Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 680
Filtrar
1.
Elife ; 122024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512723

RESUMO

Host-directed therapy (HDT) is an emerging approach to overcome antimicrobial resistance in pathogenic microorganisms. Specifically, HDT targets host-encoded factors required for pathogen replication and survival without interfering with microbial growth or metabolism, thereby eliminating the risk of resistance development. By applying HDT and a drug repurposing approach, we demonstrate that (R)-DI-87, a clinical-stage anticancer drug and potent inhibitor of mammalian deoxycytidine kinase (dCK), mitigates Staphylococcus aureus abscess formation in organ tissues upon invasive bloodstream infection. Mechanistically, (R)-DI-87 shields phagocytes from staphylococcal death-effector deoxyribonucleosides that target dCK and the mammalian purine salvage pathway-apoptosis axis. In this manner, (R)-DI-87-mediated protection of immune cells amplifies macrophage infiltration into deep-seated abscesses, a phenomenon coupled with enhanced pathogen control, ameliorated immunopathology, and reduced disease severity. Thus, pharmaceutical blockade of dCK represents an advanced anti-infective intervention strategy against which staphylococci cannot develop resistance and may help to fight fatal infectious diseases in hospitalized patients.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus , Desoxicitidina Quinase , Abscesso/patologia , Mamíferos
2.
Cell Death Dis ; 15(2): 131, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346958

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most lethal forms of cancer. Although in the last decade, an increase in 5-year patient survival has been observed, the mortality rate remains high. As a first-line treatment for PDAC, gemcitabine alone or in combination (gemcitabine plus paclitaxel) has been used; however, drug resistance to this regimen is a growing issue. In our previous study, we reported MYC/glutamine dependency as a therapeutic target in gemcitabine-resistant PDAC secondary to deoxycytidine kinase (DCK) inactivation. Moreover, enrichment of oxidative phosphorylation (OXPHOS)-associated genes was a common property shared by PDAC cell lines, and patient clinical samples coupled with low DCK expression was also demonstrated, which implicates DCK in cancer metabolism. In this article, we reveal that the expression of most genes encoding mitochondrial complexes is remarkably upregulated in PDAC patients with low DCK expression. The DCK-knockout (DCK KO) CFPAC-1 PDAC cell line model reiterated this observation. Particularly, OXPHOS was functionally enhanced in DCK KO cells as shown by a higher oxygen consumption rate and mitochondrial ATP production. Electron microscopic observations revealed abnormal mitochondrial morphology in DCK KO cells. Furthermore, DCK inactivation exhibited reactive oxygen species (ROS) reduction accompanied with ROS-scavenging gene activation, such as SOD1 and SOD2. SOD2 inhibition in DCK KO cells clearly induced cell growth suppression. In combination with increased anti-apoptotic gene BCL2 expression in DCK KO cells, we finally reveal that venetoclax and a mitochondrial complex I inhibitor are therapeutically efficacious for DCK-inactivated CFPAC-1 cells in in vitro and xenograft models. Hence, our work provides insight into inhibition of mitochondrial metabolism as a novel therapeutic approach to overcome DCK inactivation-mediated gemcitabine resistance in PDAC patient treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Desoxicitidina Quinase/antagonistas & inibidores , Desoxicitidina Quinase/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Gencitabina/farmacologia , Gencitabina/uso terapêutico , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Sci Rep ; 13(1): 20530, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993628

RESUMO

Deoxycytidine analogues (dCas) are widely used for the treatment of malignant diseases. They are commonly inactivated by cytidine deaminase (CDD), or by deoxycytidine monophosphate deaminase (dCMP deaminase). Additional metabolic pathways, such as phosphorylation, can substantially contribute to their (in)activation. Here, a new technique for the analysis of these pathways in cells is described. It is based on the use of 5-ethynyl 2'-deoxycytidine (EdC) and its conversion to 5-ethynyl 2'-deoxyuridine (EdU). Its use was tested for the estimation of the role of CDD and dCMP deaminase in five cancer and four non-cancer cell lines. The technique provides the possibility to address the aggregated impact of cytidine transporters, CDD, dCMP deaminase, and deoxycytidine kinase on EdC metabolism. Using this technique, we developed a quick and cheap method for the identification of cell lines exhibiting a lack of CDD activity. The data showed that in contrast to the cancer cells, all the non-cancer cells used in the study exhibited low, if any, CDD content and their cytidine deaminase activity can be exclusively attributed to dCMP deaminase. The technique also confirmed the importance of deoxycytidine kinase for dCas metabolism and indicated that dCMP deaminase can be fundamental in dCas deamination as well as CDD. Moreover, the described technique provides the possibility to perform the simultaneous testing of cytotoxicity and DNA replication activity.


Assuntos
Citidina , DCMP Desaminase , Citidina/metabolismo , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Desoxicitidina , Redes e Vias Metabólicas , Citidina Desaminase/metabolismo
4.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685961

RESUMO

The aryl hydrocarbon receptor (AHR) is a transcription factor that is commonly upregulated in pancreatic ductal adenocarcinoma (PDAC). AHR hinders the shuttling of human antigen R (ELAVL1) from the nucleus to the cytoplasm, where it stabilises its target messenger RNAs (mRNAs) and enhances protein expression. Among these target mRNAs are those induced by gemcitabine. Increased AHR expression leads to the sequestration of ELAVL1 in the nucleus, resulting in chemoresistance. This study aimed to investigate the interaction between AHR and ELAVL1 in the pathogenesis of PDAC in vitro. AHR and ELAVL1 genes were silenced by siRNA transfection. The RNA and protein were extracted for quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analysis. Direct binding between the ELAVL1 protein and AHR mRNA was examined through immunoprecipitation (IP) assay. Cell viability, clonogenicity, and migration assays were performed. Our study revealed that both AHR and ELAVL1 inter-regulate each other, while also having a role in cell proliferation, migration, and chemoresistance in PDAC cell lines. Notably, both proteins function through distinct mechanisms. The silencing of ELAVL1 disrupts the stability of its target mRNAs, resulting in the decreased expression of numerous cytoprotective proteins. In contrast, the silencing of AHR diminishes cell migration and proliferation and enhances cell sensitivity to gemcitabine through the AHR-ELAVL1-deoxycytidine kinase (DCK) molecular pathway. In conclusion, AHR and ELAVL1 interaction can form a negative feedback loop. By inhibiting AHR expression, PDAC cells become more susceptible to gemcitabine through the ELAVL1-DCK pathway.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Proteína Semelhante a ELAV 1/genética , Gencitabina , Pâncreas , Hormônios Pancreáticos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Receptores de Hidrocarboneto Arílico/genética , RNA Mensageiro/genética , Desoxicitidina Quinase/efeitos dos fármacos , Desoxicitidina Quinase/metabolismo , Neoplasias Pancreáticas
5.
Mol Cancer Res ; 21(5): 444-457, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757299

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most life-threatening malignancies. Although the deoxycytidine analog gemcitabine has been used as the first-line treatment for PDAC, the primary clinical challenge arises because of an eventual acquisition of resistance. Therefore, it is crucial to elucidate the mechanisms underlying gemcitabine resistance to improve treatment efficacy. To investigate potential genes whose inactivation confers gemcitabine resistance, we performed CRISPR knockout (KO) library screening. We found that deoxycytidine kinase (DCK) deficiency is the primary mechanism of gemcitabine resistance, and the inactivation of CRYBA2, DMBX1, CROT, and CD36 slightly conferred gemcitabine resistance. In particular, gene expression analysis revealed that DCK KO cells displayed a significant enrichment of genes associated with MYC targets, folate/one-carbon metabolism and glutamine metabolism pathways. Evidently, chemically targeting each of these pathways significantly reduced the survival of DCK KO cells. Moreover, the pathways enriched in DCK KO cells represented a trend similar to those in PDAC cell lines and samples of patients with PDAC with low DCK expression. We further observed that short-term treatment of parental CFPAC-1 cells with gemcitabine induces the expression of several genes, which promote synthesis and transport of glutamine in a dose-dependent manner, which suggests glutamine availability as a potential mechanism of escaping drug toxicity in an initial response for survival. Thus, our findings provide insights into novel therapeutic approaches for gemcitabine-resistant PDAC and emphasize the involvement of glutamine metabolism in drug-tolerant persister cells. IMPLICATIONS: Our study revealed the key pathways involved in gemcitabine resistance in PDAC, thus providing potential therapeutic strategies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Desoxicitidina Quinase/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Gencitabina , Glutamina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
6.
Drug Resist Updat ; 67: 100932, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706533

RESUMO

BRCA2 is a well-established cancer driver in several human malignancies. While the remarkable success of PARP inhibitors proved the clinical potential of targeting BRCA deficiencies, the emergence of resistance mechanisms underscores the importance of seeking novel Synthetic Lethal (SL) targets for future drug development efforts. In this work, we performed a BRCA2-centric SL screen with a collection of plant-derived compounds from South America. We identified the steroidal alkaloid Solanocapsine as a selective SL inducer, and we were able to substantially increase its potency by deriving multiple analogs. The use of two complementary chemoproteomic approaches led to the identification of the nucleotide salvage pathway enzyme deoxycytidine kinase (dCK) as Solanocapsine's target responsible for its BRCA2-linked SL induction. Additional confirmatory evidence was obtained by using the highly specific dCK inhibitor (DI-87), which induces SL in multiple BRCA2-deficient and KO contexts. Interestingly, dCK-induced SL is mechanistically different from the one induced by PARP inhibitors. dCK inhibition generates substantially lower levels of DNA damage, and cytotoxic phenotypes are associated exclusively with mitosis, thus suggesting that the fine-tuning of nucleotide supply in mitosis is critical for the survival of BRCA2-deficient cells. Moreover, by using a xenograft model of contralateral tumors, we show that dCK impairment suffices to trigger SL in-vivo. Taken together, our findings unveil dCK as a promising new target for BRCA2-deficient cancers, thus setting the ground for future therapeutic alternatives to PARP inhibitors.


Assuntos
Antineoplásicos , Desoxicitidina Quinase , Humanos , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nucleotídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína BRCA2/genética
7.
Immunology ; 168(1): 152-169, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35986643

RESUMO

Multiple sclerosis (MS) is an autoimmune disease driven by lymphocyte activation against myelin autoantigens in the central nervous system leading to demyelination and neurodegeneration. The deoxyribonucleoside salvage pathway with the rate-limiting enzyme deoxycytidine kinase (dCK) captures extracellular deoxyribonucleosides for use in intracellular deoxyribonucleotide metabolism. Previous studies have shown that deoxyribonucleoside salvage activity is enriched in lymphocytes and required for early lymphocyte development. However, specific roles for the deoxyribonucleoside salvage pathway and dCK in autoimmune diseases such as MS are unknown. Here we demonstrate that dCK activity is necessary for the development of clinical symptoms in the MOG35-55 and MOG1-125 experimental autoimmune encephalomyelitis (EAE) mouse models of MS. During EAE disease, deoxyribonucleoside salvage activity is elevated in the spleen and lymph nodes. Targeting dCK with the small molecule dCK inhibitor TRE-515 limits disease severity when treatments are started at disease induction or when symptoms first appear. EAE mice treated with TRE-515 have significantly fewer infiltrating leukocytes in the spinal cord, and TRE-515 blocks activation-induced B and T cell proliferation and MOG35-55 -specific T cell expansion without affecting innate immune cells or naïve T and B cell populations. Our results demonstrate that targeting dCK limits symptoms in EAE mice and suggest that dCK activity is required for MOG35-55 -specific lymphocyte activation-induced proliferation.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Desoxicitidina Quinase/genética , Linfócitos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
8.
Genes (Basel) ; 13(10)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292719

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) originates from the hepatocytes and accounts for 90% of liver cancer. The study intends to identify novel prognostic biomarkers for predicting the prognosis of HCC patients based on TCGA and GSE14520 cohorts. METHODS: Differential analysis was employed to obtain the DEGs (Differentially Expressed Genes) of the TCGA-LIHC-TPM cohort. The lasso regression analysis was applied to build the prognosis model through using the TCGA cohort as the training group and the GSE14520 cohort as the testing group. Next, based on the prognosis model, we performed the following analyses: the survival analysis, the independent prognosis analysis, the clinical feature analysis, the mutation analysis, the immune cell infiltration analysis, the tumor microenvironment analysis, and the drug sensitivity analysis. Finally, the survival time of HCC patients was predicted by constructing nomograms. RESULTS: Through the lasso regression analysis, we obtained a prognosis model of ten genes including BIRC5 (baculoviral IAP repeat containing 5), CDK4 (cyclin-dependent kinase 4), DCK (deoxycytidine kinase), HSPA4 (heat shock protein family A member 4), HSP90AA1 (heat shock protein 90 α family class A member 1), PSMD2 (Proteasome 26S Subunit Ubiquitin Receptor, Non-ATPase 2), IL1RN (interleukin 1 receptor antagonist), PGF (placental growth factor), SPP1 (secreted phosphoprotein 1), and STC2 (stanniocalcin 2). First, we found that the risk score is an independent prognosis factor and is related to the clinical features of HCC patients, covering AFP (α-fetoprotein) and stage. Second, we observed that the p53 mutation was the most obvious mutation between the high-risk and low-risk groups. Third, we also discovered that the risk score is related to some immune cells, covering B cells, T cells, dendritic, macrophages, neutrophils, etc. Fourth, the high-risk group possesses a lower TIDE score, a higher expression of immune checkpoints, and higher ESTIMATE score. Finally, nomograms include the clinical features and risk signatures, displaying the clinical utility of the signature in the survival prediction of HCC patients. CONCLUSIONS: Through the comprehensive analysis, we constructed an immune-related prognosis model to predict the survival of HCC patients. In addition to predicting the survival time of HCC patients, this model significantly correlates with the tumor microenvironment. Furthermore, we concluded that these ten immune-related genes (BIRC5, CDK4, DCK, HSPA4, HSP90AA1, PSMD2, IL1RN, PGF, SPP1, and STC2) serve as novel targets for antitumor immunity. Therefore, this study plays a significant role in exploring the clinical application of immune-related genes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Feminino , Humanos , alfa-Fetoproteínas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Quinase 4 Dependente de Ciclina/metabolismo , Desoxicitidina Quinase/metabolismo , Proteínas de Choque Térmico/metabolismo , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Osteopontina/metabolismo , Fator de Crescimento Placentário/metabolismo , Complexo de Endopeptidases do Proteassoma , Receptores de Interleucina-1 , Proteína Supressora de Tumor p53 , Ubiquitinas/metabolismo
9.
J Neuroimmune Pharmacol ; 17(1-2): 195-205, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33851318

RESUMO

Deoxycytidine kinase (dCK) and 5' deoxynucleotidase (NT5C2) are involved in metabolism of cladribine (2CdA), the immunomodulatory drug for multiple sclerosis; by mediating phosphorylation (activation) or phosphorolysis (deactivation) of 2CdA, respectively, these enzymes promote or prevent its accumulation in the cell, which leads to cell death. In particular, lymphocytes which present with a high intracellular dCK/NT5C2 ratio are more sensitive to 2CdA than other immune cells. We aim at determining if the expression of these enzymes and/or their activity differ in specific progenitor and mature immune cells and are influenced by cellular activation and/or exposure to 2CdA. Flow cytometry analysis showed no difference in dCK/NT5C2 ratio in progenitor and mature immune cells. 2CdA induced apoptosis in stimulated T and B cells and unstimulated B cells. dCK expression was enhanced by 2CdA at mRNA and protein levels in activated T cells and mRNA level in activated B cells. dCK activity, measured through an in-house luminescence release enzyme assay was higher in activated T and B cells, and such an increase was abrogated in activated B cells, but not T cells, upon exposure to 2CdA. These results reveal an important relationship between dCK activity and the effect of 2CdA on B and T cells, according to their activation status. Further study is warranted to evaluate whether dCK activity could, in the future, be a suitable predictive biomarker of lymphocyte response to 2CdA.


Assuntos
Cladribina , Desoxicitidina Quinase , Cladribina/farmacologia
10.
Int J Cancer ; 150(7): 1184-1197, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913485

RESUMO

Adult T-cell leukemia-lymphoma (ATL) is an aggressive neoplasm derived from T-cells transformed by human T-cell lymphotropic virus-1 (HTLV-1). Recently, we reported that regional DNA hypermethylation in HTLV-1-infected T-cells reflects the disease status of ATL and the anti-ATL effects of DNA demethylating agents, including azacitidine (AZA), decitabine (DAC) and a new DAC prodrug, OR-2100 (OR21), which we developed. Here, to better understand the mechanisms underlying drug resistance, we generated AZA-, DAC- and OR21-resistant (AZA-R, DAC-R and OR21-R, respectively) cells from the ATL cell line TL-Om1 and the HTLV-1-infected cell line MT-2 via long-term drug exposure. The efficacy of OR21 was almost the same as that of DAC, indicating that the pharmacodynamics of OR21 were due to release of DAC from OR21. Resistant cells did not show cellular responses observed in parental cells induced by treatment with drugs, including growth suppression, depletion of DNA methyltransferase DNMT1 and DNA hypomethylation. We also found that reduced expression of deoxycytidine kinase (DCK) correlated with lower susceptibility to DAC/OR21 and that reduced expression of uridine cytidine kinase2 (UCK2) correlated with reduced susceptibility to AZA. DCK and UCK2 catalyze phosphorylation of DAC and AZA, respectively; reconstitution of expression reversed the resistant phenotypes. A large homozygous deletion in DCK and a homozygous splice donor site mutation in UCK2 were identified in DAC-R TL-Om1 and AZA-R TL-Om1, respectively. Both genomic mutations might lead to loss of protein expression. Thus, inactivation of UCK2 and DCK might be a putative cause of phenotypes that are resistant to AZA and DAC/OR21, respectively.


Assuntos
Antineoplásicos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Desoxicitidina Quinase/fisiologia , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Pirimidinas/metabolismo , Uridina Quinase/fisiologia , Azacitidina/uso terapêutico , Linhagem Celular Tumoral , Decitabina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia-Linfoma de Células T do Adulto/metabolismo , Piridinas/uso terapêutico
11.
Cancer Chemother Pharmacol ; 89(1): 83-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34825941

RESUMO

PURPOSE: Drug resistance is a serious problem in leukemia therapy. A novel purine nucleoside analogue, nelarabine, is available for the treatment of children with T cell acute lymphoblastic leukemia. We investigated the mechanisms of drug resistance to nelarabine. METHODS: Nelarabine-resistant cells were selected by stepwise and continuous exposure to nelarabine using the limiting dilution method in human B and T cell lymphoblastic leukemia cell lines. Expression analysis was performed using real-time polymerase chain reaction, and epigenetic analysis was performed using methylation-specific polymerase chain reaction and chromatin immunoprecipitation. RESULTS: The RNA expression level for deoxycytidine kinase (dCK) was decreased in nelarabine-resistant leukemia cells. There were no differences between the parental and nelarabine-resistant leukemia cells in the methylation status of the promoter region of the dCK gene. In the chromatin immune precipitation assay, decreased acetylation of histones H3 and H4 bound to the dCK promoter was seen in the nelarabine-resistant cells when compared to the parental cells. Furthermore, treatment with a novel histone deacetylase inhibitor, vorinostat, promoted the cytotoxic effect of nelarabine along with increased expression of the dCK gene, and it increased acetylation of both histones H3 and H4 bound to the dCK promoter in nelarabine-resistant leukemia cells. The combination index showed that the effect of nelarabine and vorinostat was synergistic. CONCLUSION: This study reports that nelarabine with vorinostat can promote cytotoxicity in nelarabine-resistant leukemia cells through epigenetic mechanisms.


Assuntos
Antineoplásicos/farmacologia , Arabinonucleosídeos/farmacologia , Desoxicitidina Quinase/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Acetilação , Linhagem Celular Tumoral , Ilhas de CpG , Metilação de DNA , Desoxicitidina Quinase/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histonas/genética , Histonas/metabolismo , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Regiões Promotoras Genéticas , Vorinostat/farmacologia
12.
Cells ; 10(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34943995

RESUMO

Cladribine is a synthetic deoxyadenosine analogue with demonstrated efficacy in patients with relapsing-remitting multiple sclerosis (MS). The main mechanism of action described for cladribine is the induction of a cytotoxic effect on lymphocytes, leading to a long-term depletion of peripheral T and B cells. Besides lymphocyte toxicity, the mode of action may include immunomodulatory mechanisms affecting other cells of the immune system. In order to induce its beneficial effects, cladribine is phosphorylated inside the cell by deoxycytidine kinase (DCK) to its active form. However, the mechanism of action of cladribine may also include immunomodulatory pathways independent of DCK activation. This in vitro study was designed to explore the impact of cladribine on peripheral blood mononuclear cells (PBMC) subsets, and to assess whether the immunomodulatory mechanisms induced by cladribine depend on the activation of the molecule. To this end, we obtained PBMCs from healthy donors and MS patients and performed proliferation, apoptosis and activation assays with clinically relevant concentrations of cladribine in DCK-dependent and -independent conditions. We also evaluated the effect of cladribine on myeloid lineage-derived cells, monocytes and dendritic cells (DCs). Cladribine decreased proliferation and increased apoptosis of lymphocyte subsets after prodrug activation via DCK. In contrast, cladribine induced a decrease in immune cell activation through both DCK-dependent and -independent pathways (not requiring prodrug activation). Regarding monocytes and DCs, cladribine induced cytotoxicity and impaired the activation of classical monocytes, but had no effect on DC maturation. Taken together, these data indicate that cladribine, in addition to its cytotoxic function, can mediate immunomodulation in different immune cell populations, by regulating their proliferation, maturation and activation.


Assuntos
Cladribina/farmacologia , Imunomodulação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina Quinase/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Pró-Fármacos/farmacologia
13.
Biochem Biophys Res Commun ; 578: 157-162, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571370

RESUMO

Decitabine (DAC), a DNA methyltransferase (DNMT) inhibitor is a novel anti-cancer drug regulating epigenetic mechanisms. Similar to conventional anti-cancer drugs, drug resistance to DAC also has been reported, resulting in tumor recurrence. Our previous study using colorectal cancer HCT116 cells found the decrease in deoxycytidine kinase (dCK) (activation enzyme of DAC) and the increase in cytidine deaminase (inactivation enzyme of DAC) in acquired DAC-resistant HCT116 (HCT116/DAC) cells. The aim of our study was to clarify the involvement of dCK and CDA in DAC resistance. In order to tackle DAC resistance, it was also examined whether other DNMT inhibitors such as azacytidine (AC) and polyphenols are effective in DAC-resistant cancer cells. When dCK siRNA was transfected into HCT116 cells, IC50 value of DAC increased by about 74-fold and reached that of HCT116/DAC cells with attenuated dCK. dCK siRNA to HCT116 cells also abolished DNA demethylation effects of DAC. In contrast, CDA siRNA to HCT116 cells did not influence the efficacy of DAC. In addition, CDA siRNA to HCT116/DAC cells with increased CDA did not restore the compromised effects of DAC. These results suggested that attenuated dCK but not increased CDA mainly contributed to DAC resistance. Regarding dCK in HCT116/DAC cells, a point mutation with amino acid substitution was observed while the product size and expression of mRNA coding region did not change, suggesting that dCK protein was decreased by post-transcriptional regulation. AC and polyphenols showed no cross-resistance in HCT116/DAC cells. AC but not polyphenols exerted DNA demethylation effect. Among polyphenols, curcumin (Cur) showed the most synergistic cytotoxicity in combination with AC while DNA demethylation effect of AC was partly maintained. Taken together, combination of AC and Cur would be a promising alternative to tackle DAC resistance mainly due to attenuated dCK.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Azacitidina/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Curcumina/farmacologia , Decitabina/farmacologia , Desoxicitidina Quinase/deficiência , Anti-Inflamatórios não Esteroides/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/administração & dosagem , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Curcumina/administração & dosagem , Citidina Desaminase/metabolismo , Metilação de DNA , Decitabina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos
14.
Acta Haematol ; 144(5): 534-541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33626530

RESUMO

Resistance to cytarabine is an important cause of therapy failure in persons with acute myeloid leukemia (AML). Deoxycytidine kinase, encoded by DCK, catalyzes phosphorylation of cytarabine to cytarabine monophosphate, a necessary step for eventual incorporation of cytarabine triphosphate into DNA and for clinical efficacy. Whether DCK mutations make AML cells resistant to cytarabine is controversial. We studied DCK mutations and messenger RNA (mRNA) concentrations in leukemia cells from 10 subjects with AML who received cytarabine-based therapy and relapsed and in 2 artificially induced cytarabine-resistant AML cell lines. DCK mutations were detected in 4 subjects with AML relapsing after achieving a complete remission and receiving high-dose cytarabine postremission therapy. Most mutations were in exons 4-6 and were not present before therapy. DCK was also mutated in cytarabine-resistant but not parental AML cell lines. DCK mRNA concentrations were significantly decreased in cytarabine-resistant K562 and SHI-1 cells compared with cytarabine-sensitive parental cells. Mutation frequency of DCK and mRNA concentration did not correlate with the extent of cytarabine resistance indicating other factors operate. Overexpression of wild-type DCK restored cytarabine sensitivity to previously resistant leukemia cell lines. Our data contribute to the understanding of cytarabine resistance in persons with AML.


Assuntos
Citarabina/farmacologia , Desoxicitidina Quinase , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide Aguda , Mutação , Proteínas de Neoplasias , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
15.
Neuro Oncol ; 23(6): 945-954, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556172

RESUMO

BACKGROUND: High-grade meningiomas are aggressive tumors with high morbidity and mortality rates that frequently recur even after surgery and adjuvant radiotherapy. However, limited information is currently available on the biology of these tumors, and no alternative adjuvant treatment options exist. Although we previously demonstrated that high-grade meningioma cells were highly sensitive to gemcitabine in vitro and in vivo, the underlying molecular mechanisms remain unknown. METHODS: We examined the roles of hENT1 (human equilibrative nucleoside transporter 1) and dCK (deoxycytidine kinase) in the gemcitabine sensitivity and growth of meningioma cells in vitro. Tissue samples from meningiomas (26 WHO grade I and 21 WHO grade II/III meningiomas) were immunohistochemically analyzed for hENT1 and dCK as well as for Ki-67 as a marker of proliferative activity. RESULTS: hENT1 and dCK, which play critical roles in the intracellular transport and activation of gemcitabine, respectively, were responsible for the high gemcitabine sensitivity of high-grade meningioma cells and were strongly expressed in high-grade meningiomas. hENT1 expression was required for the proliferation and survival of high-grade meningioma cells and dCK expression. Furthermore, high hENT1 and dCK expression levels correlated with stronger tumor cell proliferative activity and shorter survival in meningioma patients. CONCLUSIONS: The present results suggest that hENT1 is a key molecular factor influencing the growth capacity and gemcitabine sensitivity of meningioma cells and also that hENT1, together with dCK, may be a viable prognostic marker for meningioma patients as well as a predictive marker of their responses to gemcitabine.


Assuntos
Neoplasias Meníngeas , Meningioma , Neoplasias Pancreáticas , Antimetabólitos Antineoplásicos/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina Quinase/metabolismo , Desoxicitidina Quinase/uso terapêutico , Transportador Equilibrativo 1 de Nucleosídeo , Humanos , Neoplasias Meníngeas/tratamento farmacológico , Meningioma/tratamento farmacológico , Gencitabina
16.
J Clin Lab Anal ; 34(11): e23457, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32671914

RESUMO

BACKGROUND: Several biomarkers of gemcitabine effectiveness have been studied in cancers, but less so in hepatocellular carcinoma (HCC), which is identified as the fifth most common cancer worldwide. Investigation of human equilibrative nucleoside transporter-1 (HENT-1) and deoxycytidine kinase (DCK), genes involved in gemcitabine uptake and metabolism, can be beneficial in the selection of potential cancer patients who could be responding to the treatment. AIM: To study HENT-1 and DCK gene expression in HCC patients with different protocols of treatment. METHODS: Using real-time PCR, we analyzed expression levels of HENT-1 and DCK genes from peripheral blood samples of 109 patients (20 controls & 89 HCC patients) between March 2015 and March 2017. All the 89 HCC patients received the antioxidants selenium (Se) and vitamin E (Vit.E) either alone (45 patients) or in combination with gemcitabine (24 patients) or radiofrequency ablation (RFA) (20 patients). RESULTS: There was a significant increase in HENT-1 expression levels in HCC patients treated with Se and Vit.E alone as compared to controls (P Ë‚ .0001), while there was no significant difference between HCC patients treated with gemcitabine or RFA as compared to controls. In contrast, expression of DCK was significantly increased in all groups of HCC patients as compared to controls (P Ë‚ .0001). CONCLUSIONS: HENT-1 and DCK mRNA expressions are important markers of HCC and for GEM effect and GEM sensitivity in patients with HCC. This could be beneficial in the selection of HCC patients sensitive to gemcitabine to avoid subjecting resistant patients to unnecessary chemotherapy.


Assuntos
Carcinoma Hepatocelular , Desoxicitidina Quinase , Desoxicitidina/análogos & derivados , Transportador Equilibrativo 1 de Nucleosídeo , Neoplasias Hepáticas , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Estudos Transversais , Desoxicitidina/uso terapêutico , Desoxicitidina Quinase/sangue , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Egito , Transportador Equilibrativo 1 de Nucleosídeo/sangue , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Resultado do Tratamento , Gencitabina
17.
Artigo em Inglês | MEDLINE | ID: mdl-32727269

RESUMO

Dexamethasone (DEX) is often used in the initial treatment of leukemia. Earlier we demonstrated that DEX decreased the activity of deoxycytidine kinase (dCK) which is essential for the activation of cytarabine (ara-C). Therefore we investigated the effect of DEX on the in vivo sensitivity of acute myeloid leukemia (AML) to ara-C and another deoxycytidine analog, gemcitabine, in the Brown Norway Myeloid Leukemia (BNML) rat model for AML, and its ara-C resistant variant B-araC, in relation to the effects on dCK activity.The antileukemic effect was evaluated as survival of the rats, while dCK activity was measured in leukemic spleen (completely consisting of BNML cells) with liver as representative normal tissue, 24 hr after treatment with ara-C or DEX with radioactive deoxycytidine (CdR) as a substrate.Treatment with ara-C increased life-span of BNML by 200%, which was not affected by DEX. Gemcitabine was ineffective. In the liver of BNML bearing rats DEX decreased dCK activity 33%, while ara-C increased dCK activity slightly (to 129%), but in the combination of ara-C/DEX dCK activity was also decreased. In the livers of Bara-C bearing rats dCK was 2.7-fold higher compared to BNML rats, which was increased 179% in the gemcitabine-DEX treated rats. In BNML leukemic spleens DEX decreased dCK activity 41% and gem/dex 46%, but ara-C increased dCK activity to 123%, but in the combination this effect was neutralized. In Bara-C spleens only ara-C/dex decreased dCK activity (32%).In conclusion; in an AML rat model DEX did not affect the antileukemic effect of ara-C, nor the dCK activity.


Assuntos
Antineoplásicos/farmacologia , Citarabina/farmacologia , Desoxicitidina Quinase/metabolismo , Dexametasona/farmacologia , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/enzimologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Citarabina/uso terapêutico , Interações Medicamentosas , Ratos
18.
Technol Cancer Res Treat ; 19: 1533033820934133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32588770

RESUMO

BACKGROUND: The biological function of deoxycytidine kinase in tumor is not yet clear, and there are a few studies relating to the correlation of deoxycytidine kinase gene with the occurrence and development of liver cancer. METHODS: The messenger RNA expression of deoxycytidine kinase was analyzed with the use of the UALCAN and GEPIA database. Moreover, we assessed the function of deoxycytidine kinase on clinical prognosis with Kaplan-Meier plotter database. The relationship between deoxycytidine kinase and cancer immune infiltrates was investigated via Tumor Immune Estimation Resource site. Furthermore, Tumor Immune Estimation Resource was also used to evaluate the correlations between the expression of deoxycytidine kinase and gene marker sets of immune infiltrates. RESULTS: The deoxycytidine kinase messenger RNA level significantly upregulated in patients with liver cancer compared to normal liver samples. Moreover, the increased expression of deoxycytidine kinase messenger RNA was closely associated with reduced overall survival and disease-free survival in all liver cancers. In addition, deoxycytidine kinase expression displayed a strong correlation with infiltrating levels of macrophages, neutrophils, and dendritic cells in liver cancer, and deoxycytidine kinase expression was positively correlated with diverse immune marker sets in liver cancer. CONCLUSIONS: All the above findings suggested that increased expression of deoxycytidine kinase was significantly related to unfavorable prognosis in patients with liver cancer. And deoxycytidine kinase is correlated with immune infiltrating levels, including those of B cells, macrophages, neutrophils, and dendritic cells in patients with liver cancer. These findings suggest that deoxycytidine kinase can be used as a prognostic biomarker for determining prognosis and immune infiltration in liver cancer. And deoxycytidine kinase is a potential target for liver cancer therapy, and these preliminary findings require further study to determine whether deoxycytidine kinase-targeting reagents might be developed for clinical application in liver cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Desoxicitidina Quinase/metabolismo , Neoplasias Hepáticas/patologia , Linfócitos do Interstício Tumoral/imunologia , Feminino , Seguimentos , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/imunologia , Masculino , Prognóstico , Taxa de Sobrevida
19.
Mol Cancer Ther ; 19(8): 1623-1635, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32430484

RESUMO

Although gemcitabine is the cornerstone of care for pancreatic ductal adenocarcinoma (PDA), patients lack durable responses and relapse is inevitable. While the underlying mechanisms leading to gemcitabine resistance are likely to be multifactorial, there is a strong association between activating gemcitabine metabolism pathways and clinical outcome. This study evaluated casein kinase 1 delta (CK1δ) as a potential therapeutic target for PDA and bladder cancer, in which CK1δ is frequently overexpressed. We assessed the antitumor effects of genetically silencing or pharmacologically inhibiting CK1δ using our in-house CK1δ small-molecule inhibitor SR-3029, either alone or in combination with gemcitabine, on the proliferation and survival of pancreatic and bladder cancer cell lines and orthotopic mouse models. Genetic studies confirmed that silencing CK1δ or treatment with SR-3029 induced a significant upregulation of deoxycytidine kinase (dCK), a rate-limiting enzyme in gemcitabine metabolite activation. The combination of SR-3029 with gemcitabine induced synergistic antiproliferative activity and enhanced apoptosis in both pancreatic and bladder cancer cells. Furthermore, in an orthotopic pancreatic tumor model, we observed improved efficacy with combination treatment concomitant with increased dCK expression. This study demonstrates that CK1δ plays a role in gemcitabine metabolism, and that the combination of CK1δ inhibition with gemcitabine holds promise as a future therapeutic option for metastatic PDA as well as other cancers with upregulated CK1δ expression.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Caseína Quinase Idelta/antagonistas & inibidores , Desoxicitidina Quinase/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Desoxicitidina/farmacologia , Desoxicitidina Quinase/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina , Neoplasias Pancreáticas
20.
Nucleosides Nucleotides Nucleic Acids ; 39(10-12): 1347-1358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189555

RESUMO

Thymidine kinase 1 (TK1) and deoxycytidine kinase (dCK) are required for the activation of thymidine and deoxycytidine analogs used in antiviral and anticancer therapies. Many anticancer drugs cause oxidative stress, and the rise of GSSG and other reactive oxygen species may lead to alteration in gene expression, protein, nucleic acids and lipid modifications. Here, we investigated the effects of oxidative stress and nucleoside analog on the expression and activity of TK1 and dCK. Treatment with GSSG resulted in glutathionylation of dCK and dGK but not TK1 and Dm-dNK, and glutathionylation led to increased dCK activity but decreased dGK activity. Treatment with hydrogen peroxide resulted in induction of TK1, however, the TK1 activity did not correlate with TK1 protein levels, indicating that TK1 protein was inactive. The cellular expression of dCK, however, was reduced but dCK activity was not affected at concentration ≤ 4 mM. Treatment with TFT or 5FdU resulted in downregulation of both TK1 and dCK. However, araC and dFdC treatment led to increased dCK protein but decreased dCK activity. In contrast, both TK1 protein and activity were upregulated after araC and dFdC treatment. Doxorubicin treatment led to upregulation of the TK1 but downregulation of dCK. In conclusion TK1 and dCK expression and activity are apparently affected by oxidative stress and treatment by nucleoside analogs. These results demonstrate the pharmacokinetic importance of characterizing the expression and activity of TK1 and dCK during chemotherapy with thymidine and deoxycytidine analogs in order to optimize their efficacy.


Assuntos
Desoxicitidina Quinase/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Nucleosídeos/química , Nucleosídeos/farmacologia , Timidina Quinase/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster/enzimologia , Glutationa/metabolismo , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA