment, levels of serum albumin, valine, and isoleucine showed no significant difference (p > 0.05), while post-HDF, levels of serum albumin significantly decreased (p = 0.000). CONCLUSION: HFR treatment effectively eliminates uremic toxins from the bloodstream of patients undergoing MHD, especially protein-bound toxins and large middle-molecule toxins. Additionally, it retains essential physiological compounds like albumin and branched-chain amino acids, underscoring its commendable safety profile.
Assuntos
Cresóis , Hemodiafiltração , Metilaminas , Humanos , Hemodiafiltração/efeitos adversos , Projetos Piloto , Toxinas Urêmicas , Proteína 1 Semelhante à Quitinase-3 , Interleucina-6 , Fator de Necrose Tumoral alfa , Diálise Renal , Aminoácidos de Cadeia Ramificada , Albumina SéricaRESUMO
3-methyl-4-nitrophenol (PNMC), a well-known constituent of diesel exhaust particles and degradation products of insecticide fenitrothion, is a widely distributed environmental contaminant. PNMC is toxic to the female reproductive system; however, how it affects meiosis progression in oocytes is unknown. In this study, in vitro maturation of mouse oocytes was applied to investigate the deleterious effects of PNMC. We found that exposure to PNMC significantly compromised oocyte maturation. PNMC disturbed the spindle stability; specifically, it decreased the spindle density and increased the spindle length. The weakened spindle pole location of microtubule-severing enzyme Fignl1 may result in a defective spindle apparatus in PNMC-exposed oocytes. PNMC exposure induced significant mitochondrial dysfunction, including mitochondria distribution, ATP production, mitochondrial membrane potential, and ROS accumulation. The mRNA levels of the mitochondria-related genes were also significantly impaired. Finally, the above-mentioned alterations triggered early apoptosis in the oocytes. In conclusion, PNMC exposure affected oocyte maturation and quality through the regulation of spindle stability and mitochondrial function.