Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.217
Filtrar
1.
Mol Genet Genomic Med ; 12(5): e2420, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38773911

RESUMO

OBJECTIVE: This study aims to report a severe phenotype of Arboleda-Tham syndrome in a 20-month-old girl, characterized by global developmental delay, distinct facial features, intellectual disability. Arboleda-Tham syndrome is known for its wide phenotypic spectrum and is associated with truncating variants in the KAT6A gene. METHODS: To diagnose this case, a combination of clinical phenotype assessment and whole-exome sequencing technology was employed. The genetic analysis involved whole-exome sequencing, followed by confirmation of the identified variant through Sanger sequencing. RESULTS: The whole-exome sequencing revealed a novel de novo frameshift mutation c.3048del (p.Leu1017Serfs*17) in the KAT6A gene, which is classified as likely pathogenic. This mutation was not found in the ClinVar and HGMD databases and was not present in her parents. The mutation leads to protein truncation or activation of nonsense-mediated mRNA degradation. The mutation is located within exon 16, potentially leading to protein truncation or activation of nonsense-mediated mRNA degradation. Protein modeling suggested that the de novo KAT6A mutation might alter hydrogen bonding and reduce protein stability, potentially damaging the protein structure and function. CONCLUSION: This study expands the understanding of the genetic basis of Arboleda-Tham syndrome, highlighting the importance of whole-exome sequencing in diagnosing cases with varied clinical presentations. The discovery of the novel KAT6A mutation adds to the spectrum of known pathogenic variants and underscores the significance of this gene in the syndrome's pathology.


Assuntos
Deficiências do Desenvolvimento , Sequenciamento do Exoma , Humanos , Feminino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Deficiências do Desenvolvimento/diagnóstico , Lactente , Mutação da Fase de Leitura , Histona Acetiltransferases/genética , Fenótipo , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual/diagnóstico
2.
Mol Genet Metab ; 142(1): 108469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564972

RESUMO

The trafficking protein particle (TRAPP) complex is a multisubunit protein complex that functions as a tethering factor involved in intracellular trafficking. TRAPPC11, a crucial subunit of this complex, is associated with pathogenic variants that cause a spectrum of disease, which can range from a limb girdle muscular dystrophy (LGMD) to developmental disability with muscle disease, movement disorder and global developmental delay (GDD)/intellectual disability (ID), or even a congenital muscular dystrophy (CMD). We reviewed the phenotype of all reported individuals with TRAPPC11-opathies, including an additional Mexican patient with novel compound heterozygous missense variants in TRAPPC11 (c.751 T > C and c.1058C > G), restricted to the Latino population. In these 54 patients muscular dystrophy signs are common (early onset muscle weakness, increased serum creatine kinase levels, and dystrophic changes in muscle biopsy). They present two main phenotypes, one with a slowly progressive LGMD with or without GDD/ID (n = 12), and another with systemic involvement characterized by short stature, GDD/ID, microcephaly, hypotonia, poor speech, seizures, cerebral atrophy, cerebellar abnormalities, movement disorder, scoliosis, liver disease, and cataracts (n = 42). In 6 of them CMD was identified. Obstructive hydrocephaly, retrocerebellar cyst, and talipes equinovarus found in the individual reported here has not been described in TRAPPC11 deficiency. As in previous patients, membrane trafficking assays in our patient showed defective abnormal endoplasmic reticulum-Golgi transport as well as decreased expression of LAMP2, and ICAM-1 glycoproteins. This supports previous statements that TRAPPC11-opathies are in fact a congenital disorder of glycosylation (CDG) with muscular dystrophy.


