Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.236
Filtrar
3.
Sci Adv ; 10(18): eadl5067, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701201

RESUMO

Airborne pathogens retain prolonged infectious activity once attached to the indoor environment, posing a pervasive threat to public health. Conventional air filters suffer from ineffective inactivation of the physics-separated microorganisms, and the chemical-based antimicrobial materials face challenges of poor stability/efficiency and inefficient viral inactivation. We, therefore, developed a rapid, reliable antimicrobial method against the attached indoor bacteria/viruses using a large-scale tunneling charge-motivated disinfection device fabricated by directly dispersing monolayer graphene on insulators. Free charges can be stably immobilized under the monolayer graphene through the tunneling effect. The stored charges can motivate continuous electron loss of attached microorganisms for accelerated disinfection, overcoming the diffusion limitation of chemical disinfectants. Complete (>99.99%) and broad-spectrum disinfection was achieved <1 min of attachment to the scaled-up device (25 square centimeters), reliably for 72 hours at high temperature (60°C) and humidity (90%). This method can be readily applied to high-touch surfaces in indoor environments for pathogen control.


Assuntos
Desinfecção , Eletrônica , Grafite , Desinfecção/métodos , Eletrônica/métodos , Grafite/química , Viabilidade Microbiana , Bactérias
4.
PeerJ ; 12: e17268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708351

RESUMO

Objective: To study the efficacy of PADTM Plus-based photoactivated disinfection (PAD) for treating denture stomatitis (DS) in diabetic rats by establishing a diabetic rat DS model. Methods: The diabetic rat DS model was developed by randomly selecting 2-month-old male Sprague-Dawley rats and dividing them into four groups. The palate and denture surfaces of rats in the PAD groups were incubated with 1 mg/mL toluidine blue O for 1 min each, followed by a 1-min exposure to 750-mW light-emitting diode light. The PAD-1 group received one radiation treatment, and the PAD-2 group received three radiation treatments over 5 days with a 1-day interval. The nystatin (NYS) group received treatment for 5 days with a suspension of NYS of 100,000 IU. The infection group did not receive any treatment. In each group, assessments included an inflammation score of the palate, tests for fungal load, histological evaluation, and immunohistochemical detection of interleukin-17 (IL-17) and tumor necrosis factor (TNF-α) conducted 1 and 7 days following the conclusion of treatment. Results: One day after treatment, the fungal load on the palate and dentures, as well as the mean optical density values of IL-17 and TNF-α, were found to be greater in the infection group than in the other three treatment groups (P < 0.05). On the 7th day after treatment, these values were significantly higher in the infection group than in the PAD-2 and NYS groups (P < 0.05). Importantly, there were no differences between the infection and PAD-1 groups nor between the PAD-2 and NYS groups (P > 0.05). Conclusions: PAD effectively reduced the fungal load and the expressions of IL-17 and TNF-α in the palate and denture of diabetic DS rats. The efficacy of multiple-light treatments was superior to that of single-light treatments and similar to that of NYS.


Assuntos
Diabetes Mellitus Experimental , Desinfecção , Ratos Sprague-Dawley , Estomatite sob Prótese , Animais , Masculino , Ratos , Estomatite sob Prótese/microbiologia , Estomatite sob Prótese/radioterapia , Estomatite sob Prótese/tratamento farmacológico , Desinfecção/métodos , Cloreto de Tolônio/farmacologia , Cloreto de Tolônio/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-17/metabolismo , Modelos Animais de Doenças
5.
J Med Virol ; 96(5): e29655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727091

RESUMO

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment. Nonthermal plasma, particularly surface-type DBD plasma, can inactivate human coronavirus 229E (HCoV-229E) on porous (paper, wood, mask) and nonporous (plastic, stainless steel, glass, Cu) materials. Virus inactivation was analyzed using a 50% tissue culture infectivity dose (TCID50) using cell line, flow cytometry, and immunofluorescence. Surfaces contaminated with HCoV-229E were treated at different time intervals (0-5 h) with and without plasma exposure (natural decay in ambient air conditions). HCoV-229E persistence conformed to the following order: plastic > cover glass > stainless steel > mask > wood > paper > Cu with and without plasma exposure. HCoV-229E was more stable in plastic, cover glass, and stainless steel in 5 h, and the viable virus titer gradually decreased from its initial log10 order of 6.892 to 1.72, 1.53, and 1.32 TCID50/mL, respectively, under plasma exposure. No virus was observed in Cu after treatment for 5 h. The use of airflow, ambient nitrogen, and argon did not promote virus inactivation. Flow cytometry and immunofluorescence analysis demonstrated a low expression level of spike protein (fluorescence intensity) during plasma treatment and in E and M genes expression compared with the virus control.


Assuntos
Coronavirus Humano 229E , Gases em Plasma , Inativação de Vírus , Humanos , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano 229E/fisiologia , Inativação de Vírus/efeitos dos fármacos , Gases em Plasma/farmacologia , Linhagem Celular , Porosidade , Desinfecção/métodos , Aço Inoxidável
6.
Environ Health Perspect ; 132(5): 55001, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728219

RESUMO

BACKGROUND: In response to the COVID-19 pandemic, new evidence-based strategies have emerged for reducing transmission of respiratory infections through management of indoor air. OBJECTIVES: This paper reviews critical advances that could reduce the burden of disease from inhaled pathogens and describes challenges in their implementation. DISCUSSION: Proven strategies include assuring sufficient ventilation, air cleaning by filtration, and air disinfection by germicidal ultraviolet (UV) light. Layered intervention strategies are needed to maximize risk reduction. Case studies demonstrate how to implement these tools while also revealing barriers to implementation. Future needs include standards designed with infection resilience and equity in mind, buildings optimized for infection resilience among other drivers, new approaches and technologies to improve ventilation, scientific consensus on the amount of ventilation needed to achieve a desired level of risk, methods for evaluating new air-cleaning technologies, studies of their long-term health effects, workforce training on ventilation systems, easier access to federal funds, demonstration projects in schools, and communication with the public about the importance of indoor air quality and actions people can take to improve it. https://doi.org/10.1289/EHP13878.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , SARS-CoV-2 , Ventilação , COVID-19/transmissão , COVID-19/prevenção & controle , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Ventilação/métodos , Microbiologia do Ar , Desinfecção/métodos , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/transmissão
7.
J Orthop Surg Res ; 19(1): 304, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769535

RESUMO

BACKGROUND: Periprosthetic joint infection is a serious complication following joint replacement. The development of bacterial biofilms bestows antibiotic resistance and restricts treatment via implant retention surgery. Electromagnetic induction heating is a novel technique for antibacterial treatment of metallic surfaces that has demonstrated in-vitro efficacy. Previous studies have always employed stationary, non-portable devices. This study aims to assess the in-vitro efficacy of induction-heating disinfection of metallic surfaces using a new Portable Disinfection System based on Induction Heating. METHODS: Mature biofilms of three bacterial species: S. epidermidis ATCC 35,984, S. aureus ATCC 25,923, E. coli ATCC 25,922, were grown on 18 × 2 mm cylindrical coupons of Titanium-Aluminium-Vanadium (Ti6Al4V) or Cobalt-chromium-molybdenum (CoCrMo) alloys. Study intervention was induction-heating of the coupon surface up to 70ºC for 210s, performed using the Portable Disinfection System (PDSIH). Temperature was monitored using thermographic imaging. For each bacterial strain and each metallic alloy, experiments and controls were conducted in triplicate. Bacterial load was quantified through scraping and drop plate techniques. Data were evaluated using non-parametric Mann-Whitney U test for 2 group comparison. Statistical significance was fixed at p ≤ 0.05. RESULTS: All bacterial strains showed a statistically significant reduction of CFU per surface area in both materials. Bacterial load reduction amounted to 0.507 and 0.602 Log10 CFU/mL for S. aureus on Ti6Al4V and CoCrMo respectively, 5.937 and 3.500 Log10 CFU/mL for E. coli, and 1.222 and 0.372 Log10 CFU/mL for S. epidermidis. CONCLUSIONS: Electromagnetic induction heating using PDSIH is efficacious to reduce mature biofilms of S aureus, E coli and S epidermidis growing on metallic surfaces of Ti6Al4V and CoCrMo alloys.


