Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.089
Filtrar
1.
Bioorg Med Chem ; 109: 117794, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875875

RESUMO

Dolastatin 10 (Dol-10), a natural marine-source pentapeptide, is a powerful antimitotic agent regarded as one of the most potent anticancer compounds found to date. Dol-10 however, lacks chemical conjugation capabilities, which restricts the feasibility of its application in targeted drug therapy. This limitation has spurred the prospect that chemical structure of the parent molecule might allow conjugation of the derivatives to drug carriers such as antibodies. By first employing docking studies, we designed and prepared a series of novel Dol-10 analogs with a modified C-terminus, preserving high potency of the parent compound while enhancing conjugation capability. The modifications involved the introduction of a methyleneamine functionality at position 4 of the 1,3-thiazole ring, along with the substitution of the thiazole ring with a 1,2,3-triazole moiety, furnished with methylenehydroxy, carboxy, methyleneamine, and N(Me)-methyleneamine tethering functionalities at position 4. Among the synthesized pentapeptides, DA-1 exhibited the highest potency in prostate cancer (PC-3) cells, eliciting apoptosis (IC50 0.2 ± 0.1 nm) and cell cycle arrest at the mitotic stage after at least 6 days of culture. This delayed response suggests the accumulation of cellular stress or significant physiological alterations that profoundly impact the cell cycle. We believe that these novel Dol-10 derivates represent a new and straightforward route for the development of C-terminus modified Dol-10-based microtubule inhibitors, thereby advancing targeted anticancer therapy.


Assuntos
Antineoplásicos , Proliferação de Células , Depsipeptídeos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Depsipeptídeos/síntese química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Apoptose/efeitos dos fármacos , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química
2.
J Nat Prod ; 87(6): 1601-1610, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38832890

RESUMO

Kavaratamide A (1), a new linear lipodepsipeptide possessing an unusual isopropyl-O-methylpyrrolinone moiety, was discovered from the tropical marine filamentous cyanobacterium Moorena bouillonii collected from Kavaratti, India. A comparative chemogeographic analysis of M. bouillonii collected from six different geographical regions led to the prioritized isolation of this metabolite from India as distinctive among our data sets. AI-based structure annotation tools, including SMART 2.1 and DeepSAT, accelerated the structure elucidation by providing useful structural clues, and the full planar structure was elucidated based on comprehensive HRMS, MS/MS fragmentation, and NMR data interpretation. Subsequently, the absolute configuration of 1 was determined using advanced Marfey's analysis, modified Mosher's ester derivatization, and chiral-phase HPLC. The structures of kavaratamides B (2) and C (3) are proposed based on a detailed analysis of their MS/MS fragmentations. The biological activity of kavaratamide A was also investigated and found to show moderate cytotoxicity to the D283-medullablastoma cell line.


Assuntos
Cianobactérias , Depsipeptídeos , Cianobactérias/química , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Depsipeptídeos/isolamento & purificação , Estrutura Molecular , Índia , Ressonância Magnética Nuclear Biomolecular , Biologia Marinha , Humanos , Ensaios de Seleção de Medicamentos Antitumorais , Cromatografia Líquida de Alta Pressão
3.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892174

RESUMO

Foodborne diseases can be attributed not only to contamination with bacterial or fungal pathogens but also their associated toxins. Thus, to maintain food safety, innovative decontamination techniques for toxins are required. We previously demonstrated that an atmospheric-pressure dielectric-barrier discharge (APDBD) plasma generated by a roller conveyer plasma device is effective at inactivating bacteria and fungi in foods. Here, we have further examined whether the roller conveyer plasma device can be used to degrade toxins produced by foodborne bacterial pathogens, including aflatoxin, Shiga toxins (Stx1 and Stx2), enterotoxin B and cereulide. Each toxin was spotted onto an aluminum plate, allowed to dry, and then treated with APDBD plasma applied by the roller conveyer plasma device for different time periods. Assessments were conducted using a competitive enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results demonstrate a significant time-dependent decrease in the levels of these toxins. ELISA showed that aflatoxin B1 concentrations were reduced from 308.6 µg/mL to 74.4 µg/mL within 1 min. For Shiga toxins, Stx1 decreased from 913.8 µg/mL to 65.1 µg/mL, and Stx2 from 2309.0 µg/mL to 187.6 µg/mL within the same time frame (1 min). Enterotoxin B levels dropped from 62.67 µg/mL to 1.74 µg/mL at 15 min, and 1.43 µg/mL at 30 min, but did not display a significant decrease within 5 min. LC-MS/MS analysis verified that cereulide was reduced to below the detection limit following 30 min of APDBD plasma treatment. Taken together, these findings highlight that a range of foodborne toxins can be degraded by a relatively short exposure to plasma generated by an APDBD using a roller conveyer device. This technology offers promising advancements in food safety, providing a novel method to alleviate toxin contamination in the food processing industry.


Assuntos
Pressão Atmosférica , Espectrometria de Massas em Tandem , Enterotoxinas , Depsipeptídeos/química , Microbiologia de Alimentos/métodos , Cromatografia Líquida/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/microbiologia , Ensaio de Imunoadsorção Enzimática , Contaminação de Alimentos/análise , Gases em Plasma/química , Aflatoxina B1
4.
Phytochemistry ; 223: 114137, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734043

RESUMO

Exploring the chemical diversity present in cyanobacterial mats increasingly frequent in fresh and marine waters is imperative for both evaluating risks associated with these diverse biofilms and their potential for biodiscovery. During a project aimed at the study of the (eco)toxicity of benthic cyanobacteria blooming in some lakes of the West of Ireland, three previously undescribed ahp-cyclodepsipeptides micropeptin LOF941 (1), micropeptin LOF925 (2) and micropeptin LOF953 (3) were isolated from the Microcoleus autumnalis-dominated benthic cyanobacterial biofilm collected from the shore of Lough O'Flynn, Co. Roscommon, Ireland. Their structures remain consistent in their amino acid sequence with the presence of an unusual methionine, and differ by their exocyclic side chains. The planar structures of the previously undescribed micropeptins were elucidated by 1D and 2D NMR and HRESIMS analyses, and their 3D configurations assessed by ROESY NMR and Marfey's analyses. The three isolated compounds showed no cytotoxic effects and all three compounds were shown to exhibit antioxidant properties, with 1 showing the highest bioactivity. Additionally, several micropeptin analogues are proposed from the methanolic fraction of the biofilm extract by UHPLC-HRESIMS/MS analysis and molecular networking. Notably, the known cyanotoxins anatoxin-a and dihydroanatoxin-a were annotated in the molecular network therefore raising issues about the toxicity of this cyanobacterial mat.


Assuntos
Antioxidantes , Cianobactérias , Depsipeptídeos , Cianobactérias/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Irlanda , Depsipeptídeos/química , Depsipeptídeos/isolamento & purificação , Depsipeptídeos/farmacologia , Biofilmes/efeitos dos fármacos , Estrutura Molecular , Humanos
5.
ACS Chem Biol ; 19(5): 1125-1130, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38712757

RESUMO

There remains a critical need for new antibiotics against multi-drug-resistant Gram-negative bacteria, a major global threat that continues to impact mortality rates. Lipoprotein signal peptidase II is an essential enzyme in the lipoprotein biosynthetic pathway of Gram-negative bacteria, making it an attractive target for antibacterial drug discovery. Although natural inhibitors of LspA have been identified, such as the cyclic depsipeptide globomycin, poor stability and production difficulties limit their use in a clinical setting. We harness computational design to generate stable de novo cyclic peptide analogues of globomycin. Only 12 peptides needed to be synthesized and tested to yield potent inhibitors, avoiding costly preparation of large libraries and screening campaigns. The most potent analogues showed comparable or better antimicrobial activity than globomycin in microdilution assays against ESKAPE-E pathogens. This work highlights computational design as a general strategy to combat antibiotic resistance.


Assuntos
Antibacterianos , Desenho de Fármacos , Peptídeos Cíclicos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Testes de Sensibilidade Microbiana , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Lipoproteínas/antagonistas & inibidores , Proteínas de Bactérias , Peptídeos , Ácido Aspártico Endopeptidases
6.
PLoS One ; 19(5): e0303273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781236

RESUMO

Lithified layers of complex microbial mats known as microbialites are ubiquitous in the fossil record, and modern forms are increasingly identified globally. A key challenge to developing an understanding of microbialite formation and environmental role is how to investigate complex and diverse communities in situ. We selected living, layered microbialites (stromatolites) in a peritidal environment near Schoenmakerskop, Eastern Cape, South Africa to conduct a spatial survey mapping the composition and small molecule production of the microbial communities from environmental samples. Substrate core samples were collected from nine sampling stations ranging from the upper point of the freshwater inflow to the lower marine interface where tidal overtopping takes place. Substrate cores provided material for parallel analyses of microbial community diversity by 16S rRNA gene amplicon sequencing and metabolomics using LC-MS2. Species and metabolite diversities were correlated, and prominent specialized metabolites were targeted for preliminary characterization. A new series of cyclic hexadepsipeptides, named ibhayipeptolides, was most abundant in substrate cores of submerged microbialites. These results demonstrate the detection and identification of metabolites from mass-limited environmental samples and contribute knowledge about microbialite chemistry and biology, which facilitates future targeted studies of specialized metabolite function and biosynthesis.


Assuntos
Metabolômica , Metabolômica/métodos , África do Sul , RNA Ribossômico 16S/genética , Sedimentos Geológicos/microbiologia , Depsipeptídeos/biossíntese , Depsipeptídeos/química , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação
7.
J Mass Spectrom ; 59(6): e5037, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38752484

RESUMO

Bacillus cereus is responsible for foodborne outbreaks worldwide. Among the produced toxins, cereulide induces nausea and vomiting after 30 min to 6 h following the consumption of contaminated foods. Cereulide, a cyclodepsipeptide, is an ionophore selective to K+ in solution. In electrospray, the selectivity is reduced as [M + Li]+; [M + Na]+ and [M + NH4]+ can also be detected without adding corresponding salts. Two forms are possible for alkali-cationized ions: charge-solvated (CS) that exclusively dissociates by releasing a bare alkali ion and protonated salt (PS), yielding alkali product ions by covalent bond cleavages (CBC) promoted by mobile proton. Based on a modified peptide cleavage nomenclature, the PS product ion series (b, a, [b + H2O] and [b + CnH2nO] [n = 4, 5]) are produced by Na+/Li+/K+-cationized cereulide species that specifically open at ester linkages followed by proton mobilization promoting competitive ester CBC as evidenced under resonant collision activation. What is more, unlike the sodiated or lithiated cereulide, which regenerates little or no alkali cation, the potassiated forms lead to an abundant K+ regeneration. This occurs by splitting of (i) the potassiated CS forms with an appearance threshold close to that of the PS first fragment ion generation and (ii) eight to four potassiated residue product ions from the PS forms. Since from Na+/Li+-cationized cereulide, (i) the negligible Na+/Li+ regeneration results in a higher sensibility than that of potassiated forms that abundantly releasing K+, and (ii) a better sequence recovering, the use of Na+ (or Li+) should be more pertinent to sequence isocereulides and other cyclodepsipeptides.


