Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
BMC Complement Med Ther ; 24(1): 272, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026301

RESUMO

BACKGROUND: Cymbopogon is a member of the family Poaceae and has been explored for its phytochemicals and bioactivities. Although the antimicrobial activities of Cymbopogon spp. extracts have been extensively studied, comprehensive analyses are required to identify promising compounds for the treatment of antimicrobial resistance. Therefore, this study investigated the antioxidant and antimicrobial properties of Cymbopogon spp. ethanolic extracts in every single organ. METHODS: Ethanolic extracts were obtained from three Indonesian commercial species of Cymbopogon spp., namely Cymbopogon citratus (L.) Rendle, Cymbopogon nardus (DC.) Spatf., and Cymbopogon winterianus Jowitt. The leaf, stem, and root extracts were evaluated via metabolite profiling using gas chromatography-mass spectrometry (GC-MS). In silico and in vitro analyses were used to evaluate the antioxidant and antimicrobial properties of the Cymbopogon spp. ethanolic extracts. In addition, bioactivity was measured using cytotoxicity assays. Antioxidant assays were performed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis [3-ethylbenzothiazoline-6-sulfonic acid (ABTS) to determine toxicity to Huh7it-1 cells using a tetrazolium bromide (MTT) assay. Finally, the antimicrobial activity of these extracts was evaluated against Candida albicans, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli using a well diffusion assay. RESULTS: GC-MS analysis revealed 53 metabolites. Of these, 2,5-bis(1,1-dimethylethyl)- phenol (27.87%), alpha-cadinol (26.76%), and 1,2-dimethoxy-4-(1-propenyl)-benzene (20.56%) were the predominant compounds. C. winterianus and C. nardus leaves exhibited the highest antioxidant activity against DPPH and ABTS, respectively. Contrastingly, the MTT assay showed low cytotoxicity. C. nardus leaf extract exhibited the highest antimicrobial activity against E. coli and S. aureus, whereas C. winterianus stem extract showed the highest activity against B. substilis. Furthermore, computational pathway analysis predicted that antimicrobial activity mechanisms were related to antioxidant activity. CONCLUSIONS: These findings demonstrate that the leaves had strong antioxidant activity, whereas both the leaves and stems showed great antimicrobial activity. Furthermore, all Cymbopogon spp. ethanolic extracts showed low toxicity. These findings provide a foundation for future studies that assess the clinical safety of Cymbopogon spp. as novel drug candidates.


Assuntos
Anti-Infecciosos , Antioxidantes , Cymbopogon , Extratos Vegetais , Folhas de Planta , Raízes de Plantas , Antioxidantes/farmacologia , Antioxidantes/química , Cymbopogon/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Caules de Planta/química , Testes de Sensibilidade Microbiana , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Indonésia
2.
Ann Afr Med ; 23(3): 391-399, 2024 Jul 01.
Artigo em Francês, Inglês | MEDLINE | ID: mdl-39034564

RESUMO

OBJECTIVES: This study investigated the anti-cryptococcal potential of certain essential oils (EOs)/compounds alone and in combination with fluconazole. MATERIALS AND METHODS: We investigated the antifungal activity of oils of Cinnamomum verum, Cymbopogon citratus, Cymbopogon martini, and Syzygium aromaticum, and their major active ingredients cinnamaldehyde, citral, eugenol, and geraniol against clinical and standard strains of Cryptococcus neoformans (CN). Disc diffusion, broth microdilution, checkerboard methods, and transmission electron microscopy were employed to determine growth inhibition, synergistic interaction, and mechanism of action of test compounds. RESULTS: EOs/compounds showed pronounced antifungal efficacy against azole-resistant CN in the order of cinnamaldehyde > eugenol > S. aromaticum > C. verum > citral > C. citratus > geraniol ≥ C. martini, each exhibiting zone of inhibition >15 mm. These oils/compounds were highly cidal compared to fluconazole. Eugenol and cinnamaldehyde showed the strongest synergy with fluconazole against CN by lowering their MICs up to 32-fold. Transmission electron microscopy indicated damage of the fungal cell wall, cell membrane, and other endomembranous organelles. CONCLUSION: Test oils and their active compounds exhibited potential anti-cryptococcus activity against the azole-resistant strains of CN. Moreover, eugenol and cinnamaldehyde significantly potentiated the anti-cryptococcal activity of fluconazole. It is suggested that multiple sites of action from oils/compounds could turn static fluconazole into a cidal drug combination in combating cryptococcosis.


RésuméObjectifs: Cette étude a étudié le potentiel anti-cryptocoque de certaines huiles essentielles (HE)/composés seuls et en combinaison avec fluconazole. Matériels et méthodes: Nous avons étudié l'activité antifongique des huiles de Cinnamomum verum, Cymbopogon citratus, Cymbopogon martini et Syzygium spiceum , et leurs principaux ingrédients actifs, le cinnamaldéhyde, le citral, l'eugénol et le géraniol, contre les normes cliniques et standards. souches de Cryptococcus neoformans (CN). Diffusion sur disque, microdilution en bouillon, méthodes en damier et microscopie électronique à transmission ont été utilisés pour déterminer l'inhibition de la croissance, l'interaction synergique et le mécanisme d'action des composés testés. Résultats: HE/composés a montré une efficacité antifongique prononcée contre les CN résistantes aux azoles dans l'ordre suivant: cinnamaldéhyde > eugénol > S. spiceum > C. verum > citral > C. citratus > géraniol ≥ C. martini , chacun présentant une zone d'inhibition > 15 mm. Ces huiles/composés étaient hautement cides par rapport au fluconazole. L'eugénol et le cinnamaldéhyde ont montré la synergie la plus forte avec le fluconazole contre le CN en abaissant leurs CMI jusqu'à 32 fois. La microscopie électronique à transmission a indiqué des dommages à la paroi cellulaire fongique, à la membrane cellulaire et à d'autres organites endomembranaires. Conclusion: Les huiles testées et leurs composés actifs ont montré une activité anti-cryptocoque potentielle contre les souches de CN résistantes aux azoles. De plus, l'eugénol et le cinnamaldéhyde ont significativement potentialisé l'activité anticryptococcique du fluconazole. Il est suggéré que plusieurs Les sites d'action des huiles/composés pourraient transformer le fluconazole statique en une combinaison médicamenteuse cide pour lutter contre la cryptococcose.


Assuntos
Acroleína , Antifúngicos , Cryptococcus neoformans , Cymbopogon , Farmacorresistência Fúngica , Sinergismo Farmacológico , Eugenol , Fluconazol , Testes de Sensibilidade Microbiana , Óleos Voláteis , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/ultraestrutura , Fluconazol/farmacologia , Antifúngicos/farmacologia , Óleos Voláteis/farmacologia , Cymbopogon/química , Farmacorresistência Fúngica/efeitos dos fármacos , Acroleína/análogos & derivados , Acroleína/farmacologia , Eugenol/farmacologia , Humanos , Monoterpenos Acíclicos/farmacologia , Syzygium/química , Cinnamomum zeylanicum/química , Terpenos/farmacologia , Monoterpenos/farmacologia , Microscopia Eletrônica de Transmissão , Óleos de Plantas/farmacologia , Criptococose/tratamento farmacológico , Criptococose/microbiologia
3.
Int J Biol Macromol ; 271(Pt 1): 132644, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821808

RESUMO

Presently, the construction industry demands components that are exceptionally strong and long-lasting. The initial important construction material is concrete, which contains between 1 % and 2 % of air voids. The structural damage caused by water that enters through the air spaces are improved with filler material. Chemical filler materials are environmentally harmful; therefore, eco-friendly materials are selected for this study. The environmentally benign character of agro-waste byproduct usage is a driving factor in the field of research. Numerous uses can be found for waste materials, especially after they have been repurposed. We used a byproduct of an essential oil extraction company, an extract made from the leaves of lemon grass (Cymbopogan citrus), in our research. Alkalization, slow pyrolysis, acid hydrolysis, and bleaching are only some of the chemical treatments that could be used to easily extract microcrystalline cellulose from the discarded waste material. In our study the chemicals used are mild harmful to the environment and a surface reactant (linear alkyl benzene sulfonic acid) is utilised to bleach and purify the microcrystalline cellulose. Thermal analysis, scanning electron microscopy, transmission electron microscopy and Fourier transform spectroscopy were all used to learn more about the cellulose that had been extracted. The extracted cellulose powder comprises a high crystallinity index (68.14 %) and low crystallite size (5.13 nm) found using X-ray diffraction analysis. The smooth and porous surface is observable in scanning electron microscope analysis. The Differential scanning calorimeter curve shows the highest degradation temperature at 218.16 °C. The micro sized particles mostly range between 100 and 120 µm and are found using ImageJ. The surface roughness and permissible skewness of cellulose particles were examined using atomic force microscopy. The density of extracted cellulose is 1.092 g/cm3. The microcrystalline cellulose yield % was notably maximum (40.45 %). This cellulose was introduced in a M30 grade cement concrete as fillers up to 5 % by the weight of cement. The fresh and mechanical properties of the concrete was found to get improved with the addition of cellulose up to 3 %. As a result, the characteristics of cellulose boost its utility within the construction sector.


Assuntos
Celulose , Resíduos Industriais , Celulose/química , Celulose/isolamento & purificação , Cymbopogon/química , Materiais de Construção , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Int J Biol Macromol ; 272(Pt 1): 132532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806082

RESUMO

The study involved preparing and applying edible nano-emulsion coatings containing hydroxypropyl methylcellulose (HPMC), beeswax (BW), and essential oils (thyme, cinnamon, clove, and peppermint) onto sweet cherries. The application was conducted at 4 °C, and the coated cherries were stored for 36 days. This research examines synthesized nano-emulsions physicochemical properties and antibacterial and antifungal activities (C1, C2, and C3). Additionally, it evaluates the quality parameters of control and coated sweet cherry samples. The features of the three edible coatings were assessed, and the findings from the zeta sizer, zeta potential, FTIR, and SEM analyses were deemed satisfactory. It was observed that the application of nano-emulsion coating C1 yielded positive results in maintaining quality attributes such as total suspended solids (TSS), total solids (TS), color, weight loss, respiration rate, firmness, total phenolic contents, and sensory evaluations. Nano-emulsion coating C1 demonstrated efficacy as an antibacterial and antifungal agent against foodborne pathogens E. coli and A. niger, respectively. The current research results are promising and applicable in food industries. The implications suggest that composite nano-emulsion, specifically nano-emulsion edible coatings, can be extensively and effectively used to preserve the quality and shelf life of fruits and vegetables. Furthermore, the environmental waste from conventional food packaging will be minimized using edible packaging applications.


Assuntos
Derivados da Hipromelose , Óleos Voláteis , Ceras , Ceras/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Derivados da Hipromelose/química , Antibacterianos/farmacologia , Antibacterianos/química , Conservação de Alimentos/métodos , Armazenamento de Alimentos , Emulsões , Cymbopogon/química , Filmes Comestíveis , Antifúngicos/farmacologia , Antifúngicos/química , Escherichia coli/efeitos dos fármacos , Frutas/química
5.
Bol. latinoam. Caribe plantas med. aromát ; 23(3): 382-389, mayo 2024. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1538151

RESUMO

The extraction of geraniol from palmarosa oil using hydrotropic solvents was investigated. Palmarosa oil possesses an appealing rose aroma and properties like anti - inflammatory, antifungal, and antioxidant due to the presence of geraniol. The extraction of geraniol from palmarosa oil by using distillation methods like steam dis tillation and fractional distillation was a laborious process. So hydrotropes were tried for extraction. The geraniol yield and purity depend on parameters like concentration of hydrotrope, solvent volume ratio, and time period. Using the Box Benkhem Desig n (BBD), the extraction process was optimized. One of the major advantages of using hydrotropic solvents is that they were classified as green solvents, and recovery of solvents is also possible. To reduce the extraction time probe sonication is carried ou t. Different hydrotropic solvents with probe sonication are done on palmarosa oil by altering various process parameters to study the separation, yield, and purity.


Se investigó la extracción de geraniol del aceite de palmarosa utilizando solventes hidrotrópicos. El aceite de palmarosa posee un atractivo aroma a rosa y propiedades antiinflamatorias, antifúngicas y antioxidantes debido a la pr esencia de geraniol. La extracción de geraniol del aceite de palmarosa mediante métodos de destilación como la destilación por vapor y la destilación fraccionada ha sido un proceso laborioso. Por lo tanto, se probaron los hidrotropos para la extracción. El rendimiento y la pureza del geraniol dependen de parámetros como la concentración del hidrotropo, la relación de volumen del solvente y el período de tiempo. Se optimizó el proceso de extracción usando el diseño Box Benkhem (BBD). Una de las principales v entajas de usar solventes hidrotrópicos es que se clasifican como solventes verdes y también es posible recuperar los solventes. Para reducir el tiempo de extracción, se lleva a cabo una sonda de ultrasonido. Se realizan diferentes solventes hidrotropos co n sonda de ultrasonido en el aceite de palmarosa alterando varios parámetros del proceso para estudiar la separación, el rendimiento y la pureza.


Assuntos
Cymbopogon/química , Monoterpenos Acíclicos/farmacologia , Monoterpenos Acíclicos/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química
6.
Curr Med Sci ; 44(2): 450-461, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639827

RESUMO

OBJECTIVE: Cymbopogon citratus (DC.) Stapf is a medicinal and edible herb that is widely used for the treatment of gastric, nervous and hypertensive disorders. In this study, we investigated the cardioprotective effects and mechanisms of the essential oil, the main active ingredient of Cymbopogon citratus, on isoproterenol (ISO)-induced cardiomyocyte hypertrophy. METHODS: The compositions of Cymbopogon citratus essential oil (CCEO) were determined by gas chromatography-mass spectrometry. Cardiomyocytes were pretreated with 16.9 µg/L CCEO for 1 h followed by 10 µmol/L ISO for 24 h. Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated. Subsequently, transcriptome sequencing (RNA-seq) and target verification were used to further explore the underlying mechanism. RESULTS: Our results showed that the CCEO mainly included citronellal (45.66%), geraniol (23.32%), and citronellol (10.37%). CCEO inhibited ISO-induced increases in cell surface area and protein content, as well as the upregulation of fetal gene expression. Moreover, CCEO inhibited ISO-induced NLRP3 inflammasome expression, as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3, ASC, CASP1, GSDMD, and IL-1ß, as well as reduced protein levels of NLRP3, ASC, pro-caspase-1, caspase-1 (p20), GSDMD-FL, GSDMD-N, and pro-IL-1ß. The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes. Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1, Sdhd, mt-Cytb, Uqcrq, and mt-Atp6 but had no obvious effects on mt-Col expression. CONCLUSION: CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.


Assuntos
Cymbopogon , Óleos Voláteis , Óleos Voláteis/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Cymbopogon/química , Cymbopogon/metabolismo , Isoproterenol , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , RNA Mensageiro/metabolismo , Hipertrofia/induzido quimicamente , Hipertrofia/tratamento farmacológico , Hipertrofia/metabolismo
7.
Sci Rep ; 14(1): 9195, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649707

