Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.709
Filtrar
1.
BMC Neurol ; 24(1): 191, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849737

RESUMO

BACKGROUND: Depression is a complex mood disorder whose pathogenesis involves multiple cell types and molecular pathways. The prefrontal cortex, as a key brain region for emotional regulation, plays a crucial role in depression. Microglia, as immune cells of the central nervous system, have been closely linked to the development and progression of depression through their dysfunctional states. This study aims to utilize single-cell RNA-seq technology to reveal the pathogenic mechanism of YAP1 in prefrontal cortex microglia in depression. METHODS: Firstly, we performed cell type identification and differential analysis on normal and depressed prefrontal cortex tissues by mining single-cell RNA-seq datasets from public databases. Focusing on microglia, we conducted sub-clustering, differential gene KEGG enrichment analysis, intercellular interaction analysis, and pseudotime analysis. Additionally, a cross-species analysis was performed to explore the similarities and differences between human and rhesus monkey prefrontal cortex microglia. To validate our findings, we combined bulk RNA-Seq and WGCNA analysis to reveal key genes associated with depression and verified the relationship between YAP1 and depression using clinical samples. RESULTS: Our study found significant changes in the proportion and transcriptional profiles of microglia in depressed prefrontal cortex tissues. Further analysis revealed multiple subpopulations of microglia and their associated differential genes and signaling pathways related to depression. YAP1 was identified as a key molecule contributing to the development of depression and was significantly elevated in depression patients. Moreover, the expression level of YAP1 was positively correlated with HAMD scores, suggesting its potential as a biomarker for predicting the onset of depression. CONCLUSION: This study utilized single-cell RNA-seq technology to reveal the pathogenic mechanism of YAP1 in prefrontal cortex microglia in depression, providing a new perspective for a deeper understanding of the pathophysiology of depression and identifying potential targets for developing novel treatment strategies.


Assuntos
Macaca mulatta , Microglia , Córtex Pré-Frontal , Análise de Célula Única , Proteínas de Sinalização YAP , Córtex Pré-Frontal/metabolismo , Microglia/metabolismo , Proteínas de Sinalização YAP/metabolismo , Humanos , Animais , Análise de Célula Única/métodos , RNA-Seq , Depressão/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Masculino , Feminino , Análise da Expressão Gênica de Célula Única
2.
Pak J Pharm Sci ; 37(2(Special)): 435-442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38822547

RESUMO

Depression is a common non-motor symptom of Parkinson's disease. Previous studies demonstrated that hydroxysafflor yellow A had properties of improving motor symptoms of Parkinson's disease. The effect of hydroxysafflor yellow A on depression in Parkinson's disease mice is investigated in this study. To induce Parkinson's disease model, male Swiss mice were exposed to rotenone (30 mg/kg) for 6 weeks. The chronic unpredictable mild stress was employed to induce depression from week 3 to week 6. Sucrose preference, tail suspension, and forced swimming tests were conducted. Golgi and Nissl staining of hippocampus were carried out. The levels of dopamine, 5-hydroxytryptamine and the expression of postsynaptic density protein 95, brain-derived neurotrophic factor in hippocampus were assayed. It showed that HSYA improved the depression-like behaviors of Parkinson's disease mice. Hydroxysafflor yellow A attenuated the injury of nerve and elevated contents of dopamine, 5-hydroxytryptamine in hippocampus. Treatment with hydroxysafflor yellow A also augmented the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor. These findings suggest that hydroxysafflor yellow A ameliorates depression-like behavior in Parkinson's disease mice through regulating the contents of postsynaptic density protein 95 and brain-derived neurotrophic factor, therefore protecting neurons and neuronal dendrites of the hippocampus.


Assuntos
Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo , Chalcona , Depressão , Hipocampo , Quinonas , Serotonina , Animais , Quinonas/farmacologia , Quinonas/uso terapêutico , Chalcona/análogos & derivados , Chalcona/farmacologia , Chalcona/uso terapêutico , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Comportamento Animal/efeitos dos fármacos , Serotonina/metabolismo , Dopamina/metabolismo , Rotenona/farmacologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/psicologia
3.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822367

RESUMO

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Assuntos
Proteínas Correpressoras , Interleucina-10 , Camundongos Knockout , Microglia , Doenças Neuroinflamatórias , PPAR gama , Transdução de Sinais , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Depressão/metabolismo , Depressão/etiologia , Interleucina-10/metabolismo , Interleucina-10/deficiência , Interleucina-10/genética , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/efeitos dos fármacos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Doenças Neuroinflamatórias/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos
4.
Exp Neurol ; 378: 114822, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823676

RESUMO

Post-stroke depression (PSD) is a complication of cerebrovascular disease, which can increase mortality after stroke. CRH is one of the main signaling peptides released after activation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. It affects synaptic plasticity by regulating inflammation, oxidative stress and autophagy in the central nervous system. And the loss of spines exacerbates depression-like behavior. Therefore, synaptic deficits induced by CRH may be related to post-stroke depression. However, the underlying mechanism remains unclear. The Keap1-Nrf2 complex is one of the core components of the antioxidant response. As an autophagy associated protein, p62 participates in the Keap1-NrF2 pathway through its Keap1 interaction domain. Oxidative stress is involved in the feedback regulation between Keap1-Nrf2 pathway and p62.However, whether the relationship between CRH and the Keap1-Nrf2-p62 pathway is involved in PSD remains unknown. This study found that serum levels of CRH in 22 patients with PSD were higher than those in healthy subjects. We used MCAO combined with CUMS single-cage SD rats to establish an animal model of PSD. Animal experiments showed that CRHR1 antagonist prevented synaptic loss in the hippocampus of PSD rats and alleviated depression-like behavior. CRH induced p62 accumulation in the prefrontal cortex of PSD rats through CRHR1. CRHR1 antagonist inhibited Keap1-Nrf2-p62 pathway by attenuating oxidative stress. In addition, we found that abnormal accumulation of p62 induces PSD. It alleviates depression-like behavior by inhibiting the expression of p62 and promoting the clearance of p62 in PSD rats. These findings can help explore the pathogenesis of PSD and design targeted treatments for PSD.


Assuntos
Depressão , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina , Acidente Vascular Cerebral , Animais , Ratos , Masculino , Depressão/etiologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/psicologia , Acidente Vascular Cerebral/metabolismo , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Humanos , Regulação para Baixo/efeitos dos fármacos , Pessoa de Meia-Idade , Modelos Animais de Doenças , Feminino , Idoso , Proteína Sequestossoma-1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Hormônio Liberador da Corticotropina/metabolismo
5.
Eur J Pharmacol ; 976: 176693, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38834095

RESUMO

ß-arrestin2 is a versatile protein for signaling transduction in brain physiology and pathology. Herein, we investigated the involvement of ß-arrestin2 in pharmacological effects of fluoxetine for depression. A chronic mild stress (CMS) model was established using wild-type (WT) and ß-arrestin2-/- mice. Behavioral results demonstrated that CMS mice showed increased immobility time in the tail suspension test and forced swimming test, elevated concentrations of pro-inflammatory factors in peripheral blood, increased expression of pyroptosis-related proteins, and increased co-labeling of glial fibrillary acidic protein and Caspase1 p10 in the hippocampus compared to the CON group. Treatment with fluoxetine (FLX) ameliorated these conditions. However, compared with the ß-arrestin2-/- CMS group, these results of the ß-arrestin2-/- CMS + FLX group showed no significant changes. These results suggested that the above effects of FLX could be eliminated by knocking out ß-arrestin2. Mass spectrometry implying that FLX promoted the binding of ß-arrestin2 to the NLRP2 inflammasome of depressed mice. Subsequently, the results of the cellular experiments suggested that the 5HT2B receptor antagonist may attenuate L-kynurenine + ATP-induced cell pyroptosis by attenuating NLRP2 binding to ß-arrestin2. We further found that the lack of ß-arrestin2 eliminated the anti-pyroptosis effect of fluoxetine. In conclusion, ß-arrestin2 is an essential protein for fluoxetine to alleviate pyroptosis in the hippocampal astrocytes of CMS mice. Mechanistically, we found that the 5-HT2BR-ß-arrestin2-NLRP2 axis is vital for maintaining the antidepressant effects of fluoxetine.


Assuntos
Antidepressivos , Astrócitos , Depressão , Modelos Animais de Doenças , Fluoxetina , Piroptose , Estresse Psicológico , beta-Arrestina 2 , Animais , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Piroptose/efeitos dos fármacos , beta-Arrestina 2/metabolismo , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Masculino , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Camundongos Endogâmicos C57BL , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos Knockout , Comportamento Animal/efeitos dos fármacos , Inflamassomos/metabolismo , Doença Crônica
6.
Neurosci Lett ; 835: 137851, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38838971

RESUMO

Chronic psychosocial stress stands as a significant heterogeneous risk factor for psychiatric disorders. The brain's physiological response to such stress varies based on the frequency and intensity of stress episodes. However, whether stress episodes divergently could affect hippocampal cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling remains unclear, a key regulator of psychiatric symptoms. We aimed to assess how two distinct patterns of social defeat stress exposure impact anxiety- and depression-like behaviors, fear, and hippocampal CREB-BDNF signaling in adult male rats. To explore this, adult male Sprague-Dawley rats were subjected to psychosocial stress using a Resident/Intruder paradigm for ten consecutive days (continuous social defeat stress: [CS]) or ten social defeat stress over the course of 21 days (intermittent social defeat stress [IS]). Behavioral tests (including novelty-suppressed feeding test, forced swimming test, and contextually conditioned fear) were conducted. Protein expression levels of phosphorylated CREB and BDNF in the dorsal and ventral hippocampi were examined. CS led to heightened anxiety-like behavior, fear, and increased levels of phosphorylated CREB in both the dorsal and ventral hippocampi. Conversely, IS resulted in increased anxiety-like behavior and behavioral despair alongside decreased levels of phosphorylated CREB and BDNF, particularly in the dorsal hippocampus. These findings indicate that chronic psychosocial stress divergently affects hippocampal CREB-BDNF signaling and emotional regulation depending on the stress episode. Such insights could enhance our understanding of the molecular basis of the heterogeneity of psychiatric disorders and facilitate the development of innovative treatment approaches to patients with psychiatric disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Hipocampo , Ratos Sprague-Dawley , Estresse Psicológico , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Masculino , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Fosforilação , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Derrota Social , Ratos , Ansiedade/metabolismo , Ansiedade/psicologia , Comportamento Animal/fisiologia , Medo/fisiologia , Medo/psicologia , Emoções/fisiologia , Depressão/metabolismo , Depressão/psicologia
7.
Sci Rep ; 14(1): 13559, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866877

RESUMO

Naringenin (NAR) has various biological activities but low bioavailability. The current study examines the effect of Naringenin-loaded hybridized nanoparticles (NAR-HNPs) and NAR on depression induced by streptozotocin (STZ) in rats. NAR-HNPs formula with the highest in vitro NAR released profile, lowest polydispersity index value (0.21 ± 0.02), highest entrapment efficiency (98.7 ± 2.01%), as well as an acceptable particle size and zeta potential of 415.2 ± 9.54 nm and 52.8 ± 1.04 mV, respectively, was considered the optimum formulation. It was characterized by differential scanning calorimetry, examined using a transmission electron microscope, and a stability study was conducted at different temperatures to monitor its stability efficiency showing that NAR-HNP formulation maintains stability at 4 °C. The selected formulation was subjected to an acute toxicological test, a pharmacokinetic analysis, and a Diabetes mellitus (DM) experimental model. STZ (50 mg/kg) given as a single i.p. rendered rats diabetic. Diabetic rat groups were allocated into 4 groups: one group received no treatment, while the remaining three received oral doses of unloaded HNPs, NAR (50 mg/kg), NAR-HNPs (50 mg/kg) and NAR (50 mg/kg) + peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, GW9662 (1mg/kg, i.p.) for three weeks. Additional four non-diabetic rat groups received: distilled water (normal), free NAR, and NAR-HNPs, respectively for three weeks. NAR and NAR-HNPs reduced immobility time in forced swimming test and serum blood glucose while increasing serum insulin level. They also reduced cortical and hippocampal 5-hydroxyindoeacetic acid, 3,4-Dihydroxy-phenylacetic acid, malondialdehyde, NLR family pyrin domain containing-3 (NLRP3) and interleukin-1beta content while raised serotonin, nor-epinephrine, dopamine and glutathione level. PPAR-γ gene expression was elevated too. So, NAR and NAR-HNPs reduced DM-induced depression by influencing brain neurotransmitters and exhibiting anti-oxidant and anti-inflammatory effects through the activation PPAR-γ/ NLRP3 pathway. NAR-HNPs showed the best pharmacokinetic and therapeutic results.


Assuntos
Antidepressivos , Diabetes Mellitus Experimental , Flavanonas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanopartículas , PPAR gama , Animais , Flavanonas/farmacologia , Flavanonas/administração & dosagem , Flavanonas/química , PPAR gama/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nanopartículas/química , Ratos , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina , Ratos Wistar , Anilidas
8.
Brain Res Bull ; 214: 111008, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866373

RESUMO

The infralimbic (IL) cortex dysfunction has been implicated in major depressive disorder (MDD), yet the precise cellular and molecular mechanisms remain poorly understood. In this study, we investigated the role of layer V pyramidal neurons in a mouse model of MDD induced by repeated lipopolysaccharide (LPS) administration. Our results demonstrate that three days of systemic LPS administration induced depressive-like behavior and upregulated mRNA levels of interleukin-1ß (IL-1ß), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-ß (TGF-ß) in the IL cortex. Electrophysiological recordings revealed a significant decrease in the intrinsic excitability of layer V pyramidal neurons in the IL following systemic LPS exposure. Importantly, chemogenetic activation of IL pyramidal neurons ameliorated LPS-induced depressive-like behavior. Additionally, LPS administration significantly increased microglial activity in the IL, as evidenced by a greater number of Ionized calcium binding adaptor molecule-1 (IBA-1)-positive cells. Morphometric analysis further unveiled enlarged soma, decreased branch numbers, and shorter branch lengths of microglial cells in the IL cortex following LPS exposure. Moreover, the activation of pyramidal neurons by clozapine-N-oxide increased the microglia branch length but did not change branch number or cytosolic area. These results collectively suggest that targeted activation of pyramidal neurons in the IL cortex mitigates microglial response and ameliorates depressive-like behaviors induced by systemic LPS administration. Therefore, our findings offer potential therapeutic targets for the development of interventions aimed at alleviating depressive symptoms by modulating IL cortical circuitry and microglial activity.


Assuntos
Lipopolissacarídeos , Microglia , Células Piramidais , Animais , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos Endogâmicos C57BL , Depressão/induzido quimicamente , Depressão/metabolismo , Depressão/tratamento farmacológico , Clozapina/farmacologia , Clozapina/análogos & derivados , Modelos Animais de Doenças , Transtorno Depressivo Maior/metabolismo
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 810-817, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38862438

RESUMO

OBJECTIVE: To explore the neuroprotective effect of coenzyme Q10 and its possible mechanism in mice with chronic restraint stress (CRS). METHODS: Mouse models of CRS were treated with intraperitoneal injections of coenzyme Q10 at low, moderate and high doses (50, 100 and 200 mg/kg, respectively, n=8), VX765 (a caspase-1 specific inhibitor, 50 mg/kg, n=8), or fluoxetine (10 mg/kg, n=8) on a daily basis for 4 weeks, and the changes in depression-like behaviors of the mice were assessed by sugar water preference test, forced swimming test and tail suspension test. The expression of glial fibrillary acidic protein (GFAP) in the hippocampus of the mice was detected using immunohistochemistry, and the number of synaptic spines was determined with Golgi staining. Western blotting was performed to detect the changes in the expressions of GFAP and pyroptosis-related proteins in the hippocampus, and the colocalization of neurons and caspase-1 p10 was examined with immunofluorescence assay. RESULTS: Compared with the normal control mice, the mouse models of CRS showed significantly reduced sugar water preference and increased immobility time in forced swimming and tail suspension tests (P < 0.05), and these depression-like behaviors were obviously improved by treatment with coenzyme Q10, VX765 or FLX. The mouse models showed a significantly decreased positive rate of GFAP and lowered GFAP protein expression in the hippocampus with obviously decreased synaptic spines, enhanced expressions of GSDMD-N, caspase-1 and IL-1ß, and increased colocalization of neurons and caspase-1 p10 (all P < 0.05). All these changes were significantly ameliorated in the mouse models after treatment with Q10. CONCLUSION: Coenzyme Q10 can alleviate depression-like behaviors in mice with CRS by down-regulating the pyroptosis signaling pathway.


Assuntos
Depressão , Modelos Animais de Doenças , Hipocampo , Piroptose , Restrição Física , Transdução de Sinais , Estresse Psicológico , Ubiquinona , Animais , Camundongos , Piroptose/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Regulação para Baixo/efeitos dos fármacos , Caspase 1/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Comportamento Animal/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
11.
Neuron ; 112(11): 1725-1727, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843777

RESUMO

In this issue of Neuron, Li, Zhang, et al.1 find that the bile acid receptor TGR5 in the lateral hypothalamus influences neuronal dynamics underlying stress-induced depression-like behaviors. Inhibition of these neurons produces antidepressant-like effects through a circuit that includes hippocampal CA3 and dorsolateral septum, revealing a novel potential therapeutic for depression.


Assuntos
Ácidos e Sais Biliares , Receptores Acoplados a Proteínas G , Animais , Ácidos e Sais Biliares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Depressão/metabolismo
12.
Adv Neurobiol ; 35: 87-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38874719

RESUMO

Understanding the relationship between stress and breast cancer development is essential to preventing and alleviating the cancer. Recent research has shed light on the cognitive, physiological, cellular, and molecular underpinnings of how the endorphin pathway and stress pathway affect breast cancer. This chapter consists of two parts. Part 1 will discuss the role of endorphins in breast cancer development. This includes a discussion of three topics: (1) the neurophysiological effect of endorphins on breast tumor growth in vivo, along with further experiments that will deepen our knowledge of how ß-endorphin affects breast cancer; (2) how both the opioid receptor and somatostatin receptor classes alter intracellular signaling in breast cancer cells; and (3) genetic alleles in the opioid signaling pathway that are correlated with increased breast cancer risk. Part 2 will discuss the role of endorphins in recovery from breast cancer. This includes a discussion of three topics: (1) the relationship between breast cancer diagnosis and depression; (2) the effectiveness of cognitive behavioral therapy in reducing stress in breast cancer patients; and (3) the effect of psychotherapy and exercise on preserving telomere length in breast cancer patients.


Assuntos
Neoplasias da Mama , Estresse Psicológico , Animais , Feminino , Humanos , beta-Endorfina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Terapia Cognitivo-Comportamental , Depressão/metabolismo , Endorfinas/metabolismo , Receptores Opioides/metabolismo , Transdução de Sinais , Estresse Psicológico/metabolismo
13.
Adv Neurobiol ; 35: 221-239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38874725

RESUMO

Physical exercise is often cited as an important part of an intervention for depression, and there is empirical evidence to support this. However, the mechanism of action through which any potential antidepressant effects are produced is not widely understood. Recent evidence points toward the involvement of endogenous opioids, and especially the mu-opioid system, as a partial mediator of these effects. In this chapter, we discuss the current level of empirical support for physical exercise as either an adjunctive or standalone intervention for depression. We then review the extant evidence for involvement of endogenous opioids in the proposed antidepressant effects of exercise, with a focus specifically on evidence for mu-opioid system involvement.


Assuntos
Terapia por Exercício , Exercício Físico , Receptores Opioides mu , Humanos , Receptores Opioides mu/metabolismo , Exercício Físico/fisiologia , Terapia por Exercício/métodos , Depressão/terapia , Depressão/metabolismo , Resultado do Tratamento
14.
Adv Neurobiol ; 35: 435-451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38874735

RESUMO

Endogenous opioids and their associated receptors form a system that maintains survival by positively reinforcing behaviors that are vital to life. Cancer and cancer treatment side effects capitalize on this system pathogenically, leading to maladaptive biological responses (e.g., inflammation), as well as cognitive and emotional consequences, most notably depression. Psychologists who treat people with cancer frequently find depression to be a primary target for intervention. However, in people with cancer, the etiology of depression is unique and complex. This complexity necessitates that psycho-oncologists have a fundamental working knowledge of the biological substrates that underlie depression/cancer comorbidity. Building on other chapters in this volume pertaining to cancer and endogenous opioids, this chapter focuses on the clinical applications of basic scientific findings.


Assuntos
Depressão , Inflamação , Neoplasias , Peptídeos Opioides , Humanos , Analgésicos Opioides/uso terapêutico , Depressão/metabolismo , Depressão/tratamento farmacológico , Inflamação/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Peptídeos Opioides/metabolismo
15.
J Affect Disord ; 359: 333-341, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38801920

RESUMO

BACKGROUND: Neuroimmune plays an important role in major depressive disorders (MDD). N-linked protein glycosylation (NLG) might contribute to depression by regulating the neuroinflammatory response. As microglia is the main executor of neuroimmune function in the central neural system (CNS), targeting the process of N-linked protein glycosylation of microglia in the mice used for studying depression might potentially offer new avenues for the strategy for MDD. METHODS: The chronic unpredictable mild stress (CUMS) mouse model was established for the whole brain microglia isolating. Then, RNA samples of microglia were extracted for transcriptome sequencing and mRNA analysis. Immunofluorescence (IF) was used to identify the expression level of NLG-related enzyme, B4galt1, in microglia. RESULTS: The data showed that NLG was positively related to depression. Moreover, the NLG-related gene, B4galt1 increased expression in the microglia of CUMS mice. Then, the inhibition of NLG reversed the depressive behavior in CUMS mice. The expression level of B4galt1 in CUMS mice was upregulating following the NLG-inhibitor treatment. Similar results haven't been observed in neurons. Information obtained from these experiments showed increasing expression of B4galt1 in microglia following depressive-like behaviors. CONCLUSIONS: These findings indicate that NLG in microglia is associated with MDD, and suggest that therapeutically targeting NLG might be an effective strategy for depression. LIMITATIONS: How to modulate the B4galt1 or NLG pathways in microglia efficiently and economically request new technologies.


Assuntos
Transtorno Depressivo Maior , Modelos Animais de Doenças , Microglia , Animais , Camundongos , Microglia/metabolismo , Glicosilação , Transtorno Depressivo Maior/metabolismo , Masculino , Estresse Psicológico/metabolismo , Estresse Psicológico/imunologia , Depressão/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo
16.
Transl Psychiatry ; 14(1): 229, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816410

RESUMO

Depression is a prevalent mental disorder with a complex biological mechanism. Following the rapid development of systems biology technology, a growing number of studies have applied proteomics and metabolomics to explore the molecular profiles of depression. However, a standardized resource facilitating the identification and annotation of the available knowledge from these scattered studies associated with depression is currently lacking. This study presents ProMENDA, an upgraded resource that provides a platform for manual annotation of candidate proteins and metabolites linked to depression. Following the establishment of the protein dataset and the update of the metabolite dataset, the ProMENDA database was developed as a major extension of its initial release. A multi-faceted annotation scheme was employed to provide comprehensive knowledge of the molecules and studies. A new web interface was also developed to improve the user experience. The ProMENDA database now contains 43,366 molecular entries, comprising 20,847 protein entries and 22,519 metabolite entries, which were manually curated from 1370 human, rat, mouse, and non-human primate studies. This represents a significant increase (more than 7-fold) in molecular entries compared to the initial release. To demonstrate the usage of ProMENDA, a case study identifying consistently reported proteins and metabolites in the brains of animal models of depression was presented. Overall, ProMENDA is a comprehensive resource that offers a panoramic view of proteomic and metabolomic knowledge in depression. ProMENDA is freely available at https://menda.cqmu.edu.cn .


Assuntos
Depressão , Metabolômica , Proteômica , Animais , Humanos , Ratos , Camundongos , Depressão/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Bases de Dados Factuais
17.
J Cell Mol Med ; 28(11): e18365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38818577

RESUMO

Traditional Chinese medicine, particularly Zhi-zi-chi decoction (ZZCD), is gaining recognition as a potential treatment for depression. This study aimed to uncover the molecular mechanisms behind ZZCD's antidepressant effects, focusing on lncRNA Six3os1 and histone H3K4 methylation at the BDNF promoter. Network pharmacology and in vivo experiments were conducted to identify ZZCD targets and evaluate its impact on depression-related behaviours and neuron injury. The role of Six3os1 in recruiting KMT2A to the BDNF promoter and its effects on oxidative stress and neuron injury were investigated. ZZCD reduced depression-like behaviours and neuron injury in mice subjected to chronic stress. It upregulated Six3os1, which facilitated KMT2A recruitment to the BDNF promoter, leading to increased histone H3K4 methylation and enhanced BDNF expression. ZZCD also inhibited CORT-induced neuron injury, inflammatory response and oxidative stress in vitro. ZZCD's antidepressant properties involve Six3os1 upregulation, which exerts neuroprotective effects by inhibiting oxidative stress and neuron injury, thereby alleviating depressive symptoms. Targeting Six3os1 upregulation may offer a potential therapeutic intervention for depression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Medicamentos de Ervas Chinesas , Histonas , Estresse Oxidativo , Regiões Promotoras Genéticas , RNA Longo não Codificante , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Histonas/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Depressão/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Metilação/efeitos dos fármacos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Modelos Animais de Doenças
18.
Exp Gerontol ; 192: 112451, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729250

RESUMO

The NLRP3 inflammasome is critically involved in the development of depression. The E3 ubiquitin ligase TRIM31 negatively regulates this process by promoting the degradation of NLRP3 through the ubiquitin-proteasome pathway. Modified Danzhi Xiaoyaosan (MDZXYS) has shown good therapeutic effect in both preclinical and clinical depression treatments, yet the underlying mechanisms of its antidepressant effects are not fully understood. In the present study, we aimed to explore the antidepressant mechanisms of MDZXYS, focusing on NLRP3 activation and ubiquitin-mediated degradation. We employed rats with depression induced by chronic unpredictable mild stress (CUMS) and conducted various behavioral tests, including the sucrose preference, forced swimming, and open field tests. Neuronal damage in CUMS-treated rats was assessed using Nissl staining. We measured proinflammatory cytokine levels using ELISA kits and analyzed NLRP3/TRIM31 protein expression via Western blotting and immunofluorescence staining. Our results disclosed that MDZXYS reversed CUMS-induced depression-like behaviors in rats, reduced proinflammatory cytokine levels (IL-1ß), and ameliorated neuronal damage in the prefrontal cortex. Additionally, CUMS activated the NLRP3 inflammasome in the prefrontal cortex and upregulated the protein expression of TRIM31. After MDZXYS administration, the expression of NLRP3 inflammasome-associated proteins was reduced, while the expression level of TRIM31 was further increased. Through co-localized immunofluorescence staining, we observed a significant elevation in the co-localization expression of NLRP3 and TRIM31 in the prefrontal cortex of the MDZXYS group. These findings suggest that inhibiting NLRP3 inflammasome-mediated neuroinflammation by modulating the TRIM31signaling pathway may underlie the antidepressant effects of MDZXYS, and further support targeting NLRP3 as a novel approach for the prevention and treatment of depression.


Assuntos
Antidepressivos , Depressão , Medicamentos de Ervas Chinesas , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Estresse Psicológico , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Masculino , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/metabolismo , Ratos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Comportamento Animal/efeitos dos fármacos
19.
Pharmacol Res ; 204: 107214, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763328

RESUMO

Studies have shown that the microbiota-gut-brain axis is highly correlated with the pathogenesis of depression in humans. However, whether independent oral microbiome that do not depend on gut microbes could affect the progression of depression in human beings remains unclear, neither does the presence and underlying mechanisms of the microbiota-oral-brain axis in the development of the condition. Hence this study that encompasses clinical and animal experiments aims at investigating the correlation between oral microbiota and the onset of depression via mediating the microbiota-oral-brain axis. We compared the oral microbial compositions and metabolomes of 87 patients with depressive symptoms versus 70 healthy controls. We found that the oral microbial and metabolic signatures were significantly different between the two groups. Significantly, germ-free (GF) mice transplanted with saliva from mice exposing to chronic restraint stress (CRS) displayed depression-like behavior and oral microbial dysbiosis. This was characterized by a significant differential abundance of bacterial species, including the enrichment of Pseudomonas, Pasteurellaceae, and Muribacter, as well as the depletion of Streptococcus. Metabolomic analysis showed the alternation of metabolites in the plasma of CRS-exposed GF mice, especially Eicosapentaenoic Acid. Furthermore, oral and gut barrier dysfunction caused by CRS-induced oral microbiota dysbiosis may be associated with increased blood-brain barrier permeability. Pseudomonas aeruginosa supplementation exacerbated depression-like behavior, while Eicosapentaenoic Acid treatment conferred protection against depression-like states in mice. These results suggest that oral microbiome and metabolic function dysbiosis may be relevant to the pathogenesis and pathophysiology of depression. The proposed microbiota-oral-brain axis provides a new way and targets for us to study the pathogenesis of depression.


Assuntos
Depressão , Disbiose , Estresse Psicológico , Animais , Disbiose/metabolismo , Depressão/metabolismo , Depressão/microbiologia , Depressão/psicologia , Depressão/etiologia , Masculino , Humanos , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia , Estresse Psicológico/psicologia , Feminino , Adulto , Camundongos , Restrição Física/psicologia , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal , Eixo Encéfalo-Intestino , Boca/microbiologia , Pessoa de Meia-Idade , Saliva/metabolismo , Saliva/microbiologia , Comportamento Animal , Barreira Hematoencefálica/metabolismo
20.
Zhen Ci Yan Jiu ; 49(5): 519-525, 2024 May 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38764124

RESUMO

Acupuncture treatment for depression has definite therapeutic efficacy, and its mechanism has been extensively studied. The extracellular regulatory protein kinase(ERK) signaling pathway is involved in the development and progression of depression. This article reviewed and summarized the research progress on the regulation of the ERK signaling pathway by acupuncture in the treatment of depression in recent years, focusing on the physiological activation and regulatory mechanism of the ERK signaling pathway, its association with the occurrence of depression, and the mechanisms through which acupuncture activates the ERK signaling pathway to treat depression (including enhancing neuronal synaptic plasticity, promoting the release of neurotrophic factors, and inhibiting neuronal apoptosis). Future research could explore the relationship between the ERK pathway and other pathways, investigate other brain regions besides the prefrontal cortex and hippocampus, examine differences in regulatory mechanisms between male and female patients, assess the effects of different acupuncture techniques on the ERK pathway, and increase efforts to explore mechanism of synaptic plasticity regulation, so as to provide reference for the clinical application and mechanism sludy of acupuncture in depression treatment.


Assuntos
Terapia por Acupuntura , Depressão , Sistema de Sinalização das MAP Quinases , Humanos , Depressão/terapia , Depressão/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Plasticidade Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA