Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 864
Filtrar
1.
Glob Chang Biol ; 30(8): e17417, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39105285

RESUMO

Marine heatwaves (MHWs) are increasing in frequency, duration and intensity, disrupting global marine ecosystems. While most reported impacts have been in tropical areas, New Zealand experienced its strongest and longest MHW in 2022, profoundly affecting marine sponges. Sponges are vital to rocky benthic marine communities, with their abundance influencing ecosystem functioning. This study examines the impact of this MHW on the photosynthetic sponge Cymbastella lamellata in Fiordland, New Zealand. We describe the extent, physiological responses, mortality, microbial community changes and ecological impact of this MHW on C. lamellata. The Fiordland MHW reached a maximum temperature of 4.4°C above average, lasting for 259 days. Bleaching occurred in >90% of the C. lamellata Fiordland population. The population size exceeded 66 million from 5 to 25 m, making this the largest bleaching event of its kind ever recorded. We identified the photosynthetic symbiont as a diatom, and bleached sponges had reduced photosynthetic efficiency. Post-MHW surveys in 2023 found that over 50% of sponges at sampling sites had died but that the remaining sponges had mostly recovered from earlier bleaching. Using a simulated MHW experiment, we found that temperature stress was a driver of necrosis rather than bleaching, despite necrosis only rarely being observed in the field (<2% of sponges). This suggests that bleaching may not be the cause of the mortality directly. We also identified a microbial community shift in surviving sponges, which we propose represents a microbial-mediated adaptive response to MHWs. We also found that C. lamellata are key contributors of dissolved organic carbon to the water column, with their loss likely impacting ecosystem function. We demonstrate the potential for MHWs to disrupt key marine phyla in temperate regions, highlighting how susceptible temperate sponges globally might be to MHWs.


Assuntos
Microbiota , Poríferos , Poríferos/microbiologia , Poríferos/fisiologia , Animais , Nova Zelândia , Fotossíntese , Calor Extremo/efeitos adversos , Ecossistema , Simbiose , Diatomáceas/fisiologia , Diatomáceas/crescimento & desenvolvimento
2.
PLoS Biol ; 22(8): e3002733, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39116044

RESUMO

A principal goal in ecology is to identify the determinants of species abundances in nature. Body size has emerged as a fundamental and repeatable predictor of abundance, with smaller organisms occurring in greater numbers than larger ones. A biogeographic component, known as Bergmann's rule, describes the preponderance, across taxonomic groups, of larger-bodied organisms in colder areas. Although undeniably important, the extent to which body size is the key trait underlying these patterns is unclear. We explored these questions in diatoms, unicellular algae of global importance for their roles in carbon fixation and energy flow through marine food webs. Using a phylogenomic dataset from a single lineage with worldwide distribution, we found that body size (cell volume) was strongly correlated with genome size, which varied by 50-fold across species and was driven by differences in the amount of repetitive DNA. However, directional models identified temperature and genome size, not cell size, as having the greatest influence on maximum population growth rate. A global metabarcoding dataset further identified genome size as a strong predictor of species abundance in the ocean, but only in colder regions at high and low latitudes where diatoms with large genomes dominated, a pattern consistent with Bergmann's rule. Although species abundances are shaped by myriad interacting abiotic and biotic factors, genome size alone was a remarkably strong predictor of abundance. Taken together, these results highlight the cascading cellular and ecological consequences of macroevolutionary changes in an emergent trait, genome size, one of the most fundamental and irreducible properties of an organism.


Assuntos
Diatomáceas , Tamanho do Genoma , Oceanos e Mares , Filogenia , Diatomáceas/genética , Diatomáceas/fisiologia , Tamanho Corporal , Temperatura
3.
Sci Total Environ ; 948: 174902, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39053551

RESUMO

Understanding local hydraulic conditions is imperative to coastal harmful algal bloom (HAB) monitoring. The research summarized herein describes how the locations and tidal phases selected for coastal hazard sampling can influence measurement results used to guide management decisions for HABs. Our study was conducted in Frenchman Bay, Maine, known for its complex deglaciated coastline, strong tidal influence, and shellfishing activities that are susceptible to problematic HABs such as those produced by some species (spp.) of the diatom genus Pseudo-nitzschia. In-situ measurements of current velocity, density, and turbulence collected over a semidiurnal tidal cycle and a companion numerical model simulation of the study area provide concurrent evidence of two adjacent counter-rotating sub-mesoscale eddies (2-4 km diameter) that persist in the depth-averaged residual circulation. The eddies are generated in the wake of several islands in an area with abrupt bathymetric gradients, both legacy conditions partly derived from deglaciation ∼15 kya. Increased concentrations of Pseudo-nitzschia spp. measured during the semidiurnal survey follow a trend of elevated turbulent dissipation rates near the water surface, indicating that surface sampling alone might not adequately indicate species abundance. Additional measurements of Pseudo-nitzschia spp. from two years of weekly sampling in the region show that algal cell abundance is highest where residual eddies form. These findings provide incentive to examine current practices of HAB monitoring and management by linking coastal geomorphology to hydraulic conditions influencing HAB sampling outcomes, coastal morphometric features to material accumulation hotspots, and millennial time scales to modern hydraulic conditions.


Assuntos
Diatomáceas , Monitoramento Ambiental , Estuários , Proliferação Nociva de Algas , Hidrodinâmica , Diatomáceas/fisiologia , Monitoramento Ambiental/métodos , Maine , Movimentos da Água
4.
Mar Environ Res ; 199: 106630, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38964247

RESUMO

Harmful algal blooms (HABs) of Alexandrium pacificum have affected the Marlborough Sounds in New Zealand since 2010, posing a threat to green-lipped mussel (GLM, Perna canaliculus) farming. Previous studies have shown A. pacificum has negative effects GLM embryos and larvae. To further investigate these toxic mechanisms, in vitro bioassays were conducted on GLM spermatozoa, hemocytes, and the diatom, Chaetoceros muelleri. The three cell types were exposed to several treatments of A. pacificum for 2 h and responses were measured using flow cytometry and pulse amplitude-modulated fluorometry. Significant spermatozoa mortality was recorded in treatments containing A. pacificum cells or fragments, while hemocyte and C. muelleri mortality was recorded in cell-free treatments of A. pacificum which contained paralytic shellfish toxins (PSTs). Variation in sensitivity between cell types as well as the sublethal effects observed, emphasise the diverse toxic mechanisms of A. pacificum on co-occurring species in the environment.


Assuntos
Diatomáceas , Dinoflagellida , Hemócitos , Espermatozoides , Animais , Dinoflagellida/fisiologia , Diatomáceas/fisiologia , Diatomáceas/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Masculino , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Perna (Organismo)/fisiologia , Perna (Organismo)/efeitos dos fármacos , Proliferação Nociva de Algas , Nova Zelândia , Toxinas Marinhas/toxicidade
5.
Biofouling ; 40(7): 377-389, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955544

RESUMO

Biofouling on marine surfaces causes immense material and financial harm for maritime vessels and related marine industries. Previous reports have shown the effectiveness of amphiphilic coating systems based on poly(dimethylsiloxane) (PDMS) against such marine foulers. Recent studies on biofouling mechanisms have also demonstrated acidic microenvironments in biofilms and stronger adhesion at low-pH conditions. This report presents the design and utilization of amphiphilic polymer coatings with buffer functionalities as an active disruptor against four different marine foulers. Specifically, this study explores both neutral and zwitterionic buffer systems for marine coatings, offering insights into coating design. Overall, these buffer systems were found to improve foulant removal, and unexpectedly were the most effective against the diatom Navicula incerta.


Assuntos
Biofilmes , Incrustação Biológica , Diatomáceas , Dimetilpolisiloxanos , Incrustação Biológica/prevenção & controle , Diatomáceas/fisiologia , Dimetilpolisiloxanos/química , Animais , Soluções Tampão , Propriedades de Superfície , Concentração de Íons de Hidrogênio
6.
Sci Total Environ ; 947: 174345, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960174

RESUMO

Seaweed cultivation can inhibit the occurrence of red tides. However, how seaweed aquaculture interactions with harmful algal blooms will be affected by the increasing occurrence and intensity of marine heatwaves (MHWs) is unknown. In this study, we run both monoculture and coculture systems to investigate the effects of a simulated heatwave on the competition of the economically important macroalga Gracilariopsis lemaneiformis against the harmful bloom diatom Skeletonema costatum. Coculture with G. lemaneiformis led to a growth decrease in S. costatum. Growth and photosynthetic activity (Fv/Fm) of G. lemaneiformis was greatly reduced by the heatwave treatment, and did not recover even after one week. Growth and photosynthetic activity of S. costatum was also reduced by the heatwave in coculture, but returned to normal during the recovery period. S. costatum also responded to the stressful environment by forming aggregates. Metabolomic analysis suggests that the negative effects on S. costatum were related to an allelochemical release from G. lemaneiformis. These findings show that MHWs may enhance the competitive advantages of S. costatum against G. lemaneiformis, leading to more severe harmful algal blooms in future extreme weather scenarios.


Assuntos
Diatomáceas , Proliferação Nociva de Algas , Alga Marinha , Diatomáceas/fisiologia , Alga Marinha/fisiologia , Calor Extremo , Aquicultura , Gracilaria/fisiologia , Fotossíntese
7.
Sci Rep ; 14(1): 14984, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951587

RESUMO

Sea-ice microalgae are a key source of energy and nutrient supply to polar marine food webs, particularly during spring, prior to open-water phytoplankton blooms. The nutritional quality of microalgae as a food source depends on their biomolecular (lipid:protein:carbohydrate) composition. In this study, we used synchrotron-based Fourier transform infra-red microspectroscopy (s-FTIR) to measure the biomolecular content of a dominant sea-ice taxa, Nitzschia frigida, from natural land-fast ice communities throughout the Arctic spring season. Repeated sampling over six weeks from an inner (relatively stable) and an outer (relatively dynamic) fjord site revealed high intra-specific variability in biomolecular content, elucidating the plasticity of N. frigida to adjust to the dynamic sea ice and water conditions. Environmental triggers indicating the end of productivity in the ice and onset of ice melt, including nitrogen limitation and increased water temperature, drove an increase in lipid and fatty acids stores, and a decline in protein and carbohydrate content. In the context of climate change and the predicted Atlantification of the Arctic, dynamic mixing and abrupt warmer water advection could truncate these important end-of-season environmental shifts, causing the algae to be released from the ice prior to adequate lipid storage, influencing carbon transfer through the polar marine system.


Assuntos
Camada de Gelo , Estações do Ano , Regiões Árticas , Mudança Climática , Microalgas/metabolismo , Diatomáceas/metabolismo , Diatomáceas/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Fitoplâncton/metabolismo , Fitoplâncton/fisiologia
8.
mSphere ; 9(7): e0019824, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38940599

RESUMO

Skeletonema costatum, a cosmopolitan diatom primarily inhabiting coastal ecosystems, exhibits a typically close yet variable relationship with heterotrophic bacteria. The increasing temperature of surface seawater is expected to substantially affect the viability and ecological dynamics of S. costatum, potentially altering its relationship with bacteria. However, it remains unclear to what extent the elevated temperature could change these relationships. Here, the relationship between axenic S. costatum and natural seawater bacteria underwent a dramatic shift from mutualism to antagonism as the co-culture temperature increased from 20°C to 25°C. The co-occurrence network indicated significantly increased complexity of interaction between S. costatum and bacteria community after temperature elevation, especially with Flavobacteriaceae, implying their potential role in eliminating S. costatum under higher temperatures. Additionally, a Flavobacteriaceae isolate, namely MS1 identified as Tamlana genus, was isolated from the co-culture system at 25°C. MS1 had a remarkable ability to eliminate S. costatum, with the mortality rate at 25°C steadily rising from 30.2% at 48 h to 92.4% at 120 h. However, it promoted algal growth to some extent at 20°C. These results demonstrated that increased temperature promotes MS1 shifts from mutualism to antagonism with S. costatum. According to the comparative genomics analysis, changes in the lifestyle of MS1 were attributed to the increased gliding motility and attachment of MS1 under elevated temperature, enabling it to exert an algicidal effect through direct contact with alga. This investigation provided an advanced understanding of interactions between phytoplankton and bacteria in future warming oceanic ecosystems. IMPORTANCE: Ocean warming profoundly influences the growth and metabolism of phytoplankton and bacteria, thereby significantly reshaping their interactions. Previous studies have shown that warming can change bacterial lifestyle from mutualism to antagonism with phytoplankton, but the underlying mechanism remains unclear. In this study, we found that high temperature promotes Tamlana sp. MS1 adhesion to Skeletonema costatum, leading to algal lysis through direct contact, demonstrating a transition in lifestyle from mutualism to antagonism with increasing temperature. Furthermore, the gliding motility of MS1 appears to be pivotal in mediating the transition of its lifestyle. These findings not only advance our understanding of the phytoplankton-bacteria relationship under ocean warming but also offer valuable insights for predicting the impact of warming on phytoplankton carbon sequestration.


Assuntos
Antibiose , Diatomáceas , Flavobacteriaceae , Água do Mar , Simbiose , Água do Mar/microbiologia , Flavobacteriaceae/genética , Flavobacteriaceae/fisiologia , Diatomáceas/fisiologia , Diatomáceas/genética , Bactérias/classificação , Bactérias/genética , Temperatura , Filogenia , Temperatura Alta , Técnicas de Cocultura , Microbiota
9.
Harmful Algae ; 136: 102619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876523

RESUMO

In August 2018, the harmful algae species Margalefidinium polykrikoides bloomed to levels previously unobserved in the open waters of Narragansett Bay, Rhode Island, in a transient but intense bloom. Detected by an Imaging FlowCytobot providing hourly data, it is characterized by a time span of less than a week and patchiness with sub-daily oscillations in concentration. The highest concentrations are recorded at lower salinity and higher temperature, suggesting the bloom may have developed in the upper bay and was transported south. The proportion of chains increased during the height of the bloom, and many of the images contained 4-cells per chain. The development of the bloom was favored by optimal temperature and salinity conditions as well as increased nitrogen coincident with greater precipitation and river flow. The period preceding bloom formation also saw a sharp decrease in the dominating large chain-forming diatom Eucampia sp. and highly abundant Skeletonema spp., thus reducing competition over resources for the slow-growing M. polykrikoides. The height of the bloom was reached during the lowest tidal range of the month when the turbulence and water displacement were lower. This time series highlights an out-of-the-ordinary bloom's environmental and biological conditions and the importance of frequent sampling during known favorable conditions.


Assuntos
Proliferação Nociva de Algas , Fitoplâncton , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Rhode Island , Salinidade , Monitoramento Ambiental/métodos , Diatomáceas/fisiologia , Diatomáceas/crescimento & desenvolvimento , Baías , Temperatura
10.
Sci Total Environ ; 945: 173913, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880157

RESUMO

The globally distributed harmful algal blooms (HAB) species, Heterosigma akashiwo, has been found to exhibit ichthyotoxicity. Previous studies have shown that H. akashiwo achieves a competitive edge during bloom occurrences by inhibiting the growth of a coexisting diatom, Skeletonema costatum, through allelopathy. However, the specific allelopathic mechanisms underlying the allelopathic effects of H. akashiwo on S. costatum remain unknown. To bridge this gap, our study utilized a combination of quantitative real-time PCR and metabolomics to examine the allelopathic processes of H. akashiwo on S. costatum. Our results demonstrate that the growth of S. costatum is hindered when co-cultured with H. akashiwo (initial cell concentration, 2 × 104 cell/mL). Gene expression investigation showed a substantial reduction in the mRNA levels of cytochrome b6, ribulose bisphosphate carboxylase large chain, and silicon transporter in S. costatum when grown in co-culture conditions. Furthermore, metabolic pathway analysis suggested that the allelopathic effects of H. akashiwo disrupted several vital metabolic pathways in S. costatum, including a reduction in purine and pyrimidine metabolism and an increase in fatty acid biosynthesis. Our investigation has revealed the intricate and substantial involvement of allelopathy in the formation of H. akashiwo blooms, demonstrating the complexity of the allelopathic interaction between H. akashiwo and S. costatum. These insights also contribute significantly to our understanding of the dynamics within HAB species.


Assuntos
Alelopatia , Diatomáceas , Proliferação Nociva de Algas , Metabolômica , Diatomáceas/fisiologia , Expressão Gênica , Dinoflagellida/fisiologia , Dinoflagellida/genética , Estramenópilas/fisiologia
11.
Plant J ; 119(4): 2001-2020, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943614

RESUMO

While it is known that increased dissolved CO2 concentrations and rising sea surface temperature (ocean warming) can act interactively on marine phytoplankton, the ultimate molecular mechanisms underlying this interaction on a long-term evolutionary scale are relatively unexplored. Here, we performed transcriptomics and quantitative metabolomics analyses, along with a physiological trait analysis, on the marine diatom Thalassiosira weissflogii adapted for approximately 3.5 years to warming and/or high CO2 conditions. We show that long-term warming has more pronounced impacts than elevated CO2 on gene expression, resulting in a greater number of differentially expressed genes (DEGs). The largest number of DEGs was observed in populations adapted to warming + high CO2, indicating a potential synergistic interaction between these factors. We further identified the metabolic pathways in which the DEGs function and the metabolites with significantly changed abundances. We found that ribosome biosynthesis-related pathways were upregulated to meet the increased material and energy demands after warming or warming in combination with high CO2. This resulted in the upregulation of energy metabolism pathways such as glycolysis, photorespiration, the tricarboxylic acid cycle, and the oxidative pentose phosphate pathway, as well as the associated metabolites. These metabolic changes help compensate for reduced photochemical efficiency and photosynthesis. Our study emphasizes that the upregulation of ribosome biosynthesis plays an essential role in facilitating the adaptation of phytoplankton to global ocean changes and elucidates the interactive effects of warming and high CO2 on the adaptation of marine phytoplankton in the context of global change.


Assuntos
Dióxido de Carbono , Diatomáceas , Diatomáceas/metabolismo , Diatomáceas/genética , Diatomáceas/fisiologia , Dióxido de Carbono/metabolismo , Fitoplâncton/genética , Fitoplâncton/fisiologia , Fitoplâncton/metabolismo , Adaptação Fisiológica , Transcriptoma , Aquecimento Global , Fotossíntese , Metabolômica
12.
Harmful Algae ; 135: 102628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38830707

RESUMO

Diatoms of the genus Pseudo-nitzschia are widespread in marine waters. Some of them can produce the toxin domoic acid (DA) which can be responsible for amnesic shellfish poisoning (ASP) when transferred into the food web. These ASP events are of major concern, due to their ecological and socio-economic repercussions, particularly on the shellfish industry. Many studies have focused on the influence of abiotic factors on DA induction, less on the role of biotic interactions. Recently, the presence of predators has been shown to increase DA production in several Pseudo-nitzschia species, in particular in Arctic areas. In order to investigate the relationship between Pseudo-nitzschia species and grazers from the French coast, exposures between one strain of three species (P. australis, P. pungens, P. fraudulenta) and the copepod Temora longicornis were conducted for 5 days. Cellular and dissolved DA content were enhanced by 1,203 % and 1,556 % respectively after the 5-days exposure of P.australis whereas no DA induction was observed in P. pungens and P. fraudulenta. T. longicornis consumed all three Pseudo-nitzschia species. The copepod survival was not related to DA content. This study is an essential first step to better understanding the interactions between planktonic species from the French coast and highlights the potential key role of copepods in the Pseudo-nitzschia bloom events in the temperate ecosystems.


Assuntos
Copépodes , Diatomáceas , Ácido Caínico , Ácido Caínico/análogos & derivados , Ácido Caínico/metabolismo , Copépodes/fisiologia , Copépodes/metabolismo , Diatomáceas/metabolismo , Diatomáceas/fisiologia , Animais , França , Toxinas Marinhas/metabolismo
13.
Sci Total Environ ; 939: 173411, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38796008

RESUMO

Phytoplankton community composition in tributaries differs from that in their receiving waters, due to light limitation from suspended particles and other factors such as nutrient availability and temperature. This study was designed to manipulate light levels in early, mid, and late summer to determine the combined effects of light attenuation and naturally varying nutrient availability on phytoplankton community composition in an agriculturally-influenced tributary of the lower Great Lakes. In all trials, in situ microcosm experiments show that phytoplankton abundance increased under three light attenuation treatments (60 %, 75 %, and 85 % attenuation) relative to time-zero, but higher light attenuation reduced total phytoplankton abundance relative to controls. Highest phytoplankton diversity in terms of richness and evenness occurred in September (late summer), and across all three trials was lowest under the highest light attenuation treatments (85 %). Phytoplankton community composition followed a normal seasonal shift from diatoms dominating in June (early summer), followed by cyanobacteria dominating in mid to late summer. In general, lower light levels (especially 85 % attenuation) corresponded with an increased dominance of cyanobacteria. These findings support the hypothesis that phytoplankton abundance and diversity vary with light and nutrient availability and that light attenuation promotes the shift from buoyant cyanobacteria to other taxa more tolerant of low light levels.


Assuntos
Lagos , Fitoplâncton , Estações do Ano , Monitoramento Ambiental , Cianobactérias/crescimento & desenvolvimento , Diatomáceas/fisiologia , Diatomáceas/crescimento & desenvolvimento , Biodiversidade
14.
Nature ; 630(8018): 899-904, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723661

RESUMO

Nitrogen (N2) fixation in oligotrophic surface waters is the main source of new nitrogen to the ocean1 and has a key role in fuelling the biological carbon pump2. Oceanic N2 fixation has been attributed almost exclusively to cyanobacteria, even though genes encoding nitrogenase, the enzyme that fixes N2 into ammonia, are widespread among marine bacteria and archaea3-5. Little is known about these non-cyanobacterial N2 fixers, and direct proof that they can fix nitrogen in the ocean has so far been lacking. Here we report the discovery of a non-cyanobacterial N2-fixing symbiont, 'Candidatus Tectiglobus diatomicola', which provides its diatom host with fixed nitrogen in return for photosynthetic carbon. The N2-fixing symbiont belongs to the order Rhizobiales and its association with a unicellular diatom expands the known hosts for this order beyond the well-known N2-fixing rhizobia-legume symbioses on land6. Our results show that the rhizobia-diatom symbioses can contribute as much fixed nitrogen as can cyanobacterial N2 fixers in the tropical North Atlantic, and that they might be responsible for N2 fixation in the vast regions of the ocean in which cyanobacteria are too rare to account for the measured rates.


Assuntos
Diatomáceas , Fixação de Nitrogênio , Nitrogênio , Oceanos e Mares , Rhizobium , Água do Mar , Simbiose , Carbono/metabolismo , Diatomáceas/metabolismo , Diatomáceas/fisiologia , Nitrogênio/metabolismo , Fotossíntese , Filogenia , Rhizobium/classificação , Rhizobium/metabolismo , Rhizobium/fisiologia , Água do Mar/microbiologia , Água do Mar/química , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Oceano Atlântico
15.
Sci Rep ; 14(1): 12423, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816478

RESUMO

Foraminifera are single-celled protists which are important mediators of the marine carbon cycle. In our study, we explored the potential impact of polystyrene (PS) microplastic particles on two symbiont-bearing large benthic foraminifera species-Heterostegina depressa and Amphistegina lobifera-over a period of three weeks, employing three different approaches: investigating (1) stable isotope (SI) incorporation-via 13C- and 15N-labelled substrates-of the foraminifera to assess their metabolic activity, (2) photosynthetic efficiency of the symbiotic diatoms using imaging PAM fluorometry, and (3) microscopic enumeration of accumulation of PS microplastic particles inside the foraminiferal test. The active feeder A. lobifera incorporated significantly more PS particles inside the cytoplasm than the non-feeding H. depressa, the latter accumulating the beads on the test surface. Photosynthetic area of the symbionts tended to decrease in the presence of microplastic particles in both species, suggesting that the foraminiferal host cells started to digest their diatom symbionts. Compared to the control, the presence of microplastic particles lead to reduced SI uptake in A. lobifera, which indicates inhibition of inorganic carbon and nitrogen assimilation. Competition for particulate food uptake was demonstrated between algae and microplastic particles of similar size. Based on our results, both species seem to be sensitive to microplastic pollution, with non-feeding H. depressa being more strongly affected.


Assuntos
Recifes de Corais , Foraminíferos , Microplásticos , Foraminíferos/metabolismo , Foraminíferos/fisiologia , Microplásticos/toxicidade , Diatomáceas/metabolismo , Diatomáceas/fisiologia , Fotossíntese/efeitos dos fármacos , Simbiose , Poliestirenos
16.
Sci Total Environ ; 934: 173105, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750737

RESUMO

The decline of river and stream biodiversity results from multiple simultaneous occuring stressors, yet few studies explore responses explore responses across various taxonomic groups at the same locations. In this study, we address this shortcoming by using a coherent data set to study the association of nine commonly occurring stressors (five chemical, one morphological and three hydraulic) with five taxonomic groups (bacteria, fungi, diatoms, macro-invertebrates and fish). According to studies on single taxonomic groups, we hypothesise that gradients of chemical stressors structure community composition of all taxonomic groups, while gradients of hydraulic and morphological stressors are mainly related to larger organisms such as benthic macro-invertebrates and fish. Organisms were sampled over two years at 20 sites in two catchments: a recently restored urban lowland catchment (Boye) and a moderately disturbed rural mountainous catchment (Kinzig). Dissimilarity matrices were computed for each taxonomic group within a catchment. Taxonomic dissimilarities between sites were linked to stressor dissimilarities using multivariable Generalized Linear Mixed Models. Stressor gradients were longer in the Boye, but did in contrast to the Kinzig not cover low stress intensities. Accordingly, responses of the taxonomic groups were stronger in the Kinzig catchment than in the recently restored Boye catchment. The discrepancy between catchments underlines that associations to stressors strongly depend on which part of the stressor gradient is covered in a catchment. All taxonomic groups were related to conductivity. Bacteria, fungi and macro-invertebrates change with dissolved oxygen, and bacteria and fungi with total nitrogen. Morphological and hydraulic stressors had minor correlations with bacteria, fungi and diatoms, while macro-invertebrates were strongly related to fine sediment and discharge, and fish to high flow peaks. The results partly support our hypotheses about the differential associations of the different taxonomic groups with the stressors.


Assuntos
Biodiversidade , Monitoramento Ambiental , Rios , Rios/microbiologia , Animais , Fungos , Diatomáceas/fisiologia , Invertebrados/fisiologia , Peixes , Bactérias/classificação , Poluentes Químicos da Água/análise
17.
New Phytol ; 243(1): 145-161, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38736026

RESUMO

Diatoms are a diverse group of phytoplankton usually dominating areas characterized by rapidly shifting light conditions. Because of their high growth rates and interesting biochemical profile, their biomass is considered for various commercial applications. This study aimed at identifying strains with superior growth in a photobioreactor (PBR) by screening the natural intraspecific diversity of ecotypes isolated from different habitats. We investigated the effect of PBR light fluctuating on a millisecond scale (FL, simulating the light in a PBR) on 19 ecotypes of the diatom Skeletonema marinoi isolated from the North Sea-Baltic Sea area. We compare growth, pigment ratios, phylogeny, photo-physiological variables and photoacclimation strategies between all strains and perform qPCR and absorption spectra analysis on a subset of strains. Our results show that the ecotypes responded differently to FL, and have contrasting photo-physiological and photoprotective strategies. The strains from Kattegat performed better in FL, and shared common photoacclimation and photoprotection strategies that are the results of adaptation to the specific light climate of the Kattegat area. The strains that performed better with FL conditions had a high light (HL)-acclimated phenotype coupled with unique nonphotochemical quenching features. Based on their characteristics, three strains were identified as good candidates for growth in PBRs.


Assuntos
Diatomáceas , Ecossistema , Ecótipo , Luz , Fotobiorreatores , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/efeitos da radiação , Diatomáceas/fisiologia , Filogenia , Aclimatação , Clorofila/metabolismo , Fotossíntese/efeitos da radiação
18.
Harmful Algae ; 134: 102626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38705614

RESUMO

Harmful algal bloom (HAB) is a rapidly expanding marine ecological hazard. Although numerous studies have been carried out about the ecological impact and the ecological mechanism of HAB outbreaks, few studies have comprehensively addressed the shifts of species composition, metabolic activity level, driving factors and community assembly mechanisms of microeukaryotic plankton in the course of the bloom event. To fill the gap of research, we conducted 18S ribosomal DNA and RNA sequencing during the initiation, development, sustenance and decline stages of a Scrippsiella acuminata (S. acuminata) bloom at the coastal sea of Fujian Province, China. We found that the bloom event caused a decrease in microeukaryotic plankton species diversity and increase in community homogeneity. Our results revealed that the RNA- and DNA-inferred communities were similar, but α-diversity was more dynamic in RNA- than in DNA-inferred communities. The main taxa with high projected metabolic activity (with RNA:DNA ratio as the proxy) during the bloom included dinoflagellates, Cercozoa, Chlorophyta, Protalveolata, and diatoms. The role of deterministic processes in microeukaryotic plankton community assembly increased during the bloom, but stochastic processes were always the dominant assembly mechanism throughout the bloom process. Our findings improve the understanding of temporal patterns, driving factors and assembly mechanisms underlying the microeukarytic plankton community in a dinoflagellate bloom.


Assuntos
Biodiversidade , Dinoflagellida , Proliferação Nociva de Algas , Dinoflagellida/genética , Dinoflagellida/fisiologia , China , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/análise , Plâncton/genética , Diatomáceas/genética , Diatomáceas/fisiologia
19.
Harmful Algae ; 134: 102625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38705619

RESUMO

There is a concern that harmful algal bloom (HAB) species may increase under climate change. Yet, we lack understanding of how ecological interactions will be affected under ocean warming and acidification (OWA) conditions. We tested the antagonistic effects of three strains of the dinoflagellate HAB species Alexandrium catenella on three target species (the chlorophyte Tetraselmis sp., the cryptomonad Rhodomonas salina, and the diatom Thalassiosira weissflogii) at various biomass ratios between species, at ambient (16 °C and 400 µatm CO2) and OWA (20 °C and 2000 µatm CO2) conditions. In these experiments the Alexandrium strains had been raised under OWA conditions for ∼100 generations. All three non-HAB species increased their growth rate under OWA relative to ambient conditions. Growth rate inhibition was evident for R. salina and Tetraselmis sp. under OWA conditions, but not under ambient conditions. These negative effects were exacerbated at higher concentrations of Alexandrium relative to non-HAB species. By contrast, T. weissflogii showed positive growth in the presence of two strains of Alexandrium under ambient conditions, whereas growth was unaffected under OWA. Contrary to our expectations, A. catenella had a slight negative response in the presence of the diatom. These results demonstrate that Alexandrium exerts higher antagonistic effects under OWA compared to ambient conditions, and these effects are species-specific and density dependent. These negative effects may shift phytoplankton community composition under OWA conditions.


Assuntos
Dinoflagellida , Dinoflagellida/fisiologia , Concentração de Íons de Hidrogênio , Água do Mar/química , Proliferação Nociva de Algas/fisiologia , Diatomáceas/fisiologia , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...