RESUMO

The development of novel antioxidant compounds with high efficacy and low toxicity is of utmost importance in the medicine and food industries. Moreover, with increasing concerns about the safety of synthetic components, scientists are beginning to search for natural sources of antioxidants, especially essential oils (EOs). The combination of EOs may produce a higher scavenging profile than a single oil due to better chemical diversity in the mixture. Therefore, this exploratory study aims to assess the antioxidant activity of three EOs extracted from Cymbopogon flexuosus, Carum carvi, and Acorus calamus in individual and combined forms using the augmented-simplex design methodology. The in vitro antioxidant assays were performed using DPPH and ABTS radical scavenging approaches. The results of the Chromatography Gas-Mass spectrometry (CG-MS) characterization showed that citral (29.62%) and niral (27.32%) are the main components for C. flexuosus, while D-carvone (62.09%) and D-limonene (29.58%) are the most dominant substances in C. carvi. By contrast, ß-asarone (69.11%) was identified as the principal component of A. calamus (30.2%). The individual EO exhibits variable scavenging activities against ABTS and DPPH radicals. These effects were enhanced through the mixture of the three EOs. The optimal antioxidant formulation consisted of 20% C. flexuosus, 53% C. carvi, and 27% A. calamus for DPPHIC50. Whereas 17% C. flexuosus, 43% C. carvi, and 40% A. calamus is the best combination leading to the highest scavenging activity against ABTS radical. These findings suggest a new research avenue for EOs combinations to be developed as novel natural formulations useful in food and biopharmaceutical products.


Assuntos
Acorus , Antioxidantes , Carum , Cymbopogon , Óleos Voláteis , Extratos Vegetais , Cymbopogon/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Acorus/química , Carum/química , Cromatografia Gasosa-Espectrometria de Massas , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia
8.
J Ethnopharmacol ; 330: 118181, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608798

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cymbopogon (Poaceae) plants have been used for various purposes by many indigenous peoples in all continents. In particular, almost all species in the genus have traditionally been used as folk medicine to treat ailments. Traditional application records indicated that Cymbopogon might be used extensively to treat cold, dizziness, headache, loss of appetite, abdominal pain, rheumatism, diarrhea, whole grass for cold, sore throat, tracheitis and others. AIMS OF THE REVIEW: Despite several research confirmed that Cymbopogon includes a range of active components, no review has been undertaken to consolidate information on its traditional uses, phytochemistry, pharmacology, and/or quality control. Thus this article aims to update a comprehensive review about the traditional uses, phytochemistry, pharmacology, cultivation techniques, economic benefits, trade, threats, and future conservation implications of Cymbopogon species. It may provide informative data for future development and further investigation of this important plant group. MATERIALS AND METHODS: Traditional medicinal books and ethnomedicinal publications related to Cymbopogon from 1992 to 2023 were collated to investigate its ethnobotanical, phytochemical and pharmacological information. The online databases including Google Scholar, SciFinder, Web of Science, Scopus, Springer Link, PubMed, Wiley, China National Knowledge Infrastructure (CNKI), Baidu Scholar, and WanFang Database were screened. RESULTS: Cymbopogon (Gramineae or Poaceae) plants have been grown worldwide. Traditional Chinese medicine and other medicinal systems believes that Cymbopogon has the effect of relieve a cough, analgesia, treating dizziness, traumatic injury and can relieve abdominal pain. A total of 153 compounds, including flavonoids, terpenoids, fatty acid and other compounds were isolated or identified from Cymbopogon species by phytochemical studies. The extracts or compounds from Cymbopogon have exhibited numerous biological activities such as antibacterial, antiinflammatory, antiviral, antineoplastic, antiarrhythmic, antidiabetic and other activities. The rich contents of citronellal, citronellol and geraniol found in Cymbopogon also provide significant nutritional benefits. CONCLUSION: Based on their traditional uses, phytochemicals, and pharmacological activities, Cymbopogon plants are potential medicinal and edible resources with diverse pharmacological effects. Due to various advantages of this group, they possess huge application potential in food and pharmaceutical industries, and animal husbandry. Among them, citronella is very important in terms of economic development. Further comprehensive research to evaluate the medicinal properties of Cymbopogon species will be necessary for future development.


Assuntos
Cymbopogon , Etnobotânica , Etnofarmacologia , Medicina Tradicional , Compostos Fitoquímicos , Fitoterapia , Cymbopogon/química , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Animais , Medicina Tradicional/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química
9.
Lett Appl Microbiol ; 77(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38653726

RESUMO

Citrus canker is a disease caused by the gram-negative bacterium Xanthomonas citri subp. citri (X. citri), which affects all commercially important varieties of citrus and can lead to significant losses. Fruit sanitization with products such as chlorine-based ones can reduce the spread of the disease. While effective, their use raises concerns about safety of the workers. This work proposes essential oils (EOs) as viable alternatives for fruit sanitization. EOs from Cymbopogon species were evaluated as to their antibacterial activity, their effect on the bacterial membrane, and their ability to sanitize citrus fruit. The in vitro assays revealed that the EOs from C. schoenanthus and C. citratus had a lower bactericidal concentration at 312 mg L-1, followed by 625 mg L-1 for C. martini and C. winterianus. Microscopy assay revealed that the bacterial cell membranes were disrupted after 15 min of contact with all EOs tested. Regarding the sanitizing potential, the EOs with higher proportions of geraniol were more effective in sanitizing acid limes. Fruit treated with C. shoenanthus and C. martini showed a reduction of ∼68% in the recovery of viable bacterial cells. Therefore, these EOs can be used as viable natural alternatives in citrus fruit disinfection.


Assuntos
Antibacterianos , Citrus , Cymbopogon , Óleos Voláteis , Doenças das Plantas , Xanthomonas , Cymbopogon/química , Óleos Voláteis/farmacologia , Xanthomonas/efeitos dos fármacos , Citrus/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Antibacterianos/farmacologia , Frutas/microbiologia , Testes de Sensibilidade Microbiana
10.
Vet Parasitol ; 328: 110171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552269

RESUMO

The objectives of this study were to develop a self-emulsifying drug delivery system (SEDDS) to enhance the stability and efficacy of Cymbopogon citratus essential oil or lemongrass oil (LEO) against cattle tick larvae and engorged females. The system with the highest oil loading in SEDDS was composed of LEO (23.33%w/w), Tween 80: SGKH 4000 in a 2:1 ratio as surfactant (66.67%w/w), and propylene glycol as co-surfactant (10%w/w). The selected SEDDS-LEO has a particle size of 18.78 nm with a narrow size distribution (polydispersity index of 0.27). Notably, the stability of SEDDS was superior to that of the original oil, both during long-term storage and under accelerated conditions. SEDDS-LEO at oil concentrations ranging from 1.458% to 5.833% w/v showed a significantly higher percentage of egg-laying reduction against adult ticks compared with the original oil at the same concentrations (p < 0.05). Furthermore, SEDDS-LEO demonstrated greater larvicidal efficacy than the original oil, with lower LC50 and LC90 values of 0.91 mg/mL and 1.20 mg/mL, respectively, whereas the original oil's LC50 and LC90 values were 1.17 mg/mL and 1.74 mg/mL, respectively. Our findings indicate that SEDDS-LEO is a promising candidate for use as an acaricide in the control of tick populations in dairy cattle.


Assuntos
Acaricidas , Cymbopogon , Sistemas de Liberação de Medicamentos , Óleos Voláteis , Rhipicephalus , Animais , Rhipicephalus/efeitos dos fármacos , Cymbopogon/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Acaricidas/administração & dosagem , Feminino , Bovinos , Larva/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/tratamento farmacológico , Emulsões/química , Estabilidade de Medicamentos , Infestações por Carrapato/veterinária , Infestações por Carrapato/tratamento farmacológico , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/parasitologia , Terpenos
11.
Fitoterapia ; 175: 105897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479618

RESUMO

Globally, obesity has become one of the major health problems. This study was conducted to evaluate the anti-obesity potential of Cymbopogon schoenanthus methanolic extract (CS) in rats. Fifty male Wistar rats of six to eight weeks old, 100-120 g body weight (BW) were randomly assigned into 5 groups (n = 10): The control group was fed a basal diet. CS-group was supplied with basal diet and orally given CS (200 mg/kg BW) for 12 weeks. HFD-group was fed a high-fat diet (HFD) for 18 weeks. HFD + CS-group was fed on HFD and CS HFD then CS-group was fed HFD for 12 weeks then shifted to basal diet and CS for another 6 weeks. Phytochemical analysis of CS indicated the presence of various terpenes and flavonoid compounds. Among the compounds characterized are quercetin, apigenin, luteolin, orientin, eudesmene, cymbopogonol, caffeic acid, coumaric acid, and linolenic acid. Supplementation of HFD significantly increased the body weight, levels of serum triacylglycerol, total cholesterol, very low-density lipoprotein, low-density lipo-protein (HDL), glucose, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. In addition, HFD up-regulated the protein expression of uncoupling protein (UCP)-1 in both brown and white adipose tissue; and the expression of hepatic mRNA of sterol regulatory element-binding protein (SREBP)-1c and SREBP-2. However, it decreased the serum level of HDL, and protein expression level of UCP-1 in both brown and white adipose tissue. Treatment of HFD-fed animals with CS extract either concurrently (HFD + CS-group), or after obesity induction (HFD then CS-group) significantly reversed all HFD-induced alterations in body weight; food intake; serum biochemical profile (including hyperglycemia, dyslipidemia); and tissue gene expressions. These results indicate that CS methanolic extract ameliorated HFD-induced obesity, serum biochemical, hepatic, and adipose tissue gene expression alterations. CS extract accomplished these effects mostly through its various identified bioactive compounds which have been proven to have anti-obesity and anti-diabetic activities.


Assuntos
Fármacos Antiobesidade , Cymbopogon , Dieta Hiperlipídica , Dislipidemias , Obesidade , Extratos Vegetais , Ratos Wistar , Animais , Masculino , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Ratos , Cymbopogon/química , Dislipidemias/tratamento farmacológico , Fármacos Antiobesidade/farmacologia , Termogênese/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteína Desacopladora 1/metabolismo , Compostos Fitoquímicos/farmacologia
12.
J Am Nutr Assoc ; 43(2): 183-200, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37579058

RESUMO

Lemongrass contains a variety of substances that are known to have antioxidant and disease-preventing properties, including essential oils, compounds, minerals, and vitamins. Lemongrass (Cymbopogon Spp.) essential oil (LGEO) has been demonstrated to ameliorate diabetes and accelerate wound healing. A member of the Poaceae family, Lemongrass, a fragrant plant, is cultivated for the extraction of essential oils including myrcene and a mixture of geranial and neral isomers of citral monoterpenes. Active constituents in lemongrass essential oil are myrcene, followed by limonene and citral along with geraniol, citronellol, geranyl acetate, neral, and nerol, which are beneficial to human health. A large part of lemongrass' expansion is driven by the plant's huge industrial potential in the food, cosmetics, and medicinal sectors. A great deal of experimental and modeling study was conducted on the extraction of essential oils. Using Google Scholar and PubMed databases, a systematic review of the literature covering the period from 1996 to 2022 was conducted, in accordance with the PRISMA declaration. There were articles on chemistry, biosynthesis, extraction techniques and worldwide demand of lemongrass oil. We compared the effectiveness of several methods of extracting lemongrass essential oil, including solvent extraction, supercritical CO2 extraction, steam distillation, hydrodistillation (HD), and microwave aided hydrodistillation (MAHD). Moreover, essential oils found in lemongrass and its bioactivities have a significant impact on human health. This manuscript demonstrates the different extraction techniques of lemongrass essential oil and its physiological benefits on diabetic wound healing, tissue repair and regeneration, as well as its immense contribution in ameliorating arthritis and joint pain.Key teaching pointsThe international market demand prediction and the pharmacological benefits of the Lemongrass essential oil have been thoroughly reported here.This article points out that different extraction techniques yield different percentages of citral and other secondary metabolites from lemon grass, for example, microwave assisted hydrodistillation and supercritical carbon dioxide extraction process yields more citral.This article highlights the concept and application of lemongrass oil in aromatherapy, joint-pain, and arthritis.Moreover, this manuscript includes a discussion about the effect of lemongrass oil on diabetic wound healing and tissue regeneration - that paves the way for further research.


Assuntos
Monoterpenos Acíclicos , Alcenos , Artrite , Cymbopogon , Diabetes Mellitus , Óleos Voláteis , Óleos de Plantas , Terpenos , Humanos , Cymbopogon/química , Óleos Voláteis/farmacologia
13.
J Biomol Struct Dyn ; 42(1): 101-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36974933

RESUMO

The emergence of varying levels of resistance to currently available antimalarial drugs significantly threatens global health. This factor heightens the urgency to explore bioactive compounds from natural products with a view to discovering and developing newer antimalarial drugs with novel mode of actions. Therefore, we evaluated the inhibitory effects of sixteen phytocompounds from Cymbopogon citratus leaf extract against Plasmodium falciparum drug targets such as P. falciparum circumsporozoite protein (PfCSP), P. falciparum merozoite surface protein 1 (PfMSP1) and P. falciparum erythrocyte membrane protein 1 (PfEMP1). In silico approaches including molecular docking, pharmacophore modeling and 3D-QSAR were adopted to analyze the inhibitory activity of the compounds under consideration. The molecular docking results indicated that a compound swertiajaponin from C. citratus exhibited a higher binding affinity (-7.8 kcal/mol) to PfMSP1 as against the standard artesunate-amodiaquine (-6.6 kcal/mol). Swertiajaponin also formed strong hydrogen bond interactions with LYS29, CYS30, TYR34, ASN52, GLY55 and CYS28 amino acid residues. In addition, quercetin another compound from C. citratus exhibited significant binding energies -6.8 and -8.3 kcal/mol with PfCSP and PfEMP1, respectively but slightly lower than the standard artemether-lumefantrine with binding energies of -7.4 kcal/mol against PfCSP and -8.7 kcal/mol against PfEMP1. Overall, the present study provides evidence that swertiajaponin and other phytomolecules from C. citratus have modulatory properties toward P. falciparum drug targets and thus may warrant further exploration in early drug discovery efforts against malaria. Furthermore, these findings lend credence to the folkloric use of C. citratus for malaria treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Cymbopogon , Malária Falciparum , Malária , Antimaláricos/química , Cymbopogon/química , Simulação de Acoplamento Molecular , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Simulação por Computador , Extratos Vegetais/farmacologia , Extratos Vegetais/química
14.
Sci Rep ; 13(1): 18947, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919469

RESUMO

Essential oils contain a variety of volatile metabolites, and are expected to be utilized in wide fields such as antimicrobials, insect repellents and herbicides. However, it is difficult to foresee the effect of oil combinations because hundreds of compounds can be involved in synergistic and antagonistic interactions. In this research, it was developed and evaluated a machine learning method to classify types of (synergistic/antagonistic/no) antibacterial interaction between essential oils. Graph embedding was employed to capture structural features of the interaction network from literature data, and was found to improve in silico predicting performances to classify synergistic interactions. Furthermore, in vitro antibacterial assay against a standard strain of Staphylococcus aureus revealed that four essential oil pairs (Origanum compactum-Trachyspermum ammi, Cymbopogon citratus-Thujopsis dolabrata, Cinnamomum verum-Cymbopogon citratus and Trachyspermum ammi-Zingiber officinale) exhibited synergistic interaction as predicted. These results indicate that graph embedding approach can efficiently find synergistic interactions between antibacterial essential oils.


Assuntos
Cymbopogon , Repelentes de Insetos , Óleos Voláteis , Infecções Estafilocócicas , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus , Repelentes de Insetos/farmacologia , Óleos de Plantas/farmacologia , Cymbopogon/química , Testes de Sensibilidade Microbiana
15.
Sci Rep ; 13(1): 18820, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914737

RESUMO

Lemongrass is a fragrant herb with lengthy, thin leaves that contains myrcene (an aromatic compound) as well as citral and geraniol (antimicrobial compounds). Therefore, identifying an appropriate drying method for this plant is crucial for maintaining aromatic and antimicrobial compounds and enhancing the shelf life of the product. This investigation seeks to assess the influence of various drying tactics involving hot air at temperatures of 40, 50, and 60 °C, infrared radiation at intensities of 0.5, 0.6, and 0.8 [Formula: see text], sequential hot-air/infrared, as well as simultaneous hot air-infrared, on the drying mechanism, color, appearance, yield, and essential oil constituents of lemongrass leaves, with the objective of enhancing the marketability of the product. The essential oils of lemongrass were extracted through the process of hydro-distillation, and subsequently, the volatile compounds present were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The findings indicated: (a) The most appropriate technique for preserving optimal color quality of lemongrass leaves was through the application of hot air drying solely at a temperature of 60 °C; (b) To optimize the retention and amplification of the essential oil content in lemongrass, our study recommends the employment of a simultaneous hybrid drying technique involving hot air drying at a temperature of 50 °C in conjunction with infrared drying set at a radiation intensity level of 0.6 [Formula: see text]; and (c) The data analysis demonstrated that in order to achieve elevated levels of volatile compounds, specifically neral and geranial, infrared drying with a radiation intensity of 0.6 and 0.8 [Formula: see text], respectively, was found to be optimal.


Assuntos
Anti-Infecciosos , Cymbopogon , Óleos Voláteis , Óleos Voláteis/química , Cymbopogon/química , Dessecação/métodos , Temperatura
16.
Molecules ; 28(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299034

RESUMO

The aim of this research was to evaluate the essential oil of Cymbopogon schoenanthus (L.) Spreng. (C. schoenanthus) from Burkina Faso in terms of cytotoxic activity against LNCaP cells, derived from prostate cancer, and HeLa cells, derived from cervical cancer. Antioxidant activities were evaluated in vitro. Essential oil (EO) was extracted by hydrodistillation and analyzed by GC/FID and GC/MS. Thirty-seven compounds were identified, the major compounds being piperitone (49.9%), δ-2-carene (24.02%), elemol (5.79%) and limonene (4.31%). EO exhibited a poor antioxidant activity, as shown by the inhibition of DPPH radicals (IC50 = 1730 ± 80 µg/mL) and ABTS+. (IC50 = 2890 ± 26.9 µg/mL). Conversely, EO decreased the proliferation of LNCaP and HeLa cells with respective IC50 values of 135.53 ± 5.27 µg/mL and 146.17 ± 11 µg/mL. EO also prevented LNCaP cell migration and led to the arrest of their cell cycle in the G2/M phase. Altogether, this work points out for the first time that EO of C. schoenanthus from Burkina Faso could be an effective natural anticancer agent.


Assuntos
Cymbopogon , Óleos Voláteis , Neoplasias do Colo do Útero , Masculino , Feminino , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cymbopogon/química , Próstata , Células HeLa , Burkina Faso , Neoplasias do Colo do Útero/tratamento farmacológico , Antioxidantes/farmacologia
17.
J Econ Entomol ; 116(4): 1185-1195, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37289249

RESUMO

Insecticide resistance is a significant problem in insect management that can result from several processes including target-site change and increased activity of detoxifying enzymes. Spodoptera littoralis is one of the most resistant insect pests. For more effective insect management, alternatives to synthetic pesticides are encouraged. One of these alternatives is essential oils (EOs). Cymbopogon citratus EO and its main constituent citral were, therefore, considered in this study. The results revealed that C. citratus EO and citral exhibited significant larvicidal activity against S. littoralis, and the former was insignificantly more toxic than the latter. Additionally, treatments significantly affected the activity of detoxification enzymes. Cytochrome P-450 and glutathione-S-transferase were inhibited, while carboxylesterases, a-esterase and ß-esterase, were induced. The molecular docking study indicated that citral bonded with the amino acids cysteine (CYS 345) and histidine (HIS 343) of cytochrome P-450. This result suggests that interaction with cytochrome P-450 enzyme is one key mechanism by which C. citratus EO and citral act in S. littoralis. The results of our study are hoped to contribute to a better understanding of the mechanism of action of essential oils at the biochemical and molecular levels and provide safer and more efficient pest management solutions for S. littoralis.


Assuntos
Cymbopogon , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Spodoptera , Cymbopogon/química , Simulação de Acoplamento Molecular , Esterases
18.
Aquat Toxicol ; 260: 106583, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207486

RESUMO

The presence of Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio harveyi in aquatic organisms causes vibriosis, leading to their significant mortality. The efficacy of antibiotic treatment is reduced due to increasing antibiotic resistance. As a result, novel therapeutic agents are increasingly needed to treat outbreak of such diseases in aquatic organisms and humans. This study focuses on utilizing the bioactive compounds of Cymbopogon citratus as they are rich in a variety of secondary metabolites which promotes growth, natural immune response and disease resistance against pathogenic bacteria in various ecosystems. In silico studies were performed to evaluate the binding potential of the bioactive compounds against targeted protein beta - lactamase in Vibrio parahaemolyticus and metallo - beta - lactamase in V. alginolyticus via molecular docking. Cymbopogon citratus nanoparticles (CcNps) were synthesized, characterized and toxicity studies were performed by using Vigna radiata, and Artemia nauplii at different concentrations of Cymbopogon citratus nanoparticles. The results revealed that the synthesized nanoparticles were non-ecotoxic and act as potential growth promoters in plants. The antibacterial activity of synthesized Cymbopogon citratus was evaluated using agar well diffusion method. MIC, MBC, and biofilm assays performed by using different concentrations of synthesized nanoparticles. Thus, it was proved that Cymbopogon citratus nanoparticles showed better antibacterial activity against Vibrio species.


Assuntos
Cymbopogon , Nanopartículas , Vibrio , Poluentes Químicos da Água , Humanos , Cymbopogon/química , Organismos Aquáticos , Ecossistema , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/toxicidade , Antibacterianos/toxicidade
19.
Asian Pac J Cancer Prev ; 24(5): 1667-1675, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247287

RESUMO

OBJECTIVE: This study aimed to determine the cytoprotective potentials of citronella (Cymbopogon nardus (L.) Rendl.) essential oil (CO) and lemongrass (Cymbopogon citratus (DC.) Stapf) essential oil (LO). METHODS: The essential oils from citronella and lemongrass were obtained by steam-water distillation, then analyzed using Gas Chromatography-Mass Spectrophotometry (GC-MS) to determine the chemical constituents. The antioxidant activity of CO and LO was compared using a total antioxidant capacity kit. The viability of normal kidney epithelial cells Vero and fibroblast NIH-3T3 as the cell models were tested using a trypan blue exclusion assay. The effect of cellular senescence inhibition on both cell models was measured using senescence-associated ß-galactosidase (SA-ß-gal) staining. The mechanism of action of CO and LO in the protection of cellular damage against doxorubicin was also confirmed through 2',7'-dichlorofluorescin diacetate (DCFDA) staining to discover the ability to decrease reactive oxygen species (ROS) levels and a gelatin zymography assay to observe the activity of matrix metalloproteinases (MMPs). RESULTS: The major marker components of CO and LO were citronellal and citral, respectively. Both oils showed low cytotoxic activity against Vero and NIH-3T3 cells, with IC50 values of over 40 µg/mL. LO exhibited higher antioxidant capacity than CO, but there was no effect on the intracellular ROS level of both oils on Vero and NIH-3T3 cells. However, CO and LO decreased cellular senescence induced by doxorubicin exposure on both cells, as well as suppressed MMP-2 expression.  Conclusion: Both CO and LO decrease the cellular senescence and MMP-2 expression with less cytotoxic effects on normal cells independently from their antioxidant capacities. The results were expected to support the use of CO and LO as tissue protective and anti-aging agents in maintaining the body's cellular health against chemotherapeutics or cellular damaging agents.


Assuntos
Cymbopogon , Óleos Voláteis , Humanos , Animais , Camundongos , Cymbopogon/química , Metaloproteinase 2 da Matriz , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Células NIH 3T3 , Óleos Voláteis/farmacologia , Doxorrubicina/farmacologia
20.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110649

RESUMO

Multidrug resistance (MDR) is the major complex mechanism that causes the failure of chemotherapy, especially with drugs of natural origin such as doxorubicin (DOX). Intracellular drug accumulation and detoxification are also involved in cancer resistance by reducing the susceptibility of cancer cells to death. This research aims to identify the volatile composition of Cymbopogon citratus (lemon grass; LG) essential oil and compare the ability of LG and its major compound, citral, to modulate MDR in resistant cell lines. The composition of LG essential oil was identified using gas chromatography mass spectrometry (GC-MS). In addition, a comparison of the modulatory effects of LG and citral, performed on breast (MCF-7/ADR), hepatic (HepG-2/ADR), and ovarian (SKOV-3/ADR) MDR cell lines, were compared to their parent sensitive cells using the MTT assay, ABC transporter function assays, and RT-PCR. Oxygenated monoterpenes (53.69%), sesquiterpene hydrocarbons (19.19%), and oxygenated sesquiterpenes (13.79%) made up the yield of LG essential oil. α-citral (18.50%), ß-citral (10.15%), geranyl acetate (9.65%), ylangene (5.70), δ-elemene (5.38%), and eugenol (4.77) represent the major constituents of LG oil. LG and citral (20 µg/mL) synergistically increased DOX cytotoxicity and lowered DOX dosage by >3-fold and >1.5-fold, respectively. These combinations showed synergism in the isobologram and CI < 1. DOX accumulation or reversal experiment confirmed that LG and citral modulated the efflux pump function. Both substances significantly increased DOX accumulation in resistant cells compared to untreated cells and verapamil (the positive control). RT-PCR confirmed that LG and citral targeted metabolic molecules in resistant cells and significantly downregulated PXR, CYP3A4, GST, MDR1, MRP1, and PCRP genes. Our results suggest a novel dietary and therapeutic strategy combining LG and citral with DOX to overcome multidrug resistance in cancer cells. However, these results should be confirmed by additional animal experiments before being used in human clinical trials.


Assuntos
Cymbopogon , Neoplasias , Óleos Voláteis , Animais , Humanos , Cymbopogon/química , Resistência a Múltiplos Medicamentos , Doxorrubicina/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...