Assuntos
Ligas , Biofilmes , Desinfecção , Escherichia coli , Infecções Relacionadas à Prótese , Staphylococcus aureus , Titânio , Biofilmes/efeitos dos fármacos , Desinfecção/métodos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Infecções Relacionadas à Prótese/prevenção & controle , Infecções Relacionadas à Prótese/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos , Prótese Articular/microbiologia , Artroplastia de Substituição/instrumentação , Artroplastia de Substituição/métodos , Calefação/instrumentação , Calefação/métodos , Humanos , Fenômenos Eletromagnéticos , Vitálio
8.
Sci Total Environ ; 927: 172257, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608912

RESUMO

Waterborne pathogens threaten 2.2 billion people lacking access to safely managed drinking water services, causing over a million annual diarrheal deaths. Individuals without access to chlorine reagents or filtration devices often resort to do-it-yourself (DIY) methods, such as boiling or solar disinfection (SODIS). However, these methods are not simple to implement. In this study, we introduced an innovative and easily implemented disinfection approach. We discovered that immersing aluminum foil in various alkaline solutions produces alkali-treated aluminum foil (ATA foil) that effectively adsorbs Escherichia coli (E. coli), Salmonella, and Acinetobacter through the generated surface aluminum hydroxide. For example, a 25 cm2 ATA foil efficiently captures all 104E. coli DH5α strains in 100 mL water within 30 min. Using a saturated suspension of magnesium hydroxide, a type of fertilizer, as the alkaline solution, the properties of the saturated suspension eliminate the need for measuring reagents or changing solutions, making it easy for anyone to create ATA foil. ATA foils can be conveniently produced within mesh bags and placed in household water containers, reducing the risk of recontamination. Replacing the ATA foil with a foil improves the adsorption efficiency, and re-immersing the used foil in the production suspension restores its adsorption capacity. Consequently, ATA foil is an accessible and user-friendly alternative DIY method for underserved communities. Verification experiments covering variations in the water quality and climate are crucial for validating the efficacy of the foil. Fortunately, the ATA foil, with DIY characteristics similar to those of boiling and SODIS, is well-suited for testing under diverse global conditions, offering a promising solution for addressing waterborne pathogens worldwide.


Assuntos
Desinfecção , Água Potável , Purificação da Água , Água Potável/microbiologia , Água Potável/química , Desinfecção/métodos , Purificação da Água/métodos , Microbiologia da Água , Abastecimento de Água
9.
J Hazard Mater ; 470: 134254, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615644

RESUMO

The existence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has been a global public environment and health issue. Due to the different cell structures, gram-positive/negative ARB exhibit various inactivation mechanisms in water disinfection. In this study, a gram-negative ARB Escherichia coli DH5α (E. coli DH5α) was used as a horizontal gene transfer (HGT) donor, while a gram-positive ARB Bacillus as a recipient. To develop an efficient and engineering applicable method in water disinfection, ARB and ARGs removal efficiency of Fe(VI) coupled peroxydisulfate (PDS) or peroxymonosulfate (PMS) was compared, wherein hydroxylamine (HA) was added as a reducing agent. The results indicated that Fe(VI)/PMS/HA showed higher disinfection efficiency than Fe(VI)/PDS/HA. When the concentration of each Fe(VI), PMS, HA was 0.48 mM, 5.15 log E. coli DH5α and 3.57 log Bacillus lost cultivability, while the proportion of recovered cells was 0.0017 % and 0.0566 %, respectively, and HGT was blocked. Intracellular tetA was reduced by 2.49 log. Fe(IV) and/or Fe(V) were proved to be the decisive reactive species. Due to the superiority of low cost as well as high efficiency and practicality, Fe(VI)/PMS/HA has significant application potential in ARB, ARGs removal and HGT inhibition, offering a new insight for wastewater treatment.


Assuntos
Transferência Genética Horizontal , Ferro , Peróxidos , Peróxidos/química , Ferro/química , Purificação da Água/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Desinfecção/métodos , Sulfatos/química , Antibacterianos/farmacologia , Antibacterianos/química , Bacillus/genética , Bacillus/efeitos dos fármacos , Bacillus/metabolismo
10.
BMC Oral Health ; 24(1): 458, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622548

RESUMO

BACKGROUND: Various methods, chemical and physical, disinfect dental impressions. Common chemicals include 1% Sodium Hypochlorite and 2% glutaraldehyde, while UV radiation is a prevalent physical method. Few studies compare their effects on dimensional stability in polyether impressions. This study aims to assess such stability using different disinfection methods. Therefore, this study was planned to evaluate the dimensional stability of polyether impression material using different disinfection methods. METHODS: This in vitro study compared the effects of chemical disinfectants (1% Sodium Hypochlorite and 2% glutaraldehyde) and UV irradiation on the dimensional stability of polyether impression material. Groups A, B, C, and D, each with ten samples (N = 10), were studied. Group A was untreated (control). Group B was treated with 2% glutaraldehyde for 20 min, Group C with 1% Sodium Hypochlorite for 20 min, and Group D with UV rays for 20 min. A pilot milling machine drill was used to make four parallel holes labeled A, B, C, and D in the anterior and premolar regions from right to left. After sequential drilling, four implant analogs were positioned using a surveyor for accuracy. Ten open-tray polyether impressions were made and treated as described in the groups, followed by pouring the corresponding casts. Distortion values for each disinfection method were measured using a coordinate measuring machine capable of recording on the X- and Y-axes. RESULTS: A comprehensive analysis was conducted using the one-way ANOVA test for distinct groups labeled A, B, C, and D, revealing significant differences in the mean distances for X1, X2, X4, X5, and X6 among the groups, with p-values ranging from 0.001 to 0.000. However, no significant differences were observed in X3. Notably, mean distances for the Y variables exhibited substantial differences among the groups, emphasizing parameter variations, with p-values ranging from 0.000 to 0.033. The results compared the four groups using the one-way ANOVA test, revealing statistically significant distance differences for most X and Y variables, except for X3 and Y4. Similarly, post-hoc Tukey's tests provided specific pairwise comparisons, underlining the distinctions between group C and the others in the mean and deviation distances for various variables on both the X- and Y-axes. CONCLUSIONS: This study found that disinfection with 1% sodium hypochlorite or UV rays for 20 min maintained dimensional stability in polyether impressions.


Assuntos
Desinfetantes , Desinfecção , Humanos , Desinfecção/métodos , Glutaral , Hipoclorito de Sódio , Materiais para Moldagem Odontológica , Técnica de Moldagem Odontológica
11.
PLoS One ; 19(4): e0302258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626152

RESUMO

Effective surface disinfection is crucial for preventing the spread of pathogens in hospitals. Standard UltraViolet-C (UV-C) lamps have been widely used for this purpose, but their disinfection efficiency under real-world conditions is not well understood. To fill this gap, the influence of the power of the ultraviolet radiator, source-sample distance, and exposure time on the performance of UV-C lamps against Escherichia coli and Staphylococcus epidermidis were experimentally determined in the laboratory and hospital. The obtained results showed that the UV irradiance and, thus, the UV-C disinfection efficiency decreased significantly at distances greater than 100 cm from the UV-C lamp. Moreover, increasing the total power of the radiators does not improve the performance of UV-C lamps under real conditions. The UV-C disinfection efficiency greater than 90% was achieved only under laboratory conditions at a close distance from the UV-C lamp, i.e., 10 cm. These findings provide novel insights into the limitations of UV-C lamps in real-world conditions and highlight the need for more effective disinfection strategies in hospitals.


Assuntos
Escherichia coli , Raios Ultravioleta , Desinfecção/métodos
12.
Food Microbiol ; 121: 104516, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637078

RESUMO

Oxidation-reduction potential (ORP) is commonly used as a rapid measurement of the antimicrobial potential of free chlorine during industrial fresh produce washing. The current study tested the hypothesis that ORP can act as a "single variable" measurement of bacterial (vegetative and endospores) inactivation effectiveness with free chlorine irrespective of the water pH value. This situation has on occasion been assumed but never confirmed nor disproven. Chlorine-dosed pH 6.5 and 8.5 phosphate buffer solutions were inoculated with Escherichia coli (E. coli), Listeria innocua (L. innocua), or Bacillus subtilis (B. subtilis) endospores. ORP, free chlorine (FC), and log reduction were monitored after 5 s (for E. coli and L. innocua) and up to 30 min (for B. subtilis spores) of disinfection. Logistic and exponential models were developed to describe how bacteria reduction varied as a function of ORP at different pH levels. Validation tests were performed in phosphate buffered pH 6.5 and 8.5 cabbage wash water periodically dosed with FC, cabbage extract and a cocktail of Escherichia coli O157:H7 (E. coli O157:H7) and Listeria monocytogenes (L. monocytogenes). The built logistic and exponential models confirmed that at equal ORP values, the inactivation of the surrogate strains was not consistent across pH 6.5 and pH 8.5, with higher reductions at higher pH. This is the opposite of the well-known free chlorine-controlled bacterial inactivation, where the antibacterial effect is higher at lower pH. The validation test results indicated that in the cabbage wash water, the relationship between disinfection efficiency and ORP was consistent with the oxidant demand free systems. The study suggests that ORP cannot serve as a reliable single variable measurement to predict bacterial disinfection in buffered systems. When using ORP to monitor and control the antibacterial effectiveness of the chlorinated wash water, it is crucial to take into account (and control) the pH.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Listeria , Desinfecção/métodos , Cloro/farmacologia , Cloro/análise , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Oxidantes , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Cloretos , Oxirredução , Água/química , Antibacterianos , Concentração de Íons de Hidrogênio , Fosfatos
13.
Food Microbiol ; 121: 104523, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637085

RESUMO

This study investigated the fungicidal efficiency and mechanism of action of dielectric barrier discharge cold atmosphere plasma (DBD-CAP) in inactivating Aspergillus niger (A. niger) spores. The disinfection efficacy and quality of dried jujube used as the processing application object were also studied. The results indicated that the Weibull + Tail model performed better for spore inactivation curves at different voltages among various treatment times, and the spore cells were reduced by 4.05 log (cfu/mL) in spores suspension at 70 kV after 15 min of treatment. This disinfection impact was further supported by scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, which showed that the integrity of the cell membrane was damaged, and the intracellular content leaked out after DBD-CAP treatment. Elevated levels of reactive oxygen species (ROS) during the treatment increased the relative conductivity of cells, and leakage of nucleic acids and proteins further supported the disinfection impact. Additionally, the growth and toxicity of surviving A. niger spores after treatment were also greatly reduced. When DBD-CAP was applied to disinfecting dried jujube, the spore number exhibited a 2.67 log cfu/g reduction after treatment without significant damage observed onto the quality (P > 0.05).


Assuntos
Aspergillus , Gases em Plasma , Ziziphus , Aspergillus niger , Gases em Plasma/farmacologia , Desinfecção/métodos
14.
Disaster Med Public Health Prep ; 18: e91, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682448

RESUMO

The effect of filtering face piece grade 2 (FFP2) masks for infection prevention is essential in health care systems; however, it depends on supply chains. Efficient methods to reprocess FFP2 masks may be needed in disasters. Therefore, different UV-C irradiation schemes for bacterial decontamination of used FFP2 masks were investigated.Seventy-eight masks were irradiated with UV light for durations between 3 and 120 seconds and subsequently analyzed for the presence of viable bacteria on the inside. Ten masks served as the control group. Irradiation on the inside of the masks reduced bacteria in proportion to the dose, with an almost complete decontamination after 30 seconds. Outside irradiation reduced the quantity of colonies without time-dependent effects. Both sides of irradiation for a cumulated 30 seconds or more showed almost complete decontamination.Overall, this study suggests that standardized UV irradiation schemes with treatment to both sides might be an efficient and effective method for FFP2 mask decontamination in times of insufficient supplies.


Assuntos
Descontaminação , Máscaras , Raios Ultravioleta , Máscaras/normas , Descontaminação/métodos , Descontaminação/instrumentação , Descontaminação/normas , Humanos , Reutilização de Equipamento/normas , Desinfecção/métodos , Desinfecção/instrumentação , Desinfecção/normas
15.
Transfusion ; 64 Suppl 2: S174-S184, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686607

RESUMO

BACKGROUND: Today, with wars raging in Ukraine and the Middle East, the demand for blood is high. Despite this, few companies produce the necessary equipment to draw, store, and transfuse whole blood. This study evaluated the safety and performance of a 3D printed bottle cap in conjunction with a water bottle and some available consumables to draw and store fresh whole blood. STUDY DESIGN AND METHODS: Bags of saline, and freshly donated whole blood, was transferred to the water bottle through a 3D printed bottle cap and stored for 72 h. An identical setup, transferring saline to a Terumo blood collection bag was used as control. Performance and safety were evaluated by calculating infusion rate and observing for backflow, respectively. The blood was also tested for hemolysis and bacterial growth at four sampling points. RESULTS: The cap-and-bottle setup was faster than control in terms of flow rate when transferring saline (1.53 vs. 1.81 mL/s, p < .001), and non-inferior to saline control when transfusing blood (1.53 vs. 1.49 mL/s, p = .641). We did not observe any risks of causing the donor iatrogenic harm, and there was no evidence of increased hemolysis. However, there were traces of bacterial contamination in three of six bottles. CONCLUSION: This study indicates that drawing blood is both feasible and safe, utilizing a 3D printed cap and bottle setup. Flow rate was faster than control, and mechanical properties of the blood were not affected. We were unable to determine the source of bacterial contamination in the blood.


Assuntos
Preservação de Sangue , Impressão Tridimensional , Humanos , Preservação de Sangue/métodos , Desinfecção/métodos , Hemólise , Estudo de Prova de Conceito , Doadores de Sangue
16.
Water Res ; 256: 121536, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631238

RESUMO

In drinking water applications, an ozone exposure (Ct) based framework has been historically used to validate ozone disinfection. However, significant viral inactivation can be achieved with little to no measurable ozone exposure. Additionally, ozone exposure depends on multiple water quality variables as well as the calculation/ozone measurement method used. In this study, we evaluated alternative ozone monitoring frameworks as well as the impact of water quality variables on ozone decay kinetics and virus/coliform inactivation. Here we show that both change in UV254 absorbance and applied O3:TOC were well correlated with viral inactivation and these frameworks were resilient to changes in water quality. Both increasing temperature (12-30 °C) and pH (5.5-8.4) was shown to significantly increase the ozone decay rate and decreased the resulting ozone exposure by as much as ∼90% in the case of pH. However, due to the increased reaction rate of ozone with viruses at elevated temperature and pH, there was only a minor impact (∼20% in the case of pH) in overall disinfection performance for a given O3:TOC. These frameworks were also considered for variable source water with TOC (5-11 mg/L) and TSS (1.2-5.8 mg/L). Change in UV254 absorbance or applied ozone dose (mg/L) were the strongest indicators of disinfection performance for source waters of variable TOC, however site-specific testing may be needed to apply this framework. Challenge testing with influent nitrite indicated that ozone disinfection performance is significantly impacted (>50% reduction in inactivation) in the presence of nitrite thus enforcing the importance of accounting for this value in the applied ozone dose. Multi-point ozone dissolution was investigated as an alternative ozone application method that may present a benefit with respect to overall disinfection performance especially if nitrite was present. Developing and validating these alternative monitoring frameworks and ozone application methods is imperative in water reuse applications where unnecessary elevated ozone exposure may lead to harmful byproduct formation.


Assuntos
Desinfecção , Ozônio , Inativação de Vírus , Purificação da Água , Ozônio/farmacologia , Inativação de Vírus/efeitos dos fármacos , Purificação da Água/métodos , Desinfecção/métodos , Água Potável/virologia
17.
Water Res ; 256: 121608, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657310

RESUMO

The application of ozone (O3) disinfection has been hindered by its low solubility in water and the formation of disinfection by-products (DBPs). In this study, capacitive disinfection is applied as a pre-treatment for O3 oxidation, in which manganese dioxide with a rambutan-like hollow spherical structure is used as the electrode to increase the charge density on the electrode surface. When a voltage is applied, the negative-charged microbes are attracted to the electrodes and killed by electrical interactions. The contact between microbes and capacitive electrodes leads to changes in cell permeability and burst of reactive oxygen species, thereby promoting the diffusion of O3 into the cells. After O3 penetrates the cell membrane, it can directly attack the cytoplasmic constituents, accelerating fatal and irreversible damage to pathogens. As a result, the performance of the capacitance-O3 process is proved better than the direct sum of the two individual process efficiencies. The design of capacitance-O3 system is beneficial to reduce the ozone dosage and DBPs with a broader inactivation spectrum, which is conducive to the application of ozone in primary water disinfection.


Assuntos
Desinfecção , Compostos de Manganês , Óxidos , Ozônio , Ozônio/farmacologia , Ozônio/química , Óxidos/farmacologia , Óxidos/química , Desinfecção/métodos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Membrana Celular/efeitos dos fármacos , Purificação da Água/métodos , Eletrodos , Bactérias/efeitos dos fármacos
18.
J Hazard Mater ; 471: 134340, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640670

RESUMO

While the effectiveness of Poly-Aluminum Chloride (PAC) coagulation for pollutant removal has been documented across various wastewater scenarios, its specific application in hospital wastewater (HWW) treatment to remove conventional pollutants and hazardous genetic pollutants has not been studied. The research compared three hospital wastewater treatment plants (HWTPs) to address a knowledge gap, including the PAC coagulation-sodium hypochlorite disinfection process (PAC-HWTP), the biological contact oxidation-precipitation-sodium hypochlorite process (BCO-HWTP), and a system using outdated equipment with PAC coagulation (ODE-PAC-HWTP). Effluent compliance with national discharge standards is assessed, with BCO-HWTP meeting standards for direct or indirect discharge into natural aquatic environments. ODE-PAC-HWTP exceeds pretreatment standards for COD and BOD5 concentrations. PAC-HWTP effluent largely adheres to national pretreatment standards, enabling release into municipal sewers for further treatment. Metagenomic analysis reveals that PAC-HWTP exhibits higher removal efficiencies for antibiotic resistance genes, metal resistance genes, mobile genetic elements, and pathogens compared to BCO-HWTP and ODE-PAC-HWTP, achieving average removal rates of 45.13%, 57.54%, 80.61%, and 72.17%, respectively. These results suggests that when discharging treated HWW into municipal sewers for further processing, the use of PAC coagulation process is more feasible and cost-effective compared to BCO technologies. The analysis emphasizes the urgent need to upgrade outdated equipment HWTPs.


Assuntos
Hospitais , Oxirredução , Hipoclorito de Sódio , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Hipoclorito de Sódio/química , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Desinfecção/métodos , Purificação da Água/métodos , Polímeros/química , Hidróxido de Alumínio
19.
Sci Total Environ ; 931: 172740, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677424

RESUMO

Pathogens in drinking water remain a challenge for human health, photo-Fenton process is a promising technique for pathogen inactivation, herein, two common iron oxides, hematite and magnetite mediate persulfate (peroxymonosulfate-PMS - and peroxydisulfate-PDS) involved photo-Fenton-like processes were constructed for E. coli inactivation, and the inactivation performance was investigated and compared with the photo-Fenton process under a low intensity UVA irradiation. Results indicated that with a low dose of iron oxides (1 mg/L) and inorganic peroxides (10 mg/L), PMS-involved photo-Fenton-like process is the best substitute for the photo-Fenton one over pH range of 5-8. In addition, humic acid (HA, one of the important components of natural organic matter) incorporated iron oxide-mediated photo-Fenton-like processes for bacteria inactivation was also studied, and facilitating effect was found in UVA/hematite/PMS and UVA/magnetite/PDS systems. Reactive oxygen species (ROS) exploration experiments revealed that ·OH was the predominant radical in H2O2- and PDS-containing systems, whereas 1O2 was one of the principal reactive species in the PMS systems. In addition to the semiconductor photocatalysis of iron oxides and UVA-activated oxidants, iron-complexes (iron-oxidant complexes and iron-bacteria complexes) mediated ligand-to-metal charge transfer (LMCT) processes also made contribution to bacterial inactivation. Overall, this study demonstrates that it is feasible to replace H2O2 with PMS in a photo-Fenton-like process for water disinfection using a low dose of reagents, mediated by cheap catalysts, such as hematite and magnetite, it is also hoped to provide some insights to practical water treatment.


Assuntos
Desinfetantes , Compostos Férricos , Raios Ultravioleta , Compostos Férricos/química , Desinfetantes/farmacologia , Peróxido de Hidrogênio/química , Oxidantes/química , Escherichia coli/efeitos dos fármacos , Desinfecção/métodos , Espécies Reativas de Oxigênio/metabolismo , Purificação da Água/métodos , Peróxidos/química
20.
Chemosphere ; 358: 142121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677607

RESUMO

Disinfection by-products (DBPs) are prevalent contaminants in drinking water and are primarily linked to issues regarding water quality. These contaminants have been associated with various adverse health effects. Among different treatment processes, nanofiltration (NF) has demonstrated superior performance in effectively reducing the levels of DBPs compared to conventional processes and ozone-biological activated carbon (O3-BAC) processes. In this experiment, we systematically investigated the performance of three advanced membrane filtration treatment schemes, namely "sand filter + nanofiltration" (SF + NF), "sand filter + ozone-biological activated carbon + nanofiltration" (SF + O3-BAC + NF), and "ultrafiltration + nanofiltration" (UF + NF), in terms of their ability to control disinfection by-product (DBP) formation in treated water, analyzed the source and fate of DBP precursors during chlorination, and elucidated the role of precursor molecular weight distribution during membrane filtration in relation to DBP formation potential (DBPFP). The results indicated that each treatment process reduced DBPFP, as measured by trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP), with the SF + O3-BAC + NF process being the most effective (14.27 µg/L and 14.88 µg/L), followed by the SF + NF process (21.04 µg/L and 16.29 µg/L) and the UF + NF process (26.26 µg/L and 21.75 µg/L). Tyrosine, tryptophan, and soluble microbial products were identified as the major DBP precursors during chlorination, with their fluorescence intensity decreasing gradually as water treatment progressed. Additionally, while large molecular weight organics (60-100,000 KDa) played a minor role in DBPFP, small molecular weight organics (0.2-5 KDa) were highlighted as key contributors to DBPFP, and medium molecular weight organics (5-60 KDa) could adhere to the membrane surface and reduce DBPFP. Based on these findings, the combined NF process can be reasonably selected for controlling DBP formation, with potential long-term benefits for human health.


Assuntos
Desinfecção , Água Potável , Filtração , Halogenação , Trialometanos , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Água Potável/química , Purificação da Água/métodos , Trialometanos/química , Trialometanos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Filtração/métodos , Ozônio/química , Desinfetantes/química , Desinfetantes/análise , Acetatos/química , Carvão Vegetal/química , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA