Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.089
Filtrar
1.
Mol Biol Rep ; 51(1): 810, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001942

RESUMO

Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest. The differentiation of chromoplasts involves alterations in plastid structure and protein import machinery. Additionally, this process is influenced by factors such as the ORANGE (OR) gene, Clp proteases, xanthophyll esterification, and environmental factors. This review shows the relationship between chromoplast and carotenoid accumulation by presenting recent advances in chromoplast structure, the differentiation process, and key regulatory factors, which can also provide a reference for rational exploitation of chromoplasts to enhance plant quality.


Assuntos
Carotenoides , Regulação da Expressão Gênica de Plantas , Plastídeos , Plastídeos/metabolismo , Carotenoides/metabolismo , Plantas/metabolismo , Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Desenvolvimento Vegetal/genética , Diferenciação Celular
2.
Methods Mol Biol ; 2827: 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985259

RESUMO

Plant cell, tissue, and organ cultures (PCTOC) have been used as experimental systems in basic research, allowing gene function demonstration through gene overexpression or repression and investigating the processes involved in embryogenesis and organogenesis or those related to the potential production of secondary metabolites, among others. On the other hand, PCTOC has also been applied at the commercial level for the vegetative multiplication (micropropagation) of diverse plant species, mainly ornamentals but also horticultural crops such as potato or fruit and tree species, and to produce high-quality disease-free plants. Moreover, PCTOC protocols are important auxiliary systems in crop breeding crops to generate pure lines (homozygous) to produce hybrids for the obtention of polyploid plants with higher yields or better performance. PCTOC has been utilized to preserve and conserve the germplasm of different crops or threatened species. Plant genetic improvement through genetic engineering and genome editing has been only possible thanks to the establishment of efficient in vitro plant regeneration protocols. Different companies currently focus on commercializing plant secondary metabolites with interesting biological activities using in vitro PCTOC. The impact of omics on PCTOC is discussed.


Assuntos
Células Vegetais , Técnicas de Cultura de Tecidos , Técnicas de Cultura de Células/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Células Vegetais/metabolismo , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo , Técnicas de Cultura de Tecidos/métodos
3.
Sci Rep ; 14(1): 15934, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987320

RESUMO

The draft genome sequence of an agriculturally important actinobacterial species Amycolatopsis sp. BCA-696 was developed and characterized in this study. Amycolatopsis BCA-696 is known for its biocontrol properties against charcoal rot and also for plant growth-promotion (PGP) in several crop species. The next-generation sequencing (NGS)-based draft genome of Amycolatopsis sp. BCA-696 comprised of ~ 9.05 Mb linear chromosome with 68.75% GC content. In total, 8716 protein-coding sequences and 61 RNA-coding sequences were predicted in the genome. This newly developed genome sequence has been also characterized for biosynthetic gene clusters (BGCs) and biosynthetic pathways. Furthermore, we have also reported that the Amycolatopsis sp. BCA-696 produces the glycopeptide antibiotic vancomycin that inhibits the growth of pathogenic gram-positive bacteria. A comparative analysis of the BCA-696 genome with publicly available closely related genomes of 14 strains of Amycolatopsis has also been conducted. The comparative analysis has identified a total of 4733 core and 466 unique orthologous genes present in the BCA-696 genome The unique genes present in BCA-696 was enriched with antibiotic biosynthesis and resistance functions. Genome assembly of the BCA-696 has also provided genes involved in key pathways related to PGP and biocontrol traits such as siderophores, chitinase, and cellulase production.


Assuntos
Amycolatopsis , Genoma Bacteriano , Genômica , Genômica/métodos , Amycolatopsis/genética , Amycolatopsis/metabolismo , Família Multigênica , Desenvolvimento Vegetal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Vancomicina/farmacologia
4.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999944

RESUMO

Bri1-EMS Suppressor 1 (BES1) and Brassinazole Resistant 1 (BZR1) are two key transcription factors in the brassinosteroid (BR) signaling pathway, serving as crucial integrators that connect various signaling pathways in plants. Extensive genetic and biochemical studies have revealed that BES1 and BZR1, along with other protein factors, form a complex interaction network that governs plant growth, development, and stress tolerance. Among the interactome of BES1 and BZR1, several proteins involved in posttranslational modifications play a key role in modifying the stability, abundance, and transcriptional activity of BES1 and BZR1. This review specifically focuses on the functions and regulatory mechanisms of BES1 and BZR1 protein interactors that are not involved in the posttranslational modifications but are crucial in specific growth and development stages and stress responses. By highlighting the significance of the BZR1 and BES1 interactome, this review sheds light on how it optimizes plant growth, development, and stress responses.


Assuntos
Proteínas de Arabidopsis , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares , Desenvolvimento Vegetal , Estresse Fisiológico , Desenvolvimento Vegetal/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição/metabolismo , Brassinosteroides/metabolismo , Transdução de Sinais , Processamento de Proteína Pós-Traducional , Ligação Proteica
5.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892282

RESUMO

The rhizobacterial strain BJ3 showed 16S rDNA sequence similarity to species within the Burkholderia genus. Its complete genome sequence revealed a 97% match with Burkholderia contaminans and uncovered gene clusters essential for plant-growth-promoting traits (PGPTs). These clusters include genes responsible for producing indole acetic acid (IAA), osmolytes, non-ribosomal peptides (NRPS), volatile organic compounds (VOCs), siderophores, lipopolysaccharides, hydrolytic enzymes, and spermidine. Additionally, the genome contains genes for nitrogen fixation and phosphate solubilization, as well as a gene encoding 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The treatment with BJ3 enhanced root architecture, boosted vegetative growth, and accelerated early flowering in Arabidopsis. Treated seedlings also showed increased lignin production and antioxidant capabilities, as well as notably increased tolerance to water deficit and high salinity. An RNA-seq transcriptome analysis indicated that BJ3 treatment significantly activated genes related to immunity induction, hormone signaling, and vegetative growth. It specifically activated genes involved in the production of auxin, ethylene, and salicylic acid (SA), as well as genes involved in the synthesis of defense compounds like glucosinolates, camalexin, and terpenoids. The expression of AP2/ERF transcription factors was markedly increased. These findings highlight BJ3's potential to produce various bioactive metabolites and its ability to activate auxin, ethylene, and SA signaling in Arabidopsis, positioning it as a new Burkholderia strain that could significantly improve plant growth, stress resilience, and immune function.


Assuntos
Arabidopsis , Burkholderia , Estresse Fisiológico , Burkholderia/genética , Burkholderia/metabolismo , Burkholderia/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Estresse Fisiológico/genética , Desenvolvimento Vegetal/genética , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Etilenos/metabolismo
6.
Sci China Life Sci ; 67(7): 1338-1367, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833085

RESUMO

Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.


Assuntos
Arabidopsis , Biotecnologia , Regeneração , Regeneração/genética , Regeneração/fisiologia , Biotecnologia/métodos , Arabidopsis/genética , Arabidopsis/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Epigênese Genética , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo
7.
New Phytol ; 243(4): 1406-1423, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922903

RESUMO

The GOLDEN2-LIKE (GLK) transcription factors act as a central regulatory node involved in both developmental processes and environmental responses. Marchantia polymorpha, a basal terrestrial plant with strategic evolutionary position, contains a single GLK representative that possesses an additional domain compared to spermatophytes. We analyzed the role of MpGLK in chloroplast biogenesis and development by altering its levels, preforming transcriptomic profiling and conducting chromatin immunoprecipitation. Decreased MpGLK levels impair chloroplast differentiation and disrupt the expression of photosynthesis-associated nuclear genes, while overexpressing MpGLK leads to ectopic chloroplast biogenesis. This demonstrates the MpGLK functions as a bona fide GLK protein, likely representing an ancestral GLK architecture. Altering MpGLK levels directly regulates the expression of genes involved in Chl synthesis and degradation, similar to processes observed in eudicots, and causes various developmental defects in Marchantia, including the formation of dorsal structures such as air pores and gemma cups. MpGLK, also directly activates MpMAX2 gene expression, regulating the timing of gemma cup development. Our study shows that MpGLK functions as a master regulator, potentially coupling chloroplast development with vegetative reproduction. This illustrates the complex regulatory networks governing chloroplast function and plant development communication and highlight the evolutionary conservation of GLK-mediated regulatory processes across plant species.


Assuntos
Cloroplastos , Regulação da Expressão Gênica de Plantas , Marchantia , Proteínas de Plantas , Fatores de Transcrição , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Marchantia/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Desenvolvimento Vegetal/genética , Fotossíntese/genética
8.
Mol Ecol ; 33(12): e17376, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703052

RESUMO

Unravelling how species communities change along environmental gradients requires a dual understanding: the direct responses of the species to their abiotic surroundings and the indirect variation of these responses through biotic interactions. Here, we focus on the interactive relationships between plants and their symbiotic root-associated fungi (RAF) along stressful abiotic gradients. We investigate whether variations in RAF community composition along altitudinal gradients influence plant growth at high altitudes, where both plants and fungi face harsher abiotic conditions. We established a translocation experiment between pairs of Bistorta vivipara populations across altitudinal gradients. To separate the impact of shifting fungal communities from the overall influence of changing abiotic conditions, we used a root barrier to prevent new colonization by RAF following translocation. To characterize the RAF communities, we applied DNA barcoding to the root samples. Through the utilization of joint species distribution modelling, we assessed the relationship between changes in plant functional traits resulting from experimental treatments and the corresponding changes in the RAF communities. Our findings indicate that RAF communities influence plant responses to stressful abiotic conditions. Plants translocated from low to high altitudes grew more when they were able to associate with the resident high-altitude RAF compared to those plants that were not allowed to associate with the resident RAF. We conclude that interactions with RAF impact how plants respond to stressful abiotic conditions. Our results provide experimental support that interactions with RAF improve plant stress tolerance to altitudinal stressors such as colder temperatures and less nutrient availability.


Assuntos
Altitude , Raízes de Plantas , Simbiose , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Simbiose/genética , Fungos/genética , Desenvolvimento Vegetal/genética , Código de Barras de DNA Taxonômico , Micorrizas/genética , Micorrizas/fisiologia
9.
Plant J ; 119(2): 960-981, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761363

RESUMO

Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Poliamina Oxidase , Solanum lycopersicum , Xilema , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Xilema/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plantas Geneticamente Modificadas , Desenvolvimento Vegetal/genética , Poliaminas/metabolismo , Espermina/análogos & derivados
10.
Plant Commun ; 5(7): 100890, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38566416

RESUMO

Plant-specific transcriptional regulators called TELOMERE REPEAT BINDING proteins (TRBs) combine two DNA-binding domains, the GH1 domain, which binds to linker DNA and is shared with H1 histones, and the Myb/SANT domain, which specifically recognizes the telobox DNA-binding site motif. TRB1, TRB2, and TRB3 proteins recruit Polycomb group complex 2 (PRC2) to deposit H3K27me3 and JMJ14 to remove H3K4me3 at gene promoters containing telobox motifs to repress transcription. Here, we demonstrate that TRB4 and TRB5, two related paralogs belonging to a separate TRB clade conserved in spermatophytes, regulate the transcription of several hundred genes involved in developmental responses to environmental cues. TRB4 binds to several thousand sites in the genome, mainly at transcription start sites and promoter regions of transcriptionally active and H3K4me3-marked genes, but, unlike TRB1, it is not enriched at H3K27me3-marked gene bodies. However, TRB4 can physically interact with the catalytic components of PRC2, SWINGER, and CURLY LEAF (CLF). Unexpectedly, we show that TRB4 and TRB5 are required for distinctive phenotypic traits observed in clf mutant plants and thus function as transcriptional activators of several hundred CLF-controlled genes, including key flowering genes. We further demonstrate that TRB4 shares multiple target genes with TRB1 and physically and genetically interacts with members of both TRB clades. Collectively, these results reveal that TRB proteins engage in both positive and negative interactions with other members of the family to regulate plant development through both PRC2-dependent and -independent mechanisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Homeodomínio
12.
Gene ; 916: 148439, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38583819

RESUMO

The scarcity of soil nutrient availability under cold conditions of Himalayan regions needs a sustainable approach for better crop yields. The cold-adapted bacteria, Exiguobacterium sibiricum K1, with the potential to produce several plant growth-promoting (PGP) attributes, nitrogen fixation, indole acetic acid production, phosphate and potassium solubilization at 10 °C can provide an opportunity to promote crop yield improvement in an eco-friendly way under cold conditions. The bacterium also exhibited biocontrol activity against two phytopathogens and produced siderophore (53.0 ± 0.5 % psu). The strain's PGP properties were investigated using a spinach-based bioassay under controlled conditions. The bacterized seeds showed a notable increase in germination rate (23.2 %), shoot length (65.3 %), root length (56.6 %), leaf area (73.7 %), number of leaflets (65.2 %), and dry matter (65.2 %). Additionally, the leaf analysis indicated elevated chlorophyll pigments, i.e., chlorophyll a (55.5 %), chlorophyll b (42.8 %), carotenoids (35.2 %), percentage radical scavenging activity (47.4 %), and leaf nutrient uptake such as nitrogen (23.4 %), calcium (60.8 %), potassium (62.3 %), and magnesium (28.9 %). Moreover, the whole-genome sequencing and genome mining endorsed various biofertilisation-related genes, including genes for potassium and phosphate solubilization, iron and nitrogen acquisition, carbon dioxide fixation, and biocontrol ability of Exiguobacterium sibiricum K1. Overall, this study highlights the role of Exiguobacterium sibiricum K1 as a potential bioinoculant for improving crop yield under cold environments.


Assuntos
Temperatura Baixa , Fixação de Nitrogênio , Spinacia oleracea/microbiologia , Spinacia oleracea/genética , Germinação , Clorofila/metabolismo , Sideróforos/metabolismo , Folhas de Planta/genética , Ácidos Indolacéticos/metabolismo , Genoma Bacteriano , Fosfatos/metabolismo , Desenvolvimento Vegetal/genética , Bacillales/genética , Bacillales/metabolismo , Agentes de Controle Biológico
13.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 971-987, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658142

RESUMO

The heterogeneity of gene expression in plant cells plays a crucial role in determining the functional differences among tissues. Recent advancements in spatial transcriptome (ST) technology have significantly contributed to the study of specific biological questions in plants. This technology has been successfully applied to examine cell development, identification, and stress resistance. This review aims to explore the application of ST technology in plants by reviewing three aspects: the development of ST technology, its current application in plants, and future research directions. The review provides a systematic description of the development process of ST technology, with a focus on analyzing its progress in studying plant cell growth and differentiation, plant cell identification, and stress resistance. In addition, the challenges faced by ST technology in plant applications are summarized, along with proposed future directions for plant research, including the advantages of combining other omics technologies with ST technology to tackle scientific challenges in the field of plants.


Assuntos
Perfilação da Expressão Gênica , Plantas , Regulação da Expressão Gênica de Plantas , Células Vegetais/metabolismo , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico , Transcriptoma
14.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673820

RESUMO

C-TERMINALLY ENCODED PEPTIDEs (CEPs) are a class of peptide hormones that have been shown in previous studies to play an important role in regulating the development and response to abiotic stress in model plants. However, their role in cotton is not well understood. In this study, we identified 54, 59, 34, and 35 CEP genes from Gossypium hirsutum (2n = 4x = 52, AD1), G. barbadense (AD2), G. arboreum (2n = 2X = 26, A2), and G. raimondii (2n = 2X = 26, D5), respectively. Sequence alignment and phylogenetic analyses indicate that cotton CEP proteins can be categorized into two subgroups based on the differentiation of their CEP domain. Chromosomal distribution and collinearity analyses show that most of the cotton CEP genes are situated in gene clusters, suggesting that segmental duplication may be a critical factor in CEP gene expansion. Expression pattern analyses showed that cotton CEP genes are widely expressed throughout the plant, with some genes exhibiting specific expression patterns. Ectopic expression of GhCEP46-D05 in Arabidopsis led to a significant reduction in both root length and seed size, resulting in a dwarf phenotype. Similarly, overexpression of GhCEP46-D05 in cotton resulted in reduced internode length and plant height. These findings provide a foundation for further investigation into the function of cotton CEP genes and their potential role in cotton breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Família Multigênica , Filogenia , Proteínas de Plantas , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Cromossomos de Plantas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Desenvolvimento Vegetal/genética , Peptídeos/genética , Peptídeos/metabolismo , Mapeamento Cromossômico , Genes de Plantas
15.
Int J Biol Macromol ; 268(Pt 1): 131559, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631576

RESUMO

Expansins are important plant cell wall proteins. They can loosen and soften the cell walls and lead to wall extension and cell expansion. To investigate their role in wood formation and fiber elongation, the PagEXPA1 that highly expressed in cell differentiation and expansion tissues was cloned from 84K poplar (Populus alba × P. glandulosa). The subcellular localization showed that PagEXPA1 located in the cell wall and it was highly expressed in primary stems and young leaves. Compared with non-transgenic 84K poplar, overexpression of PagEXPA1 can promote plant-growth, lignification, and fiber cell elongation, while PagEXPA1 Cas9-editing mutant lines exhibited the opposite phenotype. Transcriptome analysis revealed that DEGs were mainly enriched in some important processes, which are associated with cell wall formation and cellulose synthesis. The protein interaction prediction and expression analysis showed that PagCDKB2:1 and PagEXPA1 might have an interaction relationship. The luciferase complementary assay and bimolecular fluorescence complementary assay validated that PagEXPA1 can combined with PagCDKB2;1. So they promoted the expansion of xylem vascular tissues and the development of poplar though participating in the regulation of cell division and differentiation by programming the cell-cycle. It provides good foundation for molecular breeding of fast-growing and high-quality poplar varieties.


Assuntos
Parede Celular , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Populus , Populus/genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Plantas Geneticamente Modificadas , Perfilação da Expressão Gênica , Xilema/metabolismo , Xilema/genética , Desenvolvimento Vegetal/genética , Madeira/genética , Madeira/crescimento & desenvolvimento
16.
Biomolecules ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540739

RESUMO

ICT1 is an Arabidopsis thaliana line that overexpresses the gene encoding the S30 ribosomal subunit, leading to tolerance to exogenous indole-3-carbinol. Indole-3-carbinol (I3C) is a protective chemical formed as a breakdown of I3M in cruciferous vegetables. The overexpression of S30 in ICT1 results in transcriptional changes that prime the plant for the I3C, or biotic insult. Emerging evidence suggests that ribosomal proteins play important extra-ribosomal roles in various biochemical and developmental processes, such as transcription and stress resistance. In an attempt to elucidate the mechanism leading to I3C and stress resistance in ICT1, and using a multi-pronged approach employing transcriptomics, metabolomics, phenomics, and physiological studies, we show that overexpression of S30 leads to specific transcriptional alterations, which lead to both changes in metabolites connected to biotic and oxidative stress tolerance and, surprisingly, to photomorphogenesis.


Assuntos
Arabidopsis , Proteínas Ribossômicas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Estresse Oxidativo , Desenvolvimento Vegetal/genética
17.
Plant Physiol Biochem ; 208: 108435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402798

RESUMO

Most plant transcriptomes constitute functional non-coding RNAs (ncRNAs) that lack the ability to encode proteins. In recent years, more research has demonstrated that ncRNAs play important regulatory roles in almost all plant biological processes by modulating gene expression. Thus, it is important to study the biogenesis and function of ncRNAs, particularly in plant growth and development and stress tolerance. In this review, we systematically explore the process of formation and regulatory mechanisms of ncRNAs, particularly those of microRNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Additionally, we provide a comprehensive overview of the recent advancements in ncRNAs research, including their regulation of plant growth and development (seed germination, root growth, leaf morphogenesis, floral development, and fruit and seed development) and responses to abiotic and biotic stress (drought, heat, cold, salinity, pathogens and insects). We also discuss research challenges and provide recommendations to advance the understanding of the roles of ncRNAs in agronomic applications.


Assuntos
MicroRNAs , Desenvolvimento Vegetal , RNA de Plantas/genética , RNA de Plantas/metabolismo , Desenvolvimento Vegetal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/metabolismo , Plantas/genética
18.
Genes (Basel) ; 15(2)2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38397174

RESUMO

Alfin-like (AL) proteins are an important class of transcription factor (TF) widely distributed in eukaryotes and play vital roles in many aspects of plant growth and development. AL proteins contain an Alfin-like domain and a specific PHD-finger structure domain at the N-terminus and C-terminus, respectively. The PHD domain can bind to a specific (C/A) CAC element in the promoter region and affect plant growth and development by regulating the expression of functional genes. This review describes a variety of AL transcription factors that have been isolated and characterized in Arabidopsis thaliana, Brassica rapa, Zea mays, Brassica oleracea, Solanum lycopersicum, Populus trichocarpa, Pyrus bretschenedri, Malus domestica, and other species. These studies have focused mainly on plant growth and development, different abiotic stress responses, different hormonal stress responses, and stress responses after exposure to pathogenic bacteria. However, studies on the molecular functional mechanisms of Alfin-like transcription factors and the interactions between different signaling pathways are rare. In this review, we performed phylogenetic analysis, cluster analysis, and motif analysis based on A. thaliana sequences. We summarize the structural characteristics of AL transcription factors in different plant species and the diverse functions of AL transcription factors in plant development and stress regulation responses. The aim of this study was to provide a reference for further application of the functions and mechanisms of action of the AL protein family in plants.


Assuntos
Arabidopsis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Arabidopsis/metabolismo , Desenvolvimento Vegetal/genética
20.
Plant Cell ; 36(5): 1410-1428, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382088

RESUMO

The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.


Assuntos
Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , História do Século XXI , História do Século XX , Desenvolvimento Vegetal/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...