Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893502

RESUMO

Callus cultures of the Iranian medicinal plant Salvia atropatana were initiated from three-week-old seedlings on Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA) and various cytokinins. Although all tested hormonal variants of the medium and explant enabled callus induction, the most promising growth was noted for N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU)-induced calli. Three lines obtained on this medium (cotyledon line-CL, hypocotyl line-HL, and root line-RL) were preselected for further studies. Phenolic compounds in the callus tissues were identified using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry) and quantified with HPLC (high-performance liquid chromatography). All lines exhibited intensive growth and contained twelve phenolic acid derivatives, with rosmarinic acid predominating. The cotyledon-derived callus line displayed the highest growth index values and polyphenol content; this was exposed to different light-emitting diodes (LED) for improving biomass accumulation and secondary metabolite yield. Under LED treatments, all callus lines exhibited enhanced RA and total phenolic content compared to fluorescent light, with the highest levels observed for white (48.5-50.2 mg/g dry weight) and blue (51.4-53.9 mg/g dry weight) LEDs. The selected callus demonstrated strong antioxidant potential in vitro based on the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) tests. Our findings confirm that the S. atropatana callus system is suitable for enhanced rosmarinic acid production; the selected optimized culture provide high-quality plant-derived products.


Assuntos
Polifenóis , Salvia , Polifenóis/metabolismo , Salvia/metabolismo , Salvia/química , Antioxidantes/metabolismo , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Cinamatos/metabolismo , Cinamatos/química , Ácido Rosmarínico , Depsídeos/metabolismo , Cotilédone/metabolismo , Cotilédone/química , Ácidos Naftalenoacéticos/farmacologia , Ácidos Naftalenoacéticos/química , Ácidos Naftalenoacéticos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos
2.
Plant Physiol Biochem ; 211: 108671, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703500

RESUMO

Salvia castanea Diels, a close wild relative to the medicinal plant, Salvia miltiorrhiza Bunge, primarily grows in high-altitude regions. While the two species share similar active compounds, their content varies significantly. WRKY transcription factors are key proteins, which regulate plant growth, stress response, and secondary metabolism. We identified 46 ScWRKY genes in S. castanea and found that ScWRKY35 was a highly expressed gene associated with secondary metabolites accumulation. This study aimed to explore the role of ScWRKY35 gene in regulating the accumulation of secondary metabolites and its response to UV and cadmium (Cd) exposure in S. miltiorrhiza. It was found that transgenic S. miltiorrhiza hairy roots overexpressing ScWRKY35 displayed upregulated expression of genes related to phenolic acid synthesis, resulting in increased salvianolic acid B (SAB) and rosmarinic acid (RA) contents. Conversely, tanshinone pathway gene expression decreased, leading to lower tanshinone levels. Further, overexpression of ScWRKY35 upregulated Cd transport protein HMA3 in root tissues inducing Cd sequestration. In contrast, the Cd uptake gene NRAMP1 was downregulated, reducing Cd absorption. In response to UV radiation, ScWRKY35 overexpression led to an increase in the accumulation of phenolic acid and tanshinone contents, including upregulation of genes associated with salicylic acid (SA) and jasmonic acid (JA) synthesis. Altogether, these findings highlight the role of ScWRKY35 in enhancing secondary metabolites accumulation, as well as in Cd and UV stress modulation in S. miltiorrhiza, which offers a novel insight into its phytochemistry and provides a new option for the genetic improvement of the plants.


Assuntos
Cádmio , Depsídeos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cádmio/metabolismo , Depsídeos/metabolismo , Metabolismo Secundário/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Benzofuranos/metabolismo , Ácido Rosmarínico , Cinamatos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Raios Ultravioleta , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Abietanos/metabolismo , Abietanos/biossíntese , Hidroxibenzoatos/metabolismo
3.
Environ Sci Pollut Res Int ; 31(25): 36882-36893, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758440

RESUMO

Metallic nanoparticles (NPs) have been highlighted to improve plant growth and development in the recent years. Although positive effects of some NPs have been reported on medicinal plants, the knowledge for stimulations application of iron (Fe) and zinc (Zn) NPs is not available. Hence, the present work aimed to discover the effects of Fe NPs at 10, 20, and 30 mg L-1 and Zn NPs at 60 and 120 mg L-1 on growth, water content, photosynthesis pigments, phenolic content, essential oil (EO) quality, and rosmarinic acid (RA) production of lemon balm (Melissa officinalis L.). The results showed that Fe NPs at 20 and 30 mg L-1 and Zn NPs at 120 mg L-1 significantly improved biochemical attributes. Compared with control plants, the interaction of Fe NPs at 30 mg-1 and Zn NPs at 120 mg L-1 led to noticeable increases in shoot weight (72%), root weight (92%), chlorophyll (Chl) a (74%), Chl b (47%), RA (66%), proline (81%), glycine betaine (GB, 231%), protein (286%), relative water content (8%), EO yield (217%), total phenolic content (63%), and total flavonoid content (57%). Heat map analysis revealed that protein, GB, EO yield, shoot weight, root weight, and proline had the maximum changes upon Fe NPs. Totally, the present study recommended the stimulations application of Fe NPs at 20-30 mg L-1 and Zn NPs at 120 mg L-1 to reach the optimum growth and secondary metabolites of lemon balm.


Assuntos
Cinamatos , Depsídeos , Ferro , Melissa , Óleos Voláteis , Ácido Rosmarínico , Zinco , Depsídeos/metabolismo , Cinamatos/metabolismo , Fenóis , Nanopartículas Metálicas , Folhas de Planta/metabolismo , Fotossíntese/efeitos dos fármacos
4.
Appl Microbiol Biotechnol ; 108(1): 337, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767664

RESUMO

Flow cytometry has made a significant contribution to the study of several complex fundamental mechanisms in plant cytogenetics, becoming a useful analytical tool to understand several mechanisms and processes underlying plant growth, development, and function. In this study, the genome size, DNA ploidy level, and A-T/G-C ratio were measured for the first time for two genotypes of chia, Salvia hispanica, an herbaceous plant commonly used in phytotherapy and nutrition. This study also evaluated, for the first time by flow cytometry, the capacity to produce organic acids of tissues stained with LysoTracker Deep Red after elicitation with either yeast extract or cadmium chloride. Rosmarinic acid content differed between the two chia varieties treated with different elicitor concentrations, compared with non-elicited plant material. Elicited tissues of both varieties contained a higher content of rosmarinic acid compared with non-elicited cultures, and cadmium chloride at 500 µM was much better than that at 1000 µM, which led to plant death. For both genotypes, a dose-response was observed with yeast extract, as the higher the concentration of elicitor used, the higher rosmarinic acid content, resulting also in better results and a higher content of rosmarinic acid compared with cadmium chloride. This study demonstrates that flow cytometry may be used as a taxonomy tool, to distinguish among very close genotypses of a given species and, for the first time in plants, that this approach can also be put to profit for a characterization of the cytoplasmic acid phase and the concomitant production of secondary metabolites of interest in vitro, with or without elicitation. KEY POINTS: • Genome size, ploidy level, A-T/G-C ratio, and cytoplasm acid phase of S. hispanica • Cytometry study of cytoplasm acid phase of LysoTracker Deep Red-stained plant cells • Yeast extract or cadmium chloride elicited rosmarinic acid production of chia tissues.


Assuntos
Cinamatos , Depsídeos , Citometria de Fluxo , Ácido Rosmarínico , Salvia , Cinamatos/metabolismo , Depsídeos/metabolismo , Citometria de Fluxo/métodos , Salvia/genética , Salvia/química , Salvia/metabolismo , Ploidias , Genótipo , Cloreto de Cádmio , Genoma de Planta
5.
Food Chem ; 449: 139201, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599104

RESUMO

This study aimed to determine the effect of the administration dose, combinations with co-antioxidants (vitamin C, caffeic acid, chlorogenic acid, catechin, rutin), and different food matrices (cooked and lyophilized hen eggs, chicken breast, soybean seeds, potatoes) on the potential bioaccessibility of rosmarinic acid (RA) in simulated digestion conditions, depending on the digestion stage (gastric and intestinal) and the contribution of physicochemical and biochemical digestion factors. The in vitro bioaccessibility of RA depended on the digestion stage and conditions. The physicochemical factors were mainly responsible for the bioaccessibility of RA applied alone. The higher RA doses improved its bioaccessibility, especially at the intestinal stage of digestion. Furthermore, the addition of vitamin C and protein-rich food matrices resulted in enhanced intestinal bioaccessibility of RA. In the future, the knowledge of factors influencing the bioaccessibility of RA can help enhance its favorable biological effects and therapeutic potential.


Assuntos
Antioxidantes , Disponibilidade Biológica , Cinamatos , Depsídeos , Digestão , Modelos Biológicos , Ácido Rosmarínico , Depsídeos/metabolismo , Depsídeos/química , Cinamatos/metabolismo , Cinamatos/química , Cinamatos/análise , Animais , Antioxidantes/metabolismo , Antioxidantes/química , Galinhas/metabolismo , Humanos , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Ovos/análise , Glycine max/química , Glycine max/metabolismo
6.
Plant Physiol ; 195(2): 1728-1744, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38441888

RESUMO

Rosmarinic acid (RA) is an important medicinal metabolite and a potent food antioxidant. We discovered that exposure to high light intensifies the accumulation of RA in the leaves of perilla (Perilla frutescens (L.) Britt). However, the molecular mechanism underlying RA synthesis in response to high light stress remains poorly understood. To address this knowledge gap, we conducted a comprehensive analysis employing transcriptomic sequencing, transcriptional activation, and genetic transformation techniques. High light treatment for 1 and 48 h resulted in the upregulation of 592 and 1,060 genes, respectively. Among these genes, three structural genes and 93 transcription factors exhibited co-expression. Notably, NAC family member PfNAC2, GBF family member PfGBF3, and cinnamate-4-hydroxylase gene PfC4H demonstrated significant co-expression and upregulation under high light stress. Transcriptional activation analysis revealed that PfGBF3 binds to and activates the PfNAC2 promoter. Additionally, both PfNAC2 and PfGBF3 bind to the PfC4H promoter, thereby positively regulating PfC4H expression. Transient overexpression of PfNAC2, PfGBF3, and PfC4H, as well as stable transgenic expression of PfNAC2, led to a substantial increase in RA accumulation in perilla. Consequently, PfGBF3 acts as a photosensitive factor that positively regulates PfNAC2 and PfC4H, while PfNAC2 also regulates PfC4H to promote RA accumulation under high light stress. The elucidation of the regulatory mechanism governing RA accumulation in perilla under high light conditions provides a foundation for developing a high-yield RA system and a model to understand light-induced metabolic accumulation.


Assuntos
Cinamatos , Depsídeos , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Plantas , Ácido Rosmarínico , Depsídeos/metabolismo , Cinamatos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Perilla frutescens/genética , Perilla frutescens/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Regiões Promotoras Genéticas/genética
7.
Angew Chem Int Ed Engl ; 63(20): e202402663, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38467568

RESUMO

Thielavin A (1) is a fungal depside composed of one 3-methylorsellinic acid and two 3,5-dimethylorsellinic acid units. It displays diverse biological activities. However, the mechanism underlying the assembly of the heterotrimeric structure of 1 remains to be clarified. In this study, we identified the polyketide synthase (PKS) involved in the biosynthesis of 1. This PKS, designated as ThiA, possesses an unusual domain organization with the C-methyltransferase (MT) domain situated at the C-terminus following the thioesterase (TE) domain. Our findings indicated that the TE domain is solely responsible for two rounds of ester bond formation, along with subsequent chain hydrolysis. We identified a plausible mechanism for TE-catalyzed reactions and obtained insights into how a single PKS can selectively yield a specific heterotrimeric product. In particular, the tandem acyl carrier protein domains of ThiA are critical for programmed methylation by the MT domain. Overall, this study highlighted the occurrence of highly optimized domain-domain communication within ThiA for the selective synthesis of 1, which can advance our understanding of the programming rules of fungal PKSs.


Assuntos
Depsídeos , Policetídeo Sintases , Policetídeo Sintases/metabolismo , Policetídeo Sintases/química , Depsídeos/metabolismo , Depsídeos/química
8.
Plant Biotechnol J ; 22(7): 1833-1847, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38363812

RESUMO

High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Genoma de Planta/genética , Cromossomos de Plantas/genética , Adaptação Fisiológica/genética , Salvia/genética , Salvia/metabolismo , Antioxidantes/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Depsídeos/metabolismo , Multiômica
9.
Microbiologyopen ; 12(5): e1386, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37877655

RESUMO

Lichens are symbiotic associations consisting of a photobiont (algae or cyanobacteria) and a mycobiont (fungus), which together generate a variety of unique secondary metabolites. To access this biosynthetic potential for biotechnological applications, deeper insights into the biosynthetic pathways and corresponding gene clusters are necessary. Here, we provide a comparative view of the biosynthetic gene clusters of three lichen mycobionts derived from Hypogymnia physodes, Hypogymnia tubulosa, and Parmelia sulcata. In addition, we present a high-quality PacBio metagenome of Parmelia sulcata, from which we extracted the mycobiont bin containing 214 biosynthetic gene clusters. Most biosynthetic gene clusters in these genomes were associated with T1PKSs, followed by NRPSs and terpenes. This study focused on biosynthetic gene clusters related to polyketide synthesis. Based on ketosynthase homology, we identified nine highly syntenic clusters present in all three species. Among the four clusters belonging to nonreducing PKSs, two are putatively linked to lichen substances derived from orsellinic acid (orcinol depsides and depsidones, e.g., lecanoric acid, physodic acid, lobaric acid), one to compounds derived from methylated forms of orsellinic acid (beta orcinol depsides, e.g., atranorin), and one to melanins. Five clusters with orthologs in all three species are linked to reducing PKSs. Our study contributes to sorting and dereplicating the vast PKS diversity found in lichenized fungi. High-quality sequences of biosynthetic gene clusters of these three common species provide a foundation for further exploration into biotechnological applications and the molecular evolution of lichen substances.


Assuntos
Líquens , Policetídeo Sintases , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Depsídeos/metabolismo , Sintenia , Líquens/genética , Líquens/microbiologia , Fungos/genética , Família Multigênica , Filogenia
10.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375158

RESUMO

Various strategies have been used to increase the efficiency of secondary metabolite production in Salvia plants. This report is the first to examine the spontaneous development of Salvia bulleyana shoots transformed by Agrobacterium rhizogenes on hairy roots and the influence of light conditions on the phytochemical profile of this shoot culture. The transformed shoots were cultivated on solid MS medium with 0.1 mg/L of IAA (indole-3-acetic acid) and 1 mg/L of m-Top (meta-topolin), and their transgenic characteristic was confirmed by PCR-based detection of the rolB and rolC genes in the target plant genome. This study assessed the phytochemical, morphological, and physiological responses of the shoot culture under stimulation by light-emitting diodes (LEDs) with different wavelengths (white, WL; blue, B; red, RL; and red/blue, ML) and under fluorescent lamps (FL, control). Eleven polyphenols identified as phenolic acids and their derivatives were detected via ultrahigh-performance liquid chromatography with diode-array detection coupled to electrospray ionization tandem mass spectrometry (UPLC-DAD/ESI-MS) in the plant material, and their content was determined using high-performance liquid chromatography (HPLC). Rosmarinic acid was the predominant compound in the analyzed extracts. The mixed red and blue LEDs gave the highest levels of polyphenol and rosmarinic acid accumulation (respectively, 24.3 mg/g of DW and 20.0 mg/g of DW), reaching two times greater concentrations of polyphenols and three times greater rosmarinic acid levels compared to the aerial parts of two-year-old intact plants. Similar to WL, ML also stimulated regeneration ability and biomass accumulation effectively. However, the highest total photosynthetic pigment production (1.13 mg/g of DW for total chlorophyll and 0.231 mg/g of DW for carotenoids) was found in the shoots cultivated under RL followed by BL, while the culture exposed to BL was characterized as having the highest antioxidant enzyme activities.


Assuntos
Polifenóis , Salvia , Polifenóis/análise , Salvia/química , Depsídeos/metabolismo , Cinamatos/metabolismo , Antioxidantes/análise , Raízes de Plantas/química , Ácido Rosmarínico
11.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375435

RESUMO

The in vitro cultures of Rindera graeca, a rare endemic plant, were developed as a sustainable source of phenolic acids. Various shoot and root cultures were established and scaled up in a sprinkle bioreactor. A multiplication rate of 7.2 shoots per explant was achieved. HPLC-PDA-ESI-HRMS analysis revealed the presence of rosmarinic acid (RA) and lithospermic acid B (LAB) as the main secondary metabolites in both the shoot and root cultures. The maximum RA (30.0 ± 3.2 mg/g DW) and LAB (49.3 ± 15.5 mg/g DW) yields were determined in root-regenerated shoots. The strongest free radical scavenging activity (87.4 ± 1.1%), according to 2,2-diphenyl-1-picrylhydrazyl-hydrate assay, was noted for roots cultivated in a DCR medium. The highest reducing power (2.3 µM ± 0.4 TE/g DW), determined by the ferric-reducing antioxidant power assay, was noted for shoots cultivated on an SH medium containing 0.5 mg/L 6-benzylaminopurine. A genetic analysis performed using random amplified polymorphic DNA and start codon targeted markers revealed genetic variation of 62.8% to 96.5% among the investigated shoots and roots. This variability reflects the capacity of cultivated shoots and roots to produce phenolic compounds.


Assuntos
Boraginaceae , Boraginaceae/metabolismo , Depsídeos/metabolismo , Cinamatos/metabolismo , Ácido Rosmarínico
12.
Genes (Basel) ; 14(4)2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37107629

RESUMO

Salvia yangii B.T. Drew and Salvia abrotanoides Kar are two important fragrant and medicinal plants that belong to the subgenus Perovskia. These plants have therapeutic benefits due to their high rosmarinic acid (RA) content. However, the molecular mechanisms behind RA generation in two species of Salvia plants are still poorly understood. As a first report, the objectives of the present research were to determine the effects of methyl jasmonate (MeJA) on the rosmarinic acid (RA), total flavonoid and phenolic contents (TFC and TPC), and changes in the expression of key genes involved in their biosynthesis (phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), and rosmarinic acid synthase (RAS)). The results of High-performance liquid chromatography (HPLC) analysis indicated that MeJA significantly increased RA content in S. yungii and S. abrotanoides species (to 82 and 67 mg/g DW, respectively) by 1.66- and 1.54-fold compared with untreated plants. After 24 h, leaves of Salvia yangii and Salvia abrotanoides species treated with 150 M MeJA had the greatest TPC and TFC (80 and 42 mg TAE/g DW, and 28.11 and 15.14 mg QUE/g DW, respectively), which was in line with the patterns of gene expression investigated. Our findings showed that MeJA dosages considerably enhanced the RA, TPC, and TFC contents in both species compared with the control treatment. Since increased numbers of transcripts for PAL, 4CL, and RAS were also detected, the effects of MeJA are probably caused by the activation of genes involved in the phenylpropanoid pathway.


Assuntos
Salvia , Salvia/genética , Salvia/metabolismo , Depsídeos/química , Depsídeos/metabolismo , Fenóis , Ácido Rosmarínico
13.
Ecotoxicol Environ Saf ; 241: 113773, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35753269

RESUMO

Rosmarinic acid (RA) is a natural polyphenol with various biological activities, such as anti-oxidative, anti-fibrotic, and hepatoprotective properties. The objective of this study was to investigate the protective effect of RA against acetaminophen (APAP)-induced hepatotoxicity (AILI) and explore the underlying mechanisms. Kunming mice were treated with RA (20, 40, or 80 mg/kg, i.g) for 7d, followed by an intraperitoneal injection of APAP (500 mg/kg). The liver injury was evaluated by serum biochemical and liver histopathological examinations. Human HepG2 cells were pre-treated with RA (20, 40, or 80 µmol/L) and then incubated with APAP (25 mmol/L) for 24 h. The MTT assay, wound healing assay, transwell migration assay, flow cytometry, and western blotting were employed to further evaluate RA's protective effects on AILI and explore the mechanisms. The results indicated that RA pre-treatment lowered the serum ALT and AST levels, ameliorated the histological damage to the liver, and reduced ROS generation and the production of IL-1ß and IL-18 in the liver tissues in APAP-treated mice. Moreover, pre-treatment with RA could promote the cell viability and migration ability and inhibit apoptosis in APAP-treated HepG2 cells. Mechanistically, RA could significantly suppress the APAP-induced activation of the NEK7-NLRP3 signaling pathway. Notably, depletion of Nrf2 by short hairpin RNA (shRNA) partly eliminated the protective effects of RA on AILI and the suppression of NEK7-NLRP3 signaling by RA. In summary, these results indicate that RA has a protective role against AILI through Nrf2-mediated inhibition of ROS production and suppression of the NEK7-NLRP3 pathway.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Cinamatos , Depsídeos , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cinamatos/metabolismo , Cinamatos/farmacologia , Depsídeos/metabolismo , Depsídeos/farmacologia , Humanos , Fígado , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ácido Rosmarínico
14.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409270

RESUMO

Stratum corneum (SC) pH regulates skin barrier functions and elevated SC pH is an important factor in various inflammatory skin diseases. Acidic topical formulas have emerged as treatments for impaired skin barriers. Sodium proton exchanger 1 (NHE1) is an important factor in SC acidification. We investigated whether topical applications containing an NHE1 activator could improve skin barrier functions. We screened plant extracts to identify NHE1 activators in vitro and found Melissa officinalis leaf extract. Rosmarinic acid, a component of Melissa officinalis leaf extract, significantly increased NHE1 mRNA expression levels and NHE1 production. Immunofluorescence staining of NHE1 in 3D-cultured skin revealed greater upregulation of NHE1 expression by NHE1 activator cream, compared to vehicle cream. Epidermal lipid analysis revealed that the ceramide level was significantly higher upon application of the NHE1 activator cream on 3D-cultured skin, compared to application of a vehicle cream. In a clinical study of 50-60-year-old adult females (n = 21), application of the NHE1 activator-containing cream significantly improved skin barrier functions by reducing skin surface pH and transepidermal water loss and increasing skin hydration, compared to patients who applied vehicle cream and those receiving no treatment. Thus, creams containing NHE1 activators, such as rosmarinic acid, could help maintain or recover skin barrier functions.


Assuntos
Cinamatos , Depsídeos , Adulto , Cinamatos/metabolismo , Cinamatos/farmacologia , Depsídeos/metabolismo , Depsídeos/farmacologia , Epiderme/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Pessoa de Meia-Idade , Pele/metabolismo , Ácido Rosmarínico
15.
Planta ; 255(4): 75, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35235057

RESUMO

MAIN CONCLUSION: Anthoceros agrestis hydroxycinnamoyltransferase accepts shikimic and 3-hydroxyanthranilic acids while hydroxycinnamoylester/amide 3-hydroxylase (CYP98A147) preferred p-coumaroyl-(3-hydroxy)anthranilic acid compared to the shikimic acid derivative. Alternative pathways towards rosmarinic acid have to be considered. Rosmarinic acid (RA) is a well-known ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. In the search for enzymes involved in RA biosynthesis in the hornwort Anthoceros agrestis, the hydroxycinnamoyltransferase sequence with the highest similarity to rosmarinic acid synthase from Lamiaceae has been amplified and heterologously expressed in Escherichia coli. In parallel, the single cytochrome P450 sequence belonging to the CYP98 group in Anthoceros agrestis was isolated and expressed in Saccharomyces cerevisiae which did not result in protein formation. Codon optimization and co-expression with NADPH:cytochrome P450 reductase (CPR) from Coleus blumei resulted in the formation of active enzymes. Both, the hydroxycinnamoyltransferase and CYP98 were characterized with respect to their temperature and pH optimum as well as their substrate acceptance. The hydroxycinnamoyltransferase (AaHCT6) readily accepted p-coumaroyl- and caffeoyl-CoA with a slightly higher affinity towards p-coumaroyl-CoA. The best acceptor substrate was shikimic acid (Km 25 µM with p-coumaroyl-CoA) followed by 3-hydroxyanthranilic acid (Km 153 µM with p-coumaroyl-CoA). Another accepted substrate was 2,3-dihydroxybenzoic acid. Anthranilic acid and 4-hydroxyphenyllactic acid (as precursor for RA) were not used as substrates. p-Coumaroylesters and -amides are substrates hydroxylated by CYP98 hydroxylases. The only CYP98 sequence from Anthoceros agrestis is CYP98A147. The best substrates for the NADPH-dependent hydroxylation were p-coumaroylanthranilic and p-coumaroyl-3-hydroxyanthranilic acids while p-coumaroylshikimic and p-coumaroyl-4-hydroxyphenyllactic acids were poor substrates. The biosynthetic pathway towards rosmarinic acid thus still remains open and other enzyme classes as well as an earlier introduction of the 3-hydroxyl group to afford the caffeic acid substitution pattern must be taken into consideration.


Assuntos
Anthocerotophyta , Anthocerotophyta/metabolismo , Cinamatos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Depsídeos/metabolismo , Ácido Rosmarínico
16.
Int J Mol Sci ; 22(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34884815

RESUMO

BACKGROUND: New strategies are needed to combat multidrug-resistant bacteria. The restriction of iron uptake by bacteria is a promising way to inhibit their growth. We aimed to suppress the growth of Vibrio bacterial species by inhibiting their ferric ion-binding protein (FbpA) using food components. METHODS: Twenty spices were selected for the screening of FbpA inhibitors. The candidate was applied to antibacterial tests, and the mechanism was further studied. RESULTS: An active compound, rosmarinic acid (RA), was screened out. RA binds competitively and more tightly than Fe3+ to VmFbpA, the FbpA from V. metschnikovii, with apparent KD values of 8 µM vs. 17 µM. Moreover, RA can inhibit the growth of V. metschnikovii to one-third of the control at 1000 µM. Interestingly, sodium citrate (SC) enhances the growth inhibition effect of RA, although SC only does not inhibit the growth. The combination of RA/SC completely inhibits the growth of not only V. metschnikovii at 100/100 µM but also the vibriosis-causative pathogens V. vulnificus and V. parahaemolyticus, at 100/100 and 1000/100 µM, respectively. However, RA/SC does not affect the growth of Escherichia coli. CONCLUSIONS: RA/SC is a potential bacteriostatic agent against Vibrio species while causing little damage to indigenous gastrointestinal bacteria.


Assuntos
Cinamatos/farmacologia , Depsídeos/farmacologia , Ferro/metabolismo , Citrato de Sódio/farmacologia , Vibrio parahaemolyticus/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cinamatos/química , Cinamatos/metabolismo , Depsídeos/química , Depsídeos/metabolismo , Sinergismo Farmacológico , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Ligação Proteica , Vibrio parahaemolyticus/metabolismo , Ácido Rosmarínico
17.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768882

RESUMO

Benzophenone-3 (BP-3) is one of the most widely used chemical sunscreens. The results of many in vitro and in vivo tests confirm its high percutaneous penetration and systemic absorption, which question the safety of its wide use. The aim of our research was to assess the effect of this compound on components of the skin extracellular matrix, and to investigate whether rosmarinic acid (RA) could reduce BP-3-induced changes in human skin fibroblasts. BP-3 used at concentrations of 0.1-100 µM caused a number of unfavorable changes in the level of type I collagen, decorin, sulfated glycosaminoglycans, hyaluronic acid, elastin, and expression or activity of matrix metalloproteinases (MMP-1, MMP-2), elastase and hyaluronidase. Moreover, the intracellular retention of collagen was accompanied by changes in the expression of proteins modifying and controlling the synthesis and secretion of this protein. Most importantly, RA at a concentration of 100 µM significantly reduced or completely abolished the adverse effects of BP-3. Based on these findings, it can be concluded that this polyphenol may provide effective protection against BP-3-induced disturbances in skin cells, which may have important clinical implications.


Assuntos
Benzofenonas/efeitos adversos , Cinamatos/farmacologia , Depsídeos/farmacologia , Fibroblastos/metabolismo , Benzofenonas/metabolismo , Linhagem Celular , Células Cultivadas , Cinamatos/metabolismo , Colágeno/efeitos dos fármacos , Colágeno/metabolismo , Decorina/metabolismo , Depsídeos/metabolismo , Elastina/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Humanos , Hialuronoglucosaminidase/metabolismo , Metaloproteinases da Matriz/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Ácido Rosmarínico
18.
Biomolecules ; 11(10)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34680078

RESUMO

Primary biosynthetic enzymes involved in the synthesis of lichen polyphenolic compounds depsides and depsidones are non-reducing polyketide synthases (NR-PKSs), and cytochrome P450s. However, for most depsides and depsidones the corresponding PKSs are unknown. Additionally, in non-lichenized fungi specific fatty acid synthases (FASs) provide starters to the PKSs. Yet, the presence of such FASs in lichenized fungi remains to be investigated. Here we implement comparative genomics and metatranscriptomics to identify the most likely PKS and FASs for olivetoric acid and physodic acid biosynthesis, the primary depside and depsidone defining the two chemotypes of the lichen Pseudevernia furfuracea. We propose that the gene cluster PF33-1_006185, found in both chemotypes, is the most likely candidate for the olivetoric acid and physodic acid biosynthesis. This is the first study to identify the gene cluster and the FAS likely responsible for olivetoric acid and physodic acid biosynthesis in a lichenized fungus. Our findings suggest that gene regulation and other epigenetic factors determine whether the mycobiont produces the depside or the depsidone, providing the first direct indication that chemotype diversity in lichens can arise through regulatory and not only through genetic diversity. Combining these results and existing literature, we propose a detailed scheme for depside/depsidone synthesis.


Assuntos
Depsídeos/metabolismo , Dibenzoxepinas/metabolismo , Lactonas/metabolismo , Parmeliaceae/metabolismo , Salicilatos/metabolismo , Depsídeos/química , Fungos/genética , Fungos/crescimento & desenvolvimento , Genômica , Lactonas/química , Líquens/genética , Líquens/crescimento & desenvolvimento , Família Multigênica/genética , Parmeliaceae/genética , Parmeliaceae/crescimento & desenvolvimento
19.
Sci Rep ; 11(1): 20605, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663861

RESUMO

Non-enzymatic glycation of DNA and the associated effects are among pathogenic factors in diabetes mellitus. Natural polyphenols have anti-diabetic activity. Herein, the protective role of one of the phytochemicals, rosmarinic acid (RA), was evaluated in glycation (with fructose) of human DNA and expression of Akt genes in the hippocampus of diabetic rats. In-vitro studies using fluorescence, agarose gel electrophoresis, fluorescence microscopy, and thermal denaturation analyses revealed that glycation causes DNA damage and that RA inhibits it. In-vivo studies were performed by induction of diabetes in rats using streptozotocin. The diabetic rats were given RA daily through gavage feeding. The expression of Akt genes (inhibitors of apoptosis) in the hippocampus was evaluated using RT-qPCR. In diabetic rats, Akt1 and Akt3 were significantly down-regulated compared to the control group. Treating the diabetic rats with RA returned the expression of Akt1 and Akt3 relatively to the normal condition. Past studies have shown that diabetes induces apoptosis in the hippocampal neurons. Given that glycation changes the genes expression and causes cell death, apoptosis of the hippocampal neurons can be due to the glycation of DNA. The results also suggest that RA has reliable potency against the gross modification of DNA under hyperglycemic conditions.


Assuntos
Cinamatos/farmacologia , Depsídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Apoptose/efeitos dos fármacos , Glicemia/metabolismo , Encéfalo/metabolismo , Cinamatos/metabolismo , DNA/efeitos dos fármacos , DNA/metabolismo , Depsídeos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Estreptozocina/farmacologia , Ácido Rosmarínico
20.
Molecules ; 26(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641608

RESUMO

The effect of spontaneous fermentation by lactic acid bacteria on the extraction yield of bioactive compounds and antioxidant activity from rosemary leaf extracts was investigated using high-performance thin-layer chromatography (HPTLC). Brining and spontaneous fermentation with lactic acid bacteria more than doubled extraction of polyphenolics and antioxidants from the rosemary leaves. The results show that lactic acid fermentation enhances antioxidant activity in extracts by increasing the total phenolic content but does not increase extraction of phytosterols. Increased extraction of phenolic oxidants during fermentation assisted extraction, results from the in situ generated natural eutectic solvent from the plant sample. ATR-FTIR spectra from the bioactive bands suggests that this increased antioxidant activity is associated with increased extraction of rosmarinic acid, depolymerised lignin, abietane diterpenoids and 15-hydroxy-7-oxodehydroabietic acid.


Assuntos
Antioxidantes/química , Antioxidantes/metabolismo , Lactobacillales/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Rosmarinus/química , Rosmarinus/metabolismo , Abietanos/química , Abietanos/metabolismo , Cromatografia em Camada Fina , Cinamatos/química , Cinamatos/metabolismo , Depsídeos/química , Depsídeos/metabolismo , Fermentação , Humanos , Lignina/química , Lignina/metabolismo , Fenóis/química , Fenóis/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...