Assuntos
Cátions , Depsipeptídeos , Prótons , Espectrometria de Massas por Ionização por Electrospray , Depsipeptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cátions/química , Álcalis/química , Bacillus cereus/química , Sais/química
8.
ACS Synth Biol ; 13(5): 1562-1571, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38679882

RESUMO

Respirantins are 18-membered antimycin-type depsipeptides produced by Streptomyces sp. and Kitasatospora sp. These compounds have shown extraordinary anticancer activities against a panel of cancer cell lines with nanomolar levels of IC50 values. However, further investigation has been impeded by the low titers of the natural producers and the challenging chemical synthesis due to their structural complexity. The biosynthetic gene cluster (BGC) of respirantin was previously proposed based on a bioinformatic comparison of the four members of antimycin-type depsipeptides. In this study, we report the first successful reconstitution of respirantin in Streptomyces albus using a synthetic BGC. This heterologous system serves as an accessible platform for the production and diversification of respirantins. Through polyketide synthase pathway engineering, biocatalysis, and chemical derivatization, we generated nine respirantin compounds, including six new derivatives. Cytotoxicity screening against human MCF-7 and Hela cancer cell lines revealed a unique biphasic dose-response profile of respirantin. Furthermore, a structure-activity relationship study has elucidated the essential functional groups that contribute to its remarkable cytotoxicity. This work paves the way for respirantin-based anticancer drug discovery and development.


Assuntos
Antimicina A , Antineoplásicos , Depsipeptídeos , Família Multigênica , Streptomyces , Humanos , Streptomyces/metabolismo , Streptomyces/genética , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/biossíntese , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/química , Células HeLa , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Antimicina A/metabolismo , Células MCF-7 , Policetídeo Sintases/metabolismo , Policetídeo Sintases/genética , Vias Biossintéticas/genética , Relação Estrutura-Atividade
9.
ACS Infect Dis ; 10(5): 1536-1544, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38626307

RESUMO

Cilagicin is a dual polyprenyl phosphate binding lipodepsipeptide antibiotic with strong activity against clinically relevant Gram-positive pathogens while evading antibiotic resistance. Cilagicin showed high serum binding that reduced its in vivo efficacy. Cilagicin-BP, which contains a biphenyl moiety in place of the N-terminal myristic acid found on cilagicin, showed reduced serum binding and increased in vivo efficacy but decreased potency against some pathogens. Here, we manipulated the acyl tail and the peptide core of cilagicin to identify an optimized collection of structural features that maintain potent antibiotic activity against a wide range of pathogens in the presence of serum. This led to the identification of the optimized antibiotic dodecacilagicin, which contains an N-terminal dodecanoic acid. Dodecacilagicin exhibits low MICs against clinically relevant pathogens in the presence of serum, retains polyprenyl phosphate binding, and evades resistance development even after long-term antibiotic exposure, making dodecacilagicin an appealing candidate for further therapeutic development.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Farmacorresistência Bacteriana/efeitos dos fármacos , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Bactérias Gram-Positivas/efeitos dos fármacos
10.
Mar Drugs ; 22(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38667782

RESUMO

(-)-Doliculide, a marine cyclodepsipeptide derived from the Japanese sea hare, Dolabella auricularia, exhibits potent cytotoxic properties, sparking interest in the field of synthetic chemistry. It is comprised of a peptide segment and a polyketide moiety, rendering it amenable to Matteson's homologation methodology. This technique facilitates the diversification of the distinctive polyketide side chain, thereby permitting the introduction of functional groups in late stages for modifications of the derived compounds and studies on structure-activity relationships.


Assuntos
Depsipeptídeos , Depsipeptídeos/química , Depsipeptídeos/síntese química , Depsipeptídeos/farmacologia , Relação Estrutura-Atividade , Animais , Policetídeos/química , Policetídeos/farmacologia , Humanos , Estrutura Molecular
11.
J Nat Prod ; 87(5): 1330-1337, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38687892

RESUMO

Serratiomycin (1) is an antibacterial cyclic depsipeptide, first discovered from a Eubacterium culture in 1998. This compound was initially reported to contain l-Leu, l-Ser, l-allo-Thr, d-Phe, d-Ile, and hydroxydecanoic acid. In the present study, 1 and three new derivatives, serratiomycin D1-D3 (2-4), were isolated from a Serratia sp. strain isolated from the exoskeleton of a long-horned beetle. The planar structures of 1-4 were elucidated by using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Comparison of the NMR chemical shifts and the physicochemical data of 1 to those of previously reported serratiomycin indeed identified 1 as serratiomycin. The absolute configurations of the amino units in compounds 1-4 were determined by the advanced Marfey's method, 2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl isothiocyanate derivatization, and liquid chromatography-mass spectrometric (LC-MS) analysis. Additionally, methanolysis and the modified Mosher's method were used to determine the absolute configuration of (3R)-hydroxydecanoic acid in 1. Consequently, the revised structure of 1 was found to possess d-Leu, l-Ser, l-Thr, d-Phe, l-allo-Ile, and d-hydroxydecanoic acid. In comparison with the previously published structure of serratiomycin, l-Leu, l-allo-Thr, and d-Ile in serratiomycin were revised to d-Leu, l-Thr, and l-allo-Ile. The new members of the serratiomycin family, compounds 2 and 3, showed considerably higher antibacterial activities against Staphylococcus aureus and Salmonella enterica than compound 1.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Serratia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Serratia/química , Estrutura Molecular , Animais , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Besouros , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos
12.
J Nat Prod ; 87(4): 976-983, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38438310

RESUMO

Three unique linear oligomeric depsipeptides, designated as cavomycins A-C (1-3), were identified from Streptomyces cavourensis, a gut bacterium associated with the annelid Paraleonnates uschakovi. The structures of these depsipeptides were determined through a combination of spectroscopic methods and chemical derivatization techniques, including methanolysis, the modified Mosher's method, advanced Marfey's methods, and phenylglycine methyl ester derivatization. The unique dipeptidyl residue arrangements in compounds 1-3 indicate that they are not degradation products of valinomycin. Compound 2 and its methylation derivative 2a exhibited antiproliferative activity against PANC-1 pancreatic cancer cells with IC50 values of 1.2 and 1.7 µM, respectively.


Assuntos
Depsipeptídeos , Streptomyces , Streptomyces/química , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/isolamento & purificação , Humanos , Estrutura Molecular , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação
13.
J Antibiot (Tokyo) ; 77(6): 353-364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523145

RESUMO

The antimicrobial activity of tumescenamide C against the scab-forming S. scabiei NBRC13768 was confirmed with a potent IC50 value (1.5 µg/mL). Three tumescenamide C-resistant S. scabiei strains were generated to compare their gene variants. All three resistant strains contained nonsynonymous variants in genes related to cellobiose/cellotriose transport system components; cebF1, cebF2, and cebG2, which are responsible for the production of the phytotoxin thaxtomin A. Decrease in thaxtomin A production and the virulence of the three resistant strains were revealed by the LC/MS analysis and necrosis assay, respectively. Although the nonsynonymous variants were insufficient for identifying the molecular target of tumescenamide C, the cell wall component wall teichoic acid (WTA) was observed to bind significantly to tumescenamide C. Moreover, changes in the WTA contents were detected in the tumescenamide C-resistant strains. These results imply that tumescenamide C targets the cell wall system to exert antimicrobial effects on S. scabiei.


Assuntos
Antibacterianos , Depsipeptídeos , Peptídeos Cíclicos , Streptomyces , Antibacterianos/farmacologia , Antibacterianos/química , Parede Celular/efeitos dos fármacos , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/isolamento & purificação , Farmacorresistência Bacteriana , Indóis , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Piperazinas , Streptomyces/química , Streptomyces/efeitos dos fármacos , Streptomyces/genética , Ácidos Teicoicos/metabolismo
14.
J Nat Prod ; 87(4): 764-773, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38423998

RESUMO

The brevicidines represent a novel class of nonribosomal antimicrobial peptides that possess remarkable potency and selectivity toward highly problematic and resistant Gram-negative pathogenic bacteria. A recently discovered member of the brevicidine family, coined brevicidine B (2), comprises a single amino acid substitution (from d-Tyr2 to d-Phe2) in the amino acid sequence of the linear moiety of brevicidine (1) and was reported to exhibit broader antimicrobial activity against both Gram-negative (MIC = 2-4 µgmL-1) and Gram-positive (MIC = 2-8 µgmL-1) pathogens. Encouraged by this, we herein report the first total synthesis of the proposed structure of brevicidine B (2), building on our previously reported synthetic strategy to access brevicidine (1). In agreement with the original isolation paper, pleasingly, synthetic 2 demonstrated antimicrobial activity toward Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae (MIC = 4-8 µgmL-1). Interestingly, however, synthetic 2 was inactive toward all of the tested Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus strains. Substitution of d-Phe2 with its enantiomer, and other hydrophobic residues, yields analogues that were either inactive or only exhibited activity toward Gram-negative strains. The striking difference in the biological activity of our synthetic 2 compared to the reported natural compound warrants the re-evaluation of the original natural product for purity or possible differences in relative configuration. Finally, the evaluation of synthetic 1 and 2 in a human kidney organoid model of nephrotoxicity revealed substantial toxicity of both compounds, although 1 was less toxic than 2 and polymyxin B. These results indicate that modification to position 2 may afford a strategy to mitigate the nephrotoxicity of brevicidine.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Humanos , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/síntese química , Klebsiella pneumoniae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química
15.
Acta Pharmacol Sin ; 45(5): 1044-1059, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38326625

RESUMO

The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.


Assuntos
Antineoplásicos , Proliferação de Células , Neoplasias Colorretais , Depsipeptídeos , Compostos Macrocíclicos , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Depsipeptídeos/farmacologia , Depsipeptídeos/uso terapêutico , Depsipeptídeos/química , Depsipeptídeos/síntese química , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Org Lett ; 26(7): 1321-1325, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38330916

RESUMO

Dolastatin 10, a potent tubulin-targeting marine anticancer natural product, provided the basis for the development of six FDA-approved antibody-drug conjugates. Through the screening of cyanobacterial Caldora penicillata environmental DNA libraries and metagenome sequencing, we identified its biosynthetic gene cluster. Functional prediction of 10 enzymes encoded in the 39 kb cluster supports the dolastatin 10 biosynthesis. The nonheme diiron monooxygenase DolJ was biochemically characterized to mediate the terminal thiazole formation in dolastatin 10.


Assuntos
Antineoplásicos , Cianobactérias , Depsipeptídeos , Neoplasias , Oligopeptídeos/química , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Cianobactérias/química
17.
Angew Chem Int Ed Engl ; 63(10): e202317805, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38238265

RESUMO

Heterotrimeric G proteins are key mediators in the signaling of G protein-coupled receptors (GPCR) that are involved in a plethora of important physiological processes and thus major targets of pharmaceutical drugs. The cyclic depsipeptides YM-254890 and FR900359 are strong and selective inhibitors of the Gq subfamily of G proteins. FR900359 was first reported to be produced by unculturable plant symbiont, however, a culturable FR900359 producer was discovered recently by the standard strategy, screening of the producing strain from the environment. As another strategy, we introduce herein the different way to supply natural compounds of unculturable microorganism origin. We therefore embarked on constructing an artificial biosynthetic gene cluster (BGC) for FR900359 with YM-254890 BGC as a template using "in vitro module editing" technology, first developed for the modification of type-I PKS BGCs, to edit YM-254890 BGC. The resulting artificial BGCs coding FR900359 were heterologously expressed in the Pseudomonas putida KT2440 host strain.


Assuntos
Antineoplásicos , Depsipeptídeos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Depsipeptídeos/química , Receptores Acoplados a Proteínas G/metabolismo
18.
Bioorg Chem ; 144: 107119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219481

RESUMO

FK228 is a potent natural pan HDAC inhibitor approved by the FDA for the treatment of cutaneous T-cell lymphoma as well as peripheral T-cell lymphoma. It is generally believed that the mechanism of FK228 acting on HDACs is by reducing its disulfide bond after entering the cell, and the dithiol group may chelate with Zn2+ and form a weak reversible covalent bond with cysteine in the catalytic pocket of HDACs, therefore inhibiting the activity of HDACs. However, due to the weak stability of the disulfide bond in FK228, it has been difficult to obtain direct evidence for the above conjecture. Thus, improving the stability of the FK228 disulfide bond will help to explore the exact mechanism of FK228. In this study, based on the stability and target-induced covalent properties of the Cysteine-Penicillamine (Cys-Pen) disulfide bond reported previously, the Pen was introduced into the modification of FK228. Specifically, the d-Cys in FK228 was replaced by d-Pen, the total synthetic pathway was optimized, and the novel synthetic FK228 analogue (FK-P) stability was verified. FK-P can also be used as a new drug molecule in the future to participate in the research of related biological mechanisms or the treatment of diseases.


Assuntos
Cisteína , Depsipeptídeos , Depsipeptídeos/química , Inibidores de Histona Desacetilases/farmacologia , Dissulfetos
19.
Biosci Biotechnol Biochem ; 88(4): 399-404, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271606

RESUMO

Kahalalides, originally isolated from the sacoglossan mollusk Elysia rufescens, have been found in various Elysia and Bryopsis species, with over 20 variants identified to date. These compounds are biosynthesized by Candidatus Endobryopsis kahalalidefaciens within Bryopsis species. In this study, we report the isolation and structural determination of a new cyclic depsipeptide, mebamamide C (1), from Bryopsis sp. The planar structure was determined by spectroscopic data analyses, and the absolute configurations were determined using Marfey's method and modified Mosher's method. Additionally, our study explores the chemical relationship between Bryopsis algae and Elysia mollusks. The individual chemical profiles of these marine organisms highlight a fascinating aspect of marine chemical ecology. The distinct, species-specific chemical profiles observed in Elysia species imply the possibility of a symbiotic relationship with the kahalalide-producing bacteria.


Assuntos
Clorófitas , Depsipeptídeos , Animais , Moluscos/química , Depsipeptídeos/química , Biologia Marinha
20.
Toxins (Basel) ; 15(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37755964

RESUMO

Beauvericin (BEA) is an emerging mycotoxin produced by some species of Fusarium genera that widely contaminates food and feed. Gentiana lutea is a protected medicinal plant known for its antioxidant and anti-inflammatory properties, which are attributed to its rich content of bioactive compounds. In order to evaluate the beneficial effects of G. lutea flower against BEA cytotoxicity, the aim of this study is to evaluate changes in protein expression after Jurkat cell exposure through a proteomics approach. To carry out the experiment, cells were exposed to intestinally digested G. lutea flower alone or in combination with the BEA standard (100 nM) over 7 days. Differentially expressed proteins were statistically evaluated (p < 0.05), revealing a total of 172 proteins with respect to the control in cells exposed to the BEA standard, 145 proteins for G. lutea alone, and 139 proteins when exposing the cells to the combined exposure. Bioinformatic analysis revealed processes implicated in mitochondria, ATP-related activity, and RNA binding. After careful analysis of differentially expressed proteins, it was evident that G. lutea attenuated, in most cases, the negative effects of BEA. Furthermore, it decreased the presence of major oncoproteins involved in the modulation of immune function.


Assuntos
Depsipeptídeos , Gentiana , Gentiana/química , Gentiana/metabolismo , Antioxidantes/química , Depsipeptídeos/toxicidade , Depsipeptídeos/química , Flores/química , Flores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...