Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.567
Filtrar
1.
Eur J Oral Sci ; 132(4): e13005, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39014296

RESUMO

The present study aimed to evaluate whether epigenetic markers are expressed in the dental follicles surrounding ectopically erupting teeth. Twenty-one dental follicles were collected in 20 adolescent children through surgical exposure of ectopic teeth. The epigenetic modifications of DNA methylation and histone acetylation were evaluated by immunohistochemistry. The results showed cells positive for DNA-methyltransferase 1 (DNMT1), DNA methyltransferase 3 beta (DNMT3B), ten-eleven translocation-2 (TET2), acetyl-histone H3 (AcH3), acetyl-histone H4 (AcH4), 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC) were present in all the samples. The levels of epigenetic markers representing active chromatin (5hmC, AcH3, AcH4, and TET2) were statistically significantly higher than those of markers representing inactive chromatin (5mC, DNMT3B, DNMT1). In conclusion, follicles in ectopic teeth display major epigenetic modifications. In the follicles, epigenetic markers associated with the activation of bone-related genes are more abundant than markers associated with the inactivation of bone-related genes.


Assuntos
Metilação de DNA , Saco Dentário , Epigênese Genética , Histonas , Erupção Dentária , Humanos , Histonas/metabolismo , Adolescente , Acetilação , Criança , Feminino , Masculino , Erupção Dentária/genética , Saco Dentário/metabolismo , DNA Metiltransferase 3B , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Citosina/metabolismo
2.
Bioconjug Chem ; 35(7): 944-953, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954775

RESUMO

The chemical synthesis of homogeneously ubiquitylated histones is a powerful approach to decipher histone ubiquitylation-dependent epigenetic regulation. Among the various methods, α-halogen ketone-mediated conjugation chemistry has recently been an attractive strategy to generate single-monoubiquitylated histones for biochemical and structural studies. Herein, we report the use of this strategy to prepare not only dual- and even triple-monoubiquitylated histones but also diubiquitin-modified histones. We were surprised to find that the synthetic efficiencies of multi-monoubiquitylated histones were comparable to those of single-monoubiquitylated ones, suggesting that this strategy is highly tolerant to the number of ubiquitin monomers installed onto histones. The facile generation of a series of single-, dual-, and triple-monoubiquitylated H3 proteins enabled us to evaluate the influence of ubiquitylation patterns on the binding of DNA methyltransferase 1 (DNMT1) to nucleosomes. Our study highlights the potential of site-specific conjugation chemistry to generate chemically defined histones for epigenetic studies.


Assuntos
Histonas , Cetonas , Ubiquitinação , Histonas/química , Histonas/metabolismo , Histonas/síntese química , Cetonas/química , Ubiquitina/química , Humanos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/química , Nucleossomos/química , Nucleossomos/metabolismo
3.
Clin Epigenetics ; 16(1): 88, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970134

RESUMO

BACKGROUND: DNA methylation may have a regulatory role in monogenic sensorineural hearing loss and complex, polygenic phenotypic forms of hearing loss, including age-related hearing impairment or Meniere disease. The purpose of this systematic review is to critically assess the evidence supporting a functional role of DNA methylation in phenotypes associated with hearing loss. RESULTS: The search strategy yielded a total of 661 articles. After quality assessment, 25 records were selected (12 human DNA methylation studies, 5 experimental animal studies and 8 studies reporting mutations in the DNMT1 gene). Although some methylation studies reported significant differences in CpG methylation in diverse gene promoters associated with complex hearing loss phenotypes (ARHI, otosclerosis, MD), only one study included a replication cohort that supported a regulatory role for CpG methylation in the genes TCF25 and POLE in ARHI. Conversely, several studies have independently confirmed pathogenic mutations within exon 21 of the DNMT1 gene, which encodes the DNA (cytosine-5)-methyltransferase 1 enzyme. This methylation enzyme is strongly associated with a rare disease defined by autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN). Of note, rare variants in DNMT1 and DNMT3A genes have also been reported in noise-induced hearing loss. CONCLUSIONS: Evidence supporting a functional role for DNA methylation in hearing loss is limited to few genes in complex disorders such as ARHI. Mutations in the DNMT1 gene are associated with ADCA-DN, suggesting the CpG methylation in hearing loss genes deserves further attention in hearing research.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Humanos , Metilação de DNA/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Animais , Ilhas de CpG/genética , Epigênese Genética/genética , Perda Auditiva/genética , Mutação , Fenótipo , Regiões Promotoras Genéticas , Perda Auditiva Neurossensorial/genética , Narcolepsia/genética
4.
Biomolecules ; 14(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39062489

RESUMO

Designing and developing inhibitors against the epigenetic target DNA methyltransferase (DNMT) is an attractive strategy in epigenetic drug discovery. DNMT1 is one of the epigenetic enzymes with significant clinical relevance. Structure-based de novo design is a drug discovery strategy that was used in combination with similarity searching to identify a novel DNMT inhibitor with a novel chemical scaffold and warrants further exploration. This study aimed to continue exploring the potential of de novo design to build epigenetic-focused libraries targeted toward DNMT1. Herein, we report the results of an in-depth and critical comparison of ligand- and structure-based de novo design of screening libraries focused on DNMT1. The newly designed chemical libraries focused on DNMT1 are freely available on GitHub.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Desenho de Fármacos , Inibidores Enzimáticos , Ligantes , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
5.
Technol Cancer Res Treat ; 23: 15330338241260658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38847740

RESUMO

Objective: DNA methylation is an essential epigenetic marker governed by DNA methyltransferases (DNMTs), which can influence cancer onset and progression. However, few studies have provided an integrated analysis of the relevance of DNMT family genes to cell stemness, the tumor microenvironment (TME), and immunotherapy biomarkers across diverse cancers. Methods: This study investigated the impact of five DNMTs on transcriptional profiles, prognosis, and their association with Ki67 expression, epithelial-mesenchymal transition signatures, stemness scores, the TME, and immunological markers across 31 cancer types from recognized public databases. Results: The results indicated that DNMT1/DNMT3B/DNMT3A expression increased, whereas TRDMT1/DNMT3L expression decreased in most cancer types. DNMT family genes were identified as prognostic risk factors for numerous cancers, as well as being prominently associated with immune, stromal, and ESTIMATE scores, as well as with immune-infiltrating cell levels. Expression of the well-known immune checkpoints, PDCD1 and CILA4, was noticeably related to DNMT1/DNMT3A/DNMT3B expression. Finally, we validated the role of DNMT1 in MCF-7 and HepG2-C3A cell lines through its knockdown, whereafter a decrease in cell proliferation and migration ability in vitro was observed. Conclusion: Our study comprehensively expounded that DNMT family genes not only behave as promising prognostic factors but also have the potential to serve as therapeutic targets in cancer immunotherapy for various types of cancer.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Epigênese Genética , Perfilação da Expressão Gênica , Proliferação de Células , Biologia Computacional/métodos , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo
6.
Clin Epigenetics ; 16(1): 81, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890707

RESUMO

BACKGROUND: Papillary thyroid carcinoma (PTC) is a common endocrine malignancy. Studies have indicated that estrogen can regulate the expression of miRNAs in numerous malignancies. MiR-570-3p has been shown to have a regulatory function in various cancers. However, studies of the regulatory function of miR-570-3p and a direct link between estrogen (especially estradiol E2) and miR-570-3p in PTC have not been done. METHODS: Expression of miR-570-3p and its downstream target DPP4 in PTC tissues and cells was predicted using bioinformatics and validated by qRT-PCR and western blot assays. We then performed a series of gain-and-loss experiments to assess the functional significance of miR-570-3p/DPP4 axis in PTC progression in vitro and in vivo. Additionally, the methylation of the miR-570-3p promoter region was examined via bioinformatics analysis and MSP. Finally, the effects of E2 on PTC progression and the correlation between DNMT1/DNMT3A and EZH2 were predicted by bioinformatic tools and proved by luciferase reporter, ChIP, and co-IP assays. RESULTS: In PTC tumor tissues and cell lines, there was a lower expression level and a higher methylation level of miR-570-3p compared to normal tissues and cell lines. DPP4 was identified as the downstream target of miR-570-3p. Overexpression of miR-570-3p reduced the proliferative, migratory, and invasive capabilities, and promoted apoptosis, while overexpression of DPP4 reversed these effects in PTC cells. It was also discovered that DNMT1 and DNMT3A increased the CpG methylation level of the miR-570-3p promoter in an EZH2-dependent manner, which led to decreased expression of miR-570-3p. Furthermore, we observed that estrogen (E2) enhanced the methylation of miR-570-3p and suppressed its expression levels, resulting in augmented tumor growth in vivo in PTC. CONCLUSION: Estrogen regulates the EZH2/DNMTs/miR-570-3p/DPP4 signaling pathway to promote PTC progression.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , DNA Metiltransferase 3A , Dipeptidil Peptidase 4 , Proteína Potenciadora do Homólogo 2 de Zeste , Estrogênios , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , MicroRNAs/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Dipeptidil Peptidase 4/genética , DNA Metiltransferase 3A/genética , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Estrogênios/farmacologia , Estrogênios/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feminino , Camundongos , Metilação de DNA/genética , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Proliferação de Células/genética , Proliferação de Células/efeitos dos fármacos , Masculino , Regiões Promotoras Genéticas/genética
7.
FASEB J ; 38(13): e23706, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877842

RESUMO

The etiology of preeclampsia (PE), a complex and multifactorial condition, remains incompletely understood. DNA methylation, which is primarily regulated by three DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, plays a vital role in early embryonic development and trophectoderm differentiation. Yet, how DNMTs modulate trophoblast fusion and PE development remains unclear. In this study, we found that the DNMTs expression was downregulated during trophoblast cells fusion. Downregulation of DNMTs was observed during the reconstruction of the denuded syncytiotrophoblast (STB) layer of placental explants. Additionally, overexpression of DNMTs inhibited trophoblast fusion. Conversely, treatment with the DNA methylation inhibitor 5-aza-CdR decreased the expression of DNMTs and promoted trophoblast fusion. A combined analysis of DNA methylation data and gene transcriptome data obtained from the primary cytotrophoblasts (CTBs) fusion process identified 104 potential methylation-regulated differentially expressed genes (MeDEGs) with upregulated expression due to DNA demethylation, including CD59, TNFAIP3, SDC1, and CDK6. The transcription regulation region (TRR) of TNFAIP3 showed a hypomethylation with induction of 5-aza-CdR, which facilitated CREB recruitment and thereby participated in regulating trophoblast fusion. More importantly, clinical correlation analysis of PE showed that the abnormal increase in DNMTs may be involved in the development of PE. This study identified placental DNA methylation-regulated genes that may contribute to PE, offering a novel perspective on the role of epigenetics in trophoblast fusion and its implication in PE development.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Pré-Eclâmpsia , Trofoblastos , Trofoblastos/metabolismo , Feminino , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Fusão Celular , Placenta/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética
8.
Eur J Med Chem ; 274: 116538, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823264

RESUMO

DNA methyltransferase 1 (DNMT1) is the primary enzyme responsible for maintaining DNA methylation patterns during cellular division, crucial for cancer development by suppressing tumor suppressor genes. In this study, we retained the phthalimide structure of N-phthaloyl-l-tryptophan (RG108) and substituted its indole ring with nitrogen-containing aromatic rings of varying sizes. We synthesized 3-(9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acids and confirmed them as DNMT1 inhibitors through protein affinity testing, radiometric method using tritium labeled SAM, and MTT assay. Preliminary structure-activity relationship analysis revealed that introducing substituents on the carbazole ring could enhance inhibitory activity, with S-configuration isomers showing greater activity than R-configuration ones. Notably, S-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acid (7r-S) and S-3-(1,3,6-trichloro-9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acid (7t-S) exhibited significant DNMT1 enzyme inhibition activity, with IC50 values of 8.147 µM and 0.777 µM, respectively (compared to RG108 with an IC50 above 250 µM). Moreover, they demonstrated potential anti-proliferative activity on various tumor cell lines including A2780, HeLa, K562, and SiHa. Transcriptome analysis and KEGG pathway enrichment of K562 cells treated with 7r-S and 7t-S identified differentially expressed genes (DEGs) related to apoptosis and cell cycle pathways. Flow cytometry assays further indicated that 7r-S and 7t-S induce apoptosis in K562 cells and arrest them in the G0/G1 phase in a concentration-dependent manner. Molecular docking revealed that 7t-S may bind to the methyl donor S-adenosyl-l-methionine (SAM) site in DNMT1 with an orientation opposite to RG108, suggesting potential for deeper penetration into the DNMT1 pocket and laying the groundwork for further modifications.


Assuntos
Carbazóis , Proliferação de Células , DNA (Citosina-5-)-Metiltransferase 1 , Inibidores Enzimáticos , Humanos , Relação Estrutura-Atividade , Carbazóis/farmacologia , Carbazóis/química , Carbazóis/síntese química , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Ftalimidas , Triptofano/análogos & derivados
9.
Nano Lett ; 24(29): 8929-8939, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38865330

RESUMO

Bioorthogonal chemistry represents a powerful tool in chemical biology, which shows great potential in epigenetic modulation. As a proof of concept, the epigenetic modulation model of mitochondrial DNA (mtDNA) is selected because mtDNA establishes a relative hypermethylation stage under oxidative stress, which impairs the mitochondrion-based therapeutic effect during cancer therapy. Herein, we design a new biocompatible hydrogen-bonded organic framework (HOF) for a HOF-based mitochondrion-targeting bioorthogonal platform TPP@P@PHOF-2. PHOF-2 can activate a prodrug (pro-procainamide) in situ, which can specifically inhibit DNA methyltransferase 1 (DNMT1) activity and remodel the epigenetic modification of mtDNA, making it more susceptible to ROS damage. In addition, PHOF-2 can also catalyze artemisinin to produce large amounts of ROS, effectively damaging mtDNA and achieving better chemodynamic therapy demonstrated by both in vitro and in vivo studies. This work provides new insights into developing advanced bioorthogonal therapy and expands the applications of HOF and bioorthogonal catalysis.


Assuntos
DNA Mitocondrial , Epigênese Genética , Mitocôndrias , Espécies Reativas de Oxigênio , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , DNA Mitocondrial/genética , Epigênese Genética/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ligação de Hidrogênio , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/genética , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia
10.
J Am Chem Soc ; 146(27): 18722-18729, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38943667

RESUMO

Methylation, a widely occurring natural modification serving diverse regulatory and structural functions, is carried out by a myriad of S-adenosyl-l-methionine (AdoMet)-dependent methyltransferases (MTases). The AdoMet cofactor is produced from l-methionine (Met) and ATP by a family of multimeric methionine adenosyltransferases (MAT). To advance mechanistic and functional studies, strategies for repurposing the MAT and MTase reactions to accept extended versions of the transferable group from the corresponding precursors have been exploited. Here, we used structure-guided engineering of mouse MAT2A to enable biocatalytic production of an extended AdoMet analogue, Ado-6-azide, from a synthetic methionine analogue, S-(6-azidohex-2-ynyl)-l-homocysteine (N3-Met). Three engineered MAT2A variants showed catalytic proficiency with the extended analogues and supported DNA derivatization in cascade reactions with M.TaqI and an engineered variant of mouse DNMT1 both in the absence and presence of competing Met. We then installed two of the engineered variants as MAT2A-DNMT1 cascades in mouse embryonic stem cells by using CRISPR-Cas genome editing. The resulting cell lines maintained normal viability and DNA methylation levels and showed Dnmt1-dependent DNA modification with extended azide tags upon exposure to N3-Met in the presence of physiological levels of Met. This for the first time demonstrates a genetically stable system for biosynthetic production of an extended AdoMet analogue, which enables mild metabolic labeling of a DNMT-specific methylome in live mammalian cells.


Assuntos
Metilação de DNA , Metionina Adenosiltransferase , Metionina Adenosiltransferase/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/química , Animais , Camundongos , Engenharia de Proteínas , Epigenoma , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Humanos
11.
Cells ; 13(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920644

RESUMO

Hepatocellular carcinoma (HCC) development is associated with altered modifications in DNA methylation, changing transcriptional regulation. Emerging evidence indicates that DNA methyltransferase 1 (DNMT1) plays a key role in the carcinogenesis process. This study aimed to investigate how pirfenidone (PFD) modifies this pathway and the effect generated by the association between c-Myc expression and DNMT1 activation. Rats F344 were used for HCC development using 50 mg/kg of diethylnitrosamine (DEN) and 25 mg/kg of 2-Acetylaminofluorene (2-AAF). The HCC/PFD group received simultaneous doses of 300 mg/kg of PFD. All treatments lasted 12 weeks. On the other hand, HepG2 cells were used to evaluate the effects of PFD in restoring DNA methylation in the presence of the inhibitor 5-Aza. Histopathological, biochemical, immunohistochemical, and western blot analysis were carried out and our findings showed that PFD treatment reduced the amount and size of tumors along with decreased Glipican-3, ß-catenin, and c-Myc expression in nuclear fractions. Also, this treatment improved lipid metabolism by modulating PPARγ and SREBP1 signaling. Interestingly, PFD augmented DNMT1 and DNMT3a protein expression, which restores global methylation, both in our in vivo and in vitro models. In conclusion, our results suggest that PFD could slow down HCC development by controlling DNA methylation.


Assuntos
Carcinoma Hepatocelular , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Antígeno Nuclear de Célula em Proliferação , Piridonas , Animais , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Piridonas/farmacologia , Ratos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Células Hep G2 , Antígeno Nuclear de Célula em Proliferação/metabolismo , Masculino , Ratos Endogâmicos F344 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Dietilnitrosamina , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/genética
12.
Int Immunopharmacol ; 137: 112503, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906008

RESUMO

Psoriasis is classified as an autoimmune disorder characterized by abnormal immune response leading to the development of chronic dermal inflammation. Most individuals have a genetic vulnerability that may be further influenced by epigenetic changes occurring due to multiple variables such as pollutant exposure. Epigenetic modifications such as DNA methylation possess a dynamic nature, enabling cellular differentiation and adaptation by controlling gene expression. Di(2-ethylhexyl) phthalate (DEHP) and psoriatic inflammation are known to cause modification of DNA methylation via DNA methyltransferase (DNMT). However, it is not known whether DEHP, a ubiquitous plasticizer affects psoriatic inflammation via DNMT modulation. Therefore, this study investigated the effect of DNMT inhibitor, 5-aza-2'-deoxycytidine (AZA) on DEHP-induced changes in the expression of DNMT1, global DNA methylation, and anti-/inflammatory parameters (p-STAT3, IL-17A, IL-6, iNOS, IL-10, Foxp3, Nrf2, HO-1) in the skin and the peripheral adaptive/ myeloid immune cells (CD4+ T cells/CD11b+ cells) in imiquimod (IMQ) model of psoriasiform inflammation. Further, psoriasis-associated clinical/histopathological features (ear thickness, ear weight, ear PASI score, MPO activity, and H&E staining of the ear and the back skin) were also analyzed in IMQ model. Our data show that IMQ-treated mice with DEHP exposure had increased DNMT1 expression and DNA methylation which was associated with elevated inflammatory (p-STAT3, IL-17A, IL-6, iNOS) and downregulated anti-inflammatory mediators (IL-10, Foxp3, Nrf2, HO-1) in the peripheral immune cells (CD4+ T cells/CD11b+ cells) and the skin as compared to IMQ-treated mice. Treatment with DNMT1 inhibitor caused reduction in inflammatory and elevation in anti-inflammatory parameters with significant improvement in clinical/histopathological symptoms in both IMQ-treated and DEHP-exposed IMQ-treated mice. In conclusion, our study shows strong evidence indicating that DNMT1 plays an important role in DEHP-induced exacerbation of psoriasiform inflammation in mice through hypermethylation of DNA.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Decitabina , Dietilexilftalato , Psoríase , Pele , Animais , Metilação de DNA/efeitos dos fármacos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/patologia , Decitabina/farmacologia , Decitabina/uso terapêutico , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Pele/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Dietilexilftalato/toxicidade , Camundongos , Masculino , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Feminino
13.
Sci Rep ; 14(1): 13508, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866895

RESUMO

DNA methylation is an epigenetic mechanism that introduces a methyl group at the C5 position of cytosine. This reaction is catalyzed by DNA methyltransferases (DNMTs) and is essential for the regulation of gene transcription. The DNMT1 and DNMT3A or -3B family proteins are known targets for the inhibition of DNA hypermethylation in cancer cells. A selective non-nucleoside DNMT3A inhibitor was developed that mimics S-adenosyl-l-methionine and deoxycytidine; however, the mechanism of selectivity is unclear because the inhibitor-protein complex structure determination is absent. Therefore, we performed docking and molecular dynamics simulations to predict the structure of the complex formed by the association between DNMT3A and the selective inhibitor. Our simulations, binding free energy decomposition analysis, structural isoform comparison, and residue scanning showed that Arg688 of DNMT3A is involved in the interaction with this inhibitor, as evidenced by its significant contribution to the binding free energy. The presence of Asn1192 at the corresponding residues in DNMT1 results in a loss of affinity for the inhibitor, suggesting that the interactions mediated by Arg688 in DNMT3A are essential for selectivity. Our findings can be applied in the design of DNMT-selective inhibitors and methylation-specific drug optimization procedures.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Metilação de DNA , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/química , Sítios de Ligação
14.
Int Immunopharmacol ; 138: 112464, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38917526

RESUMO

BACKGROUND: Our previous research demonstrated that resveratrol counters DDP-induced ototoxicity by upregulating miR-455-5p, which targets PTEN. This study aimed to elucidate the underlying mechanisms involving GAS5 and DNA methyltransferase 1 (DNMT1) in resveratrol's protective action. METHODS: A luciferase reporter assay and RNA immunoprecipitation (RIP) assay were employed to study the binding between GAS5 and miR-455-5p, as well as between miR-455-5p and PTEN. HEI-OC1 cells treated with DDP were transfected with vectors for GAS5, si-GAS5, DNMT1, si-DNMT1, and miR-455-5p mimics, as well as PTEN. Subsequently, they were treated with resveratrol and exposed to DDP, both separately and in combination. The distribution of CpG islands in the GAS5 promoter was identified using MethyPrimer, and methylation-specific PCR (MSP) was conducted to determine the methylation levels of GAS5. Chromatin immunoprecipitation (ChIP) was utilized to examine the interaction between DNMT1 and GAS5. The viability of HEI-OC1 cells, catalase (CAT) activity, apoptosis, and ROS levels were assessed using the CCK-8 assay, CAT assay, TUNEL staining, and flow cytometry, respectively. An in vivo mouse model was developed to measure auditory brainstem response (ABR) thresholds, while RT-qPCR and Western blot analysis were employed to evaluate molecular levels. RESULTS: Our study discovered that GAS5 acts as a sponge for miR-455-5p, thereby increasing PTEN expression in DDP-treated HEI-OC1 cells. This process was reversed upon treatment with resveratrol. Importantly, DNMT1 promoted the methylation of the GAS5 promoter, leading to the suppression of GAS5 expression. This suppression enhanced the effectiveness of resveratrol in combating DDP-induced apoptosis and ROS in HEI-OC1 cells and amplified its protective effect against DDP's ototoxicity in vivo. CONCLUSIONS: Our research emphasizes the significance of the DNMT1/GAS5/miR-455-5p/PTEN axis as a promising new route to boost resveratrol's effectiveness against DDP-induced ototoxicity.


Assuntos
Cisplatino , DNA (Citosina-5-)-Metiltransferase 1 , Epigênese Genética , MicroRNAs , Ototoxicidade , PTEN Fosfo-Hidrolase , RNA Longo não Codificante , Resveratrol , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ototoxicidade/prevenção & controle , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Epigênese Genética/efeitos dos fármacos , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos
15.
J Biochem Mol Toxicol ; 38(6): e23737, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38798245

RESUMO

Recently, olsalazine a DNA hypomethylating agent was found to inhibit the growth of breast cancer cells. The present study was carried out to evaluate the effects of olsalazine pretreatment in the potentiation of chemosensitivity of gemcitabine for the treatment of hepatocellular carcinoma (HCC). In silico molecular docking was performed to analyze the interaction of olsalazine and gemcitabine with DNMT1 and DNA, respectively, using the AutoDock tools 1.5.6. Cytotoxicity of olsalazine, gemcitabine, and combination were measured on human HePG2 cells using MTT assay. Antiproliferative effects were assessed using animal model of N-nitrosodiethylamine and carbon tetrachloride-induced HCC. Treatment was initiated from 8th week of induction to 11th week and change in body weight, liver weight, and survival rate were measured. Following treatment, blood samples were collected for estimation serum biochemistry. Blood serum was used for the estimation of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), C-reactive protein [CRP], lactate dehydrogenase (LDH), and P53 levels. Oxidative stress markers were measured in liver tissue homogenates. Histopathology and immunohistochemistry (IHC) were performed on liver sections to detect the morphological changes and P53 expression. Docking analysis revealed the interactions between olsalazine and DNMT1 with a binding energy score of -5.34 and gemcitabine and DNA with a binding energy score of -5.93. Olsalazine pretreatment potentiated the antiproliferative effect of gemcitabine in cell line study. In the group receiving olsalazine pretreatment showed significant reductions in relative liver weight and improved survival rate of gemcitabine treatment group. Serum biochemical markers: serum glutamate pyruvate transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, and bilirubin revealed improved liver functions. Olsalazine pretreatment also reduced the levels of inflammatory markers like CRP, LDH, TNF-α, and IL-6 and oxidative stress markers dose dependently. Histopathology and IHC showed improved liver morphology with potentiated the induction of P53 upon olsalazine pretreatment in combination with gemcitabine. In conclusion, sequential combination of olsalazine and gemcitabine improved the treatment outcomes during the progression of HCC.


Assuntos
Carcinoma Hepatocelular , Desoxicitidina , Gencitabina , Neoplasias Hepáticas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Animais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Simulação de Acoplamento Molecular , Masculino , Sinergismo Farmacológico , Ratos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo
16.
Talanta ; 276: 126267, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762976

RESUMO

DNA Methyltransferase 1 (DNMT1) serves as a crucial biomarker associated with various diseases and is essential for evaluating DNA methylation levels, diagnosing diseases, and evaluating prognosis. As a result, a convenient, quantitative, and sensitive assay for detecting DNMT1 is in high demand. However, current techniques for DNMT1 detection struggle to balance accuracy, low cost, and high sensitivity, limiting their clinical usefulness. To address this challenge, we have developed a DNMT1 detection method (CAED), which combines aptamer-specific recognition with a highly programmable Entropy-driven catalysis DNA network and is further integrated with the CRISPR-Cas12a system. This innovative approach achieves a detection limit as low as 90.9 fmol/L. To demonstrate the clinical applicability and significance of our CAED method, we successfully measured DNMT1 levels in 10 plasma samples 10 cervical tissue samples. These results underscore the potential of our method as an accurate, affordable, and ultra-sensitive tool for evaluating DNMT1 levels. This innovative method offers a potent means for assessing DNMT1 levels and significantly advances disease diagnosis and health risk prediction. Plus, it establishes an innovative design framework for CRISPR-Cas12a-based biosensors, tailored explicitly for enzyme content quantification.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA (Citosina-5-)-Metiltransferase 1 , Entropia , Técnicas Biossensoriais/métodos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Humanos , Sistemas CRISPR-Cas/genética , Aptâmeros de Nucleotídeos/química , DNA Catalítico/química , DNA Catalítico/metabolismo , Limite de Detecção , Feminino
17.
Gene ; 920: 148531, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38705424

RESUMO

DNA methyltransferases (DNMTs) are important epigenetic modification during spermatogenesis. To further evaluate the pattern of DNMTs in horse testes during development, we investigated the expression and localization of DNMT1, DNMT3a and DNMT3b at different time points. The qRT-PCR results showed that DNMT1 expression was maintained in testes tissue from 6-month-old (0.5y) to 2-year-old (2y) of age and decreased after 3-year-old (3y) (P < 0.01). The expression levels of DNMT3a and DNMT3b peaked in testes tissue at 3y (P < 0.01). At 4-year-old (4y), the expression of DNMT3a and DNMT3b was decreased and became similar to that at 0.5y. Immunofluorescence of DNMT1, DNMT3a and DNMT3b on testis samples confirmed the differential expression and localization of these three DNA methylation transferases during horse development. Further molecular biological studies are needed to understand the implications of the expression patterns of these DNMTs in horse testes.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3B , Regulação da Expressão Gênica no Desenvolvimento , Testículo , Animais , Masculino , Cavalos/genética , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Metilação de DNA , Espermatogênese/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo
18.
Biochimie ; 223: 98-115, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38735570

RESUMO

Extrinsic and intrinsic pathological stimuli in vascular disorders induce DNA methylation based epigenetic reprogramming in endothelial cells, which leads to perturbed gene expression and subsequently results in endothelial dysfunction (ED). ED is also characterized by release of exosomes with altered proteome leading to paracrine interactions in vasculature and subsequently contributing to manifestation, progression and severity of vascular complications. However, epigenetic regulation of exosome proteome is not known. Hence, our present study aimed to understand influence of DNA methylation on exosome proteome composition and their influence on endothelial cell (EC) function. DNMT isoforms (DNMT1, DNMT3A, and DNMT3B) were overexpressed using lentivirus in ECs. Exosomes were isolated and characterized from ECs overexpressing DNMT isoforms and C57BL/6 mice plasma treated with 5-aza-2'-deoxycytidine. 3D spheroid assay was performed to understand the influence of exosomes derived from cells overexpressing DNMTs on EC functions. Further, the exosomes were subjected to TMT labelled proteomics analysis followed by validation. 3D spheroid assay showed increase in the pro-angiogenic activity in response to exosomes derived from DNMT overexpressing cells which was impeded by inclusion of 5-aza-2'-deoxycytidine. Our results showed that exosome proteome and PTMs were significantly modulated and were associated with dysregulation of vascular homeostasis, metabolism, inflammation and endothelial cell functions. In vitro and in vivo validation showed elevated DNMT1 and TGF-ß1 exosome proteins due to DNMT1 and DNMT3A overexpression, but not DNMT3B which was mitigated by 5-aza-2'-deoxycytidine indicating epigenetic regulation. Further, exosomes induced ED as evidenced by reduced expression of phospho-eNOSser1177. Our study unveils epigenetically regulated exosome proteins, aiding management of vascular complications.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases , Células Endoteliais , Exossomos , Proteoma , Exossomos/metabolismo , Animais , Proteoma/metabolismo , Camundongos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Humanos , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , DNA Metiltransferase 3B , DNA Metiltransferase 3A/metabolismo , Metilação de DNA , Epigênese Genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Decitabina/farmacologia
19.
Kidney Int ; 106(2): 258-272, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782200

RESUMO

Alteration of DNA methylation leads to diverse diseases, and the dynamic changes of DNA methylation (DNAm) on sets of CpG dinucleotides in mammalian genomes are termed "DNAm age" and "epigenetic clocks" that can predict chronological age. However, whether and how dysregulation of DNA methylation promotes cyst progression and epigenetic age acceleration in autosomal dominant polycystic kidney disease (ADPKD) remains elusive. Here, we show that DNA methyltransferase 1 (DNMT1) is upregulated in cystic kidney epithelial cells and tissues and that knockout of Dnmt1 and targeting DNMT1 with hydralazine, a safe demethylating agent, delays cyst growth in Pkd1 mutant kidneys and extends life span of Pkd1 conditional knockout mice. With methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), DNMT1 chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing analysis, we identified two novel DNMT1 targets, PTPRM and PTPN22 (members of the protein tyrosine phosphatase family). PTPRM and PTPN22 function as mediators of DNMT1 and the phosphorylation and activation of PKD-associated signaling pathways, including ERK, mTOR and STAT3. With whole-genome bisulfide sequencing in kidneys of patients with ADPKD versus normal individuals, we found that the methylation of epigenetic clock-associated genes was dysregulated, supporting that epigenetic age is accelerated in the kidneys of patients with ADPKD. Furthermore, five epigenetic clock-associated genes, including Hsd17b14, Itpkb, Mbnl1, Rassf5 and Plk2, were identified. Thus, the diverse biological roles of these five genes suggest that their methylation status may not only predict epigenetic age acceleration but also contribute to disease progression in ADPKD.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Epigênese Genética , Camundongos Knockout , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/enzimologia , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Animais , Humanos , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Camundongos , Transdução de Sinais , Modelos Animais de Doenças , Masculino , Progressão da Doença , Rim/patologia , Rim/metabolismo
20.
PeerJ ; 12: e17363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766487

RESUMO

Background: Promoter hypermethylation of the tumor suppressor gene is one of the well-studied causes of cancer development. The drugs that reverse the process by driving demethylation could be a candidate for anticancer therapy. This study was designed to investigate the effects of arsenic disulfide on PTPL1 methylation in diffuse large B cell lymphoma (DLBCL). Methods: We knocked down the expression of PTPL1 in two DLBCL cell lines (i.e., DB and SU-DHL-4 cells) using siRNA. Then the DLBCL proliferation was determined in the presence of PTPL1 knockdown. The methylation of PTPL1 in DLBCL cells was analyzed by methylation specific PCR (MSPCR). The effect of arsenic disulfide on the PTPL1 methylation was determined in DLBCL cell lines in the presence of different concentrations of arsenic disulfide (5 µM, 10 µM and 20 µM), respectively. To investigate the potential mechanism on the arsenic disulfide-mediated methylation, the mRNA expression of DNMT1, DNMT3B and MBD2 was determined. Results: PTPL1 functioned as a tumor suppressor gene in DLBCL cells, which was featured by the fact that PTPL1 knockdown promoted the proliferation of DLBCL cells. PTPL1 was found hypermethylated in DLBCL cells. Arsenic disulfide promoted the PTPL1 demethylation in a dose-dependent manner, which was related to the inhibition of DNMTs and the increase of MBD2. Conclusion: Experimental evidence shows that PTPL1 functions as a tumor suppressor gene in DLBCL progression. PTPL1 hyper-methylation could be reversed by arsenic disulfide in a dose-dependent manner.


Assuntos
Arsenicais , Metilação de DNA , Linfoma Difuso de Grandes Células B , Humanos , Arsenicais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dissulfetos/farmacologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , DNA Metiltransferase 3B , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...