Assuntos
Proteínas de Transporte Vesicular , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Mutação de Sentido Incorreto , Fenótipo , Proteínas de Transporte Vesicular/genética , Relatos de Casos como Assunto
3.
Genes (Basel) ; 15(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674365

RESUMO

O'Donnell-Luria-Rodan (ODLURO) syndrome is an autosomal dominant disorder caused by mutations in the KMT2E gene. The clinical phonotype of the affected individuals is typically characterized by global developmental delay, autism, epilepsy, hypotonia, macrocephaly, and very mild dysmorphic facial features. In this report, we describe the case of a 6-year-old boy with ODLURO syndrome who is a carrier of the synonymous mutation c.186G>A (p.Ala62=) in the KMT2E gene, predicted to alter splicing by in silico tools. Given the lack of functional studies on the c.186G>A variant, in order to assess its potential functional effect, we sequenced the patient's cDNA demonstrating its impact on the mechanism of splicing. To the best of our knowledge, our patient is the second to date reported carrying this synonymous mutation, but he is the first whose functional investigation has confirmed the deleterious consequence of the variant, resulting in exon 4 skipping. Additionally, we suggest a potential etiological mechanism that could be responsible for the aberrant splicing mechanism in KMT2E.


Assuntos
Proteínas de Ligação a DNA , Deficiências do Desenvolvimento , Criança , Humanos , Masculino , Transtorno Autístico/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Megalencefalia/genética , Fenótipo , Splicing de RNA/genética , Mutação Silenciosa
4.
Clin Genet ; 106(1): 109-113, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38665048

RESUMO

Usmani-Riazuddin syndrome (USRISR, MIM# 619548; USRISD, MIM#619467) is a very rare genetic condition. recently associated with deleterious variants in AP1G1 (MIM* 603533). It is characterized by multisystemic involvement including intellectual disability, speech and developmental delay, behavioral anomalies, muscular tone disorders, seizures, limb defects, and unspecified facial gestalt. In this report, we describe this syndrome for the second time, in association to a novel AP1G1 variant identified in a toddler with multisystemic involvement including intellectual disability, speech and developmental delay, behavioral anomalies, arrhythmias, hearing loss, skin changes, and limb defects. Next generation sequencing (NGS) analysis through clinical exome disclosed AP1G1: c.1969C>G (p.Leu657Val), de novo, likely pathogenic variant, according to ACMG classification criteria. Proband's facial features resembled the spectrum of chromatinopathies. Clinical pictures were analyzed and a clinical overlap was supported by DeepGestalt analysis (www.face2gene.com). The system identified 6 chromatin disorders out of 30 possible diagnoses. The remaining 24 included 9 miscellaneous cryptic chromosomal abnormalities (excluded due to normal microarray study). To the best of our knowledge, this is the first description of likely distinctive facial features in a patient with Usmani-Riazuddin syndrome. Further multicentric analyses are needed for a better definition of this aspect.


Assuntos
Deficiência Intelectual , Fenótipo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Mutação/genética , Pré-Escolar , Feminino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia
5.
Hum Genet ; 143(3): 437-453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38520561

RESUMO

General transcription factor IIIC subunit 5 (GTF3C5) encodes transcription factor IIIC63 (TFIIIC63). It binds to DNA to recruit another transcription factor, TFIIIB, and RNA polymerase III (Pol III) to mediate the transcription of small noncoding RNAs, such as tRNAs. Here, we report four individuals from three families presenting with a multisystem developmental disorder phenotype with biallelic variants in GTF3C5. The overlapping features include growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Using lymphoblastoid cell lines (LCLs) from two affected individuals, we observed a reduction in TFIIIC63 protein levels compared to control LCLs. Genome binding of TFIIIC63 protein is also reduced in LCL from one of the affected individuals. Additionally, approximately 40% of Pol III binding regions exhibited reduction in the level of Pol III occupancy in the mutant genome relative to the control, while approximately 54% of target regions showed comparable levels of Pol III occupancy between the two, indicating partial impairment of Pol III occupancy in the mutant genome. Yeasts with subject-specific variants showed temperature sensitivity and impaired growth, supporting the notion that the identified variants have deleterious effects. gtf3c5 mutant zebrafish showed developmental defects, including a smaller body, head, and eyes. Taken together, our data show that GTF3C5 plays an important role in embryonic development, and that biallelic variants in this gene cause a multisystem developmental disorder. Our study adds GTF3C5-related disorder to the growing list of genetic disorders associated with Pol III transcription machinery.


Assuntos
Deficiências do Desenvolvimento , RNA Polimerase III , Fatores de Transcrição TFIII , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Alelos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Deficiência Intelectual/genética , Mutação , Linhagem , Fenótipo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo , Transcrição Gênica , Peixe-Zebra/genética
6.
J Hum Genet ; 69(6): 287-290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38448605

RESUMO

Rare heterozygous variants in exons 33-34 of the SRCAP gene are associated with Floating-Harbor syndrome and have a dominant-negative mechanism of action. At variance, heterozygous null alleles falling in other parts of the same gene cause developmental delay, hypotonia, musculoskeletal defects, and behavioral abnormalities (DEHMBA) syndrome. We report an 18-year-old man with DEHMBA syndrome and obstructive sleep apnea, who underwent exome sequencing (ES) and whole transcriptome sequencing (WTS) on peripheral blood. Trio analysis prioritized the de novo heterozygous c.5658+5 G > A variant. WTS promptly demostrated four different abnormal transcripts affecting >40% of the reads, three of which leading to a frameshift. This study demonstrated the efficacy of a combined ES-WTS approach in solving undiagnosed cases. We also speculated that sleep respiratory disorder may be an underdiagnosed complication of DEHMBA syndrome.


Assuntos
Sequenciamento do Exoma , Humanos , Masculino , Adolescente , Íntrons/genética , Exoma/genética , Hipotonia Muscular/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Transcriptoma/genética , Anormalidades Múltiplas/genética , Transtornos do Sono-Vigília/genética , Apneia Obstrutiva do Sono/genética , Heterozigoto
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519006

RESUMO

Mutations in the SCN8A gene, encoding the voltage-gated sodium channel NaV1.6, are associated with a range of neurodevelopmental syndromes. The p.(Gly1625Arg) (G1625R) mutation was identified in a patient diagnosed with developmental epileptic encephalopathy (DEE). While most of the characterized DEE-associated SCN8A mutations were shown to cause a gain-of-channel function, we show that the G1625R variant, positioned within the S4 segment of domain IV, results in complex effects. Voltage-clamp analyses of NaV1.6G1625R demonstrated a mixture of gain- and loss-of-function properties, including reduced current amplitudes, increased time constant of fast voltage-dependent inactivation, a depolarizing shift in the voltage dependence of activation and inactivation, and increased channel availability with high-frequency repeated depolarization. Current-clamp analyses in transfected cultured neurons revealed that these biophysical properties caused a marked reduction in the number of action potentials when firing was driven by the transfected mutant NaV1.6. Accordingly, computational modeling of mature cortical neurons demonstrated a mild decrease in neuronal firing when mimicking the patients' heterozygous SCN8A expression. Structural modeling of NaV1.6G1625R suggested the formation of a cation-π interaction between R1625 and F1588 within domain IV. Double-mutant cycle analysis revealed that this interaction affects the voltage dependence of inactivation in NaV1.6G1625R. Together, our studies demonstrate that the G1625R variant leads to a complex combination of gain and loss of function biophysical changes that result in an overall mild reduction in neuronal firing, related to the perturbed interaction network within the voltage sensor domain, necessitating personalized multi-tiered analysis for SCN8A mutations for optimal treatment selection.


Assuntos
Potenciais de Ação , Deficiências do Desenvolvimento , Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.6 , Neurônios , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Epilepsia/genética , Epilepsia/patologia , Epilepsia/metabolismo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Animais , Masculino , Feminino , Células HEK293 , Mutação
8.
Am J Med Genet A ; 194(7): e63578, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38425142

RESUMO

FEZF2 encodes a transcription factor critical to neurodevelopment that regulates other neurodevelopment genes. Rare variants in FEZF2 have previously been suggested to play a role in autism, and cases of 3p14 microdeletions that include FEZF2 share a neurodevelopmental phenotype including mild dysmorphic features and intellectual disability. We identified seven heterozygous predicted deleterious variants in FEZF2 (three frameshifts, one recurrent missense in two independent cases, one nonsense, and one complete gene deletion) in unrelated individuals with neurodevelopmental disorders including developmental delay/intellectual disability, autism, and/or attention-deficit/hyperactivity. Variants were confirmed to be de novo in five of seven cases and paternally inherited from an affected father in one. Predicted deleterious variants in FEZF2 may affect the expression of genes that are involved in fate choice pathways in developing neurons, and thus contribute to the neurodevelopmental phenotype. Future studies are needed to clarify the mechanism by which FEZF2 leads to this neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Fenótipo , Humanos , Masculino , Feminino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Criança , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Pré-Escolar , Adolescente , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição
10.
Am J Med Genet A ; 194(7): e63599, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38517182

RESUMO

Pathogenic variants in TRIO, encoding the guanine nucleotide exchange factor, are associated with two distinct neurodevelopmental delay phenotypes: gain-of-function missense mutations within the spectrin repeats are causative for a severe developmental delay with macrocephaly (MIM: 618825), whereas loss-of-function missense variants in the GEF1 domain and truncating variants throughout the gene lead to a milder developmental delay and microcephaly (MIM: 617061). In three affected family members with mild intellectual disability/NDD and microcephaly, we detected a novel heterozygous TRIO variant at the last coding base of exon 31 (NM_007118.4:c.4716G>A). RNA analysis from patient-derived lymphoblastoid cells confirmed aberrant splicing resulting in the skipping of exon 31 (r.4615_4716del), leading to an in-frame deletion in the first Pleckstrin homology subdomain of the GEF1 domain: p.(Thr1539_Lys1572del). To test for a distinct gestalt, facial characteristics of the family members and 41 previously published TRIO cases were systematically evaluated via GestaltMatcher. Computational analysis of the facial gestalt suggests a distinguishable facial TRIO-phenotype not outlined in the existing literature.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Linhagem , Fenótipo , Sítios de Splice de RNA , Humanos , Fatores de Troca do Nucleotídeo Guanina/genética , Masculino , Feminino , Sítios de Splice de RNA/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Microcefalia/genética , Microcefalia/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Éxons/genética , Splicing de RNA/genética , Fácies , Proteínas Serina-Treonina Quinases
11.
J Hum Genet ; 69(5): 197-203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374166

RESUMO

CAPZA2 encodes the α2 subunit of CAPZA, which is vital for actin polymerization and depolymerization in humans. However, understanding of diseases associated with CAPZA2 remains limited. To date, only three cases have been documented with neurodevelopmental abnormalities such as delayed motor development, speech delay, intellectual disability, hypotonia, and a history of seizures. In this study, we document a patient who exhibited seizures, mild intellectual disability, and impaired motor development yet did not demonstrate speech delay or hypotonia. The patient also suffered from recurrent instances of respiratory infections, gastrointestinal and allergic diseases. A novel de novo splicing variant c.219+1 G > A was detected in the CAPZA2 gene through whole-exome sequencing. This variant led to exon 4 skipping in mRNA splicing, confirmed by RT-PCR and Sanger sequencing. To our knowledge, this is the third study on human CAPZA2 defects, documenting the fourth unambiguously diagnosed case. Furthermore, this splicing mutation type is reported here for the first time. Our research offers additional support for the existence of a CAPZA2-related non-syndromic neurodevelopmental disorder. Our findings augment our understanding of the phenotypic range associated with CAPZA2 deficiency and enrich the knowledge of the mutational spectrum of the CAPZA2 gene.


Assuntos
Proteína de Capeamento de Actina CapZ , Deficiências do Desenvolvimento , Epilepsia , Heterozigoto , Hipotonia Muscular , Mutação , Pré-Escolar , Feminino , Humanos , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Epilepsia/genética , Sequenciamento do Exoma , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Fenótipo , Splicing de RNA/genética , Proteína de Capeamento de Actina CapZ/genética
12.
Clin Genet ; 105(6): 671-675, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38351533

RESUMO

The biallelic variants of the POP1 gene are associated with the anauxetic dysplasia (AAD OMIM 607095), a rare skeletal dysplasia, characterized by prenatal rhizomelic shortening of limbs and generalized joint hypermobility. Affected individuals usually have normal neurodevelopmental milestones. Here we present three cases from the same family with likely pathogenic homozygous POP1 variant and a completely novel phenotype: a girl with global developmental delay and autism, microcephaly, peculiar dysmorphic features and multiple congenital anomalies. Two subsequent pregnancies were terminated due to multiple congenital malformations. Fetal DNA samples revealed the same homozygous variant in the POP1 gene. Expression of the RMRP was reduced in the proband compared with control and slightly reduced in both heterozygous parents, carriers for this variant. To our knowledge, this is the first report of this new phenotype, associated with a novel likely pathogenic variant in POP1. Our findings expand the phenotypic spectrum of POP1-related disorders.


Assuntos
Homozigoto , Fenótipo , Humanos , Feminino , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Mutação , Linhagem , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Pré-Escolar , Criança , Predisposição Genética para Doença
13.
Clin Genet ; 105(6): 620-629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38356149

RESUMO

PPP1R21 encodes for a conserved protein that is involved in endosomal maturation. Biallelic pathogenic variants in PPP1R21 have been associated with a syndromic neurodevelopmental disorder from studying 13 affected individuals. In this report, we present 11 additional individuals from nine unrelated families and their clinical, radiological, and molecular findings. We identified eight different variants in PPP1R21, of which six were novel variants. Global developmental delay and hypotonia are neurological features that were observed in all individuals. There is also a similar pattern of dysmorphic features with coarse faces as a gestalt observed in several individuals. Common findings in 75% of individuals with available brain imaging include delays in myelination, wavy outline of the bodies of the lateral ventricles, and slight prominence of the bodies of the lateral ventricles. PPP1R21-related neurodevelopmental disorder is associated with a consistent phenotype and should be considered in highly consanguineous individuals presenting with developmental delay/intellectual disability along with coarse facial features.


Assuntos
Transtornos do Neurodesenvolvimento , Fenótipo , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Linhagem
14.
Clin Genet ; 105(6): 655-660, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38384171

RESUMO

Precise regulation of gene expression is important for correct neurodevelopment. 9q34.3 deletions affecting the EHMT1 gene result in a syndromic neurodevelopmental disorder named Kleefstra syndrome. In contrast, duplications of the 9q34.3 locus encompassing EHMT1 have been suggested to cause developmental disorders, but only limited information has been available. We have identified 15 individuals from 10 unrelated families, with 9q34.3 duplications <1.5 Mb in size, encompassing EHMT1 entirely. Clinical features included mild developmental delay, mild intellectual disability or learning problems, autism spectrum disorder, and behavior problems. The individuals did not consistently display dysmorphic features, congenital anomalies, or growth abnormalities. DNA methylation analysis revealed a weak DNAm profile for the cases with 9q34.3 duplication encompassing EHMT1, which could segregate the majority of the affected cases from controls. This study shows that individuals with 9q34.3 duplications including EHMT1 gene present with mild non-syndromic neurodevelopmental disorders and DNA methylation changes different from Kleefstra syndrome.


Assuntos
Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 9 , Metilação de DNA , Cardiopatias Congênitas , Histona-Lisina N-Metiltransferase , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Cromossomos Humanos Par 9/genética , Masculino , Feminino , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Duplicação Cromossômica/genética , Criança , Pré-Escolar , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Adolescente , Fenótipo
15.
Eur J Hum Genet ; 32(6): 630-638, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38424297

RESUMO

Mutations in ADNP result in Helsmoortel-Van der Aa syndrome. Here, we describe the first de novo intronic deletion, affecting the splice-acceptor site of the first coding ADNP exon in a five-year-old girl with developmental delay and autism. Whereas exome sequencing failed to detect the non-coding deletion, genome-wide CpG methylation analysis revealed an episignature suggestive of a Helsmoortel-Van der Aa syndrome diagnosis. This diagnosis was further supported by PhenoScore, a novel facial recognition software package. Subsequent whole-genome sequencing resolved the three-base pair ADNP deletion c.[-5-1_-4del] with transcriptome sequencing showing this deletion leads to skipping of exon 4. An N-terminal truncated protein could not be detected in transfection experiments with a mutant expression vector in HEK293T cells, strongly suggesting this is a first confirmed diagnosis exclusively due to haploinsufficiency of the ADNP gene. Pathway analysis of the methylome indicated differentially methylated genes involved in brain development, the cytoskeleton, locomotion, behavior, and muscle development. Along the same line, transcriptome analysis identified most of the differentially expressed genes as upregulated, in line with the hypomethylated CpG episignature and confirmed the involvement of the cytoskeleton and muscle development pathways that are also affected in patient cell lines and animal models. In conclusion, this novel mutation for the first time demonstrates that Helsmoortel-Van der Aa syndrome can be caused by a loss-of-function mutation. Moreover, our study elegantly illustrates the use of EpiSignatures, WGS and Phenoscore as novel complementary diagnostic tools in case a of negative WES result.


Assuntos
Proteínas do Tecido Nervoso , Sítios de Splice de RNA , Humanos , Feminino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pré-Escolar , Células HEK293 , Mutação com Perda de Função , Metilação de DNA , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Transtorno do Espectro Autista , Cardiopatias , Fácies , Transtornos do Neurodesenvolvimento
16.
J Med Genet ; 61(2): 132-141, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37580113

RESUMO

BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.


Assuntos
Deficiência Intelectual , Leucoencefalopatias , Humanos , Criança , Corpo Caloso , Fácies , Mutação/genética , Fenótipo , Genótipo , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Síndrome , Deficiências do Desenvolvimento/patologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
17.
Arthritis Rheumatol ; 76(4): 599-613, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37946666

RESUMO

OBJECTIVE: The peripheral B cell compartment is heavily disturbed in systemic lupus erythematosus (SLE), but whether B cells develop aberrantly in the bone marrow (BM) is largely unknown. METHODS: We performed single-cell RNA/B cell receptor (BCR) sequencing and immune profiling of BM B cells and classified patients with SLE into two groups: early B cell (Pro-B and Pre-B) normal (EBnor) and EB defective/low (EBlo) groups. RESULTS: The SLE-EBlo group exhibited more severe disease activity and proinflammatory status, overaction of type I interferon signaling and metabolic pathways within the B cell compartment, and aberrant BCR repertoires compared with the SLE-EBnor group. Moreover, in one patient with SLE who was initially classified in the SLE-EBlo group, early B cell deficiency and associated abnormalities were largely rectified in a second BM sample at the remission phase. CONCLUSION: In summary, this study suggests that early B cell loss in BM defines a unique pathological state in a subset of patients with SLE that may play an active role in the dysregulated autoimmune responses.


Assuntos
Medula Óssea , Lúpus Eritematoso Sistêmico , Humanos , Criança , Medula Óssea/patologia , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Linfócitos B , Transdução de Sinais
18.
Nature ; 623(7988): 772-781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968388

RESUMO

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Assuntos
Deficiências do Desenvolvimento , Embrião de Mamíferos , Mutação , Fenótipo , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Núcleo Celular/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Mutação com Ganho de Função , Genótipo , Mutação com Perda de Função , Modelos Genéticos , Modelos Animais de Doenças
19.
Nature ; 621(7978): 373-380, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704762

RESUMO

The development of the human brain involves unique processes (not observed in many other species) that can contribute to neurodevelopmental disorders1-4. Cerebral organoids enable the study of neurodevelopmental disorders in a human context. We have developed the CRISPR-human organoids-single-cell RNA sequencing (CHOOSE) system, which uses verified pairs of guide RNAs, inducible CRISPR-Cas9-based genetic disruption and single-cell transcriptomics for pooled loss-of-function screening in mosaic organoids. Here we show that perturbation of 36 high-risk autism spectrum disorder genes related to transcriptional regulation uncovers their effects on cell fate determination. We find that dorsal intermediate progenitors, ventral progenitors and upper-layer excitatory neurons are among the most vulnerable cell types. We construct a developmental gene regulatory network of cerebral organoids from single-cell transcriptomes and chromatin modalities and identify autism spectrum disorder-associated and perturbation-enriched regulatory modules. Perturbing members of the BRG1/BRM-associated factor (BAF) chromatin remodelling complex leads to enrichment of ventral telencephalon progenitors. Specifically, mutating the BAF subunit ARID1B affects the fate transition of progenitors to oligodendrocyte and interneuron precursor cells, a phenotype that we confirmed in patient-specific induced pluripotent stem cell-derived organoids. Our study paves the way for high-throughput phenotypic characterization of disease susceptibility genes in organoid models with cell state, molecular pathway and gene regulatory network readouts.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Deficiências do Desenvolvimento , Organoides , Análise da Expressão Gênica de Célula Única , Humanos , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno Autístico/complicações , Transtorno Autístico/genética , Transtorno Autístico/patologia , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem da Célula/genética , Cromatina/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Edição de Genes , Mutação com Perda de Função , Mosaicismo , Neurônios/metabolismo , Neurônios/patologia , Organoides/citologia , Organoides/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Transcrição Gênica
20.
J Child Neurol ; 38(6-7): 373-388, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37427422

RESUMO

INTRODUCTION: The aim of this study was to evaluate genetic risk factors in term-born children with antenatal periventricular hemorrhagic infarction (PVHI), presumed antenatal periventricular venous infarction and periventricular hemorrhagic infarction in preterm neonates. METHODS: Genetic analysis and magnetic resonance imaging were performed in 85 children: term-born children (≥36 gestational weeks) with antenatal periventricular hemorrhagic infarction (n = 6) or presumed antenatal (n = 40) periventricular venous infarction and preterm children (<36 gestational weeks) with periventricular hemorrhagic infarction (n = 39). Genetic testing was performed using exome or large gene panel (n = 6700 genes) sequencing. RESULTS: Pathogenic variants associated with stroke were found in 11 of 85 (12.9%) children with periventricular hemorrhagic infarction/periventricular venous infarction. Among the pathogenic variants, COL4A1/A2 and COL5A1 variants were found in 7 of 11 (63%) children. Additionally, 2 children had pathogenic variants associated with coagulopathy, whereas 2 other children had other variants associated with stroke. Children with collagenopathies had significantly more often bilateral multifocal stroke with severe white matter loss and diffuse hyperintensities in the white matter, moderate to severe hydrocephalus, moderate to severe decrease in size of the ipsilesional basal ganglia and thalamus compared to children with periventricular hemorrhagic infarction/periventricular venous infarction without genetic changes in the studied genes (P ≤ .01). Severe motor deficit and epilepsy developed more often in children with collagenopathies compared to children without genetic variants (P = .0013, odds ratio [OR] = 233, 95% confidence interval [CI]: 2.8-531; and P = .025, OR = 7.3, 95% CI: 1.3-41, respectively). CONCLUSIONS: Children with periventricular hemorrhagic infarction/periventricular venous infarction have high prevalence of pathogenic variants in collagene genes (COL4A1/A2 and COL5A1). Genetic testing should be considered for all children with periventricular hemorrhagic infarction/periventricular venous infarction; COL4A1/A2 and COL5A1/A2 genes should be investigated first.


Assuntos
Ventrículos Cerebrais , Acidente Vascular Cerebral , Recém-Nascido , Humanos , Criança , Feminino , Gravidez , Prevalência , Ventrículos Cerebrais/patologia , Acidente Vascular Cerebral/patologia , Deficiências do Desenvolvimento/patologia , Infarto/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA