Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.784
Filtrar
1.
Arch Microbiol ; 206(7): 289, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847838

RESUMO

Staphylococcus epidermidis is an opportunistic pathogen commonly implicated in medical device-related infections. Its propensity to form biofilms not only leads to chronic infections but also exacerbates the issue of antibiotic resistance, necessitating high-dose antimicrobial treatments. In this study, we explored the use of diclofenac sodium, a non-steroidal anti-inflammatory drug, as an anti-biofilm agent against S. epidermidis. In this study, crystal violet staining and confocal laser scanning microscope analysis showed that diclofenac sodium, at subinhibitory concentration (0.4 mM), significantly inhibited biofilm formation in both methicillin-susceptible and methicillin-resistant S. epidermidis isolates. MTT assays demonstrated that 0.4 mM diclofenac sodium reduced the metabolic activity of biofilms by 25.21-49.01% compared to untreated controls. Additionally, the treatment of diclofenac sodium resulted in a significant decrease (56.01-65.67%) in initial bacterial adhesion, a crucial early phase of biofilm development. Notably, diclofenac sodium decreased the production of polysaccharide intercellular adhesin (PIA), a key component of the S. epidermidis biofilm matrix, in a dose-dependent manner. Real-time quantitative PCR analysis revealed that diclofenac sodium treatment downregulated biofilm-associated genes icaA, fnbA, and sigB and upregulated negative regulatory genes icaR and luxS, providing potential mechanistic insights. These findings indicate that diclofenac sodium inhibits S. epidermidis biofilm formation by affecting initial bacterial adhesion and the PIA synthesis. This underscores the potential of diclofenac sodium as a supplementary antimicrobial agent in combating staphylococcal biofilm-associated infections.


Assuntos
Antibacterianos , Biofilmes , Diclofenaco , Staphylococcus epidermidis , Biofilmes/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Diclofenaco/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Anti-Inflamatórios não Esteroides/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Humanos , Polissacarídeos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
2.
Carbohydr Polym ; 341: 122330, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876726

RESUMO

Polyelectrolyte complexes (PECs) were elaborated from chitosan as cationic polymer and carboxy-methylpullulan (CMP), hyaluronic acid (HA) and their derivatives grafted with aminoguaiacol (G) with different degrees of substitution (DSGA) with the aim of obtaining nanogels for drug delivery. For each couple of polysaccharides, the charge ratios giving the smaller size with the lower PDI were selected to produce PECs. CMP_CHIT and CMP-G_CHIT PECs had smaller sizes (220-280 nm) than HA_CHIT and HA-G_CHIT PECs (280-390 nm). PECs were stable at 4 °C during 28 days at pH 5. In phosphate buffer saline (PBS) at pH 7.4, at 4 °C, a better stability of PECs based on CMP-G derivatives was observed. The hydrophobic associations between aminoguaiacol groups (highlighted by measurements of pyrene fluorescence) led to a better PECs' stabilization in PBS. The PECs' antioxidant and antibacterial activities were demonstrated and related to the DSGA. Diclofenac and curcumin were used as drug models: their loading reached 260 and 53 µg/mg PEC, respectively. The release of diclofenac in PBS at 37 °C followed a quasi-Fickian diffusion mechanism with release constant between 0.88 and 1.04 h-1. The curcumin release followed a slow linear increase in PBS/EtOH (60/40 V/V) with an effect of DSGA.


Assuntos
Antibacterianos , Quitosana , Curcumina , Ácido Hialurônico , Ácido Hialurônico/química , Quitosana/química , Quitosana/análogos & derivados , Curcumina/química , Curcumina/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Guaiacol/química , Guaiacol/análogos & derivados , Guaiacol/farmacologia , Diclofenaco/química , Diclofenaco/farmacologia , Portadores de Fármacos/química , Polieletrólitos/química , Sistemas de Liberação de Medicamentos/métodos , Nanogéis/química , Glucanos/química , Escherichia coli/efeitos dos fármacos , Liberação Controlada de Fármacos
3.
ACS Appl Mater Interfaces ; 16(23): 29876-29890, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829728

RESUMO

A novel therapeutic approach combining acupuncture and diclofenac sodium (DS) administration was established for the potential treatment for rheumatoid arthritis (RA). DS is a commonly used anti-inflammatory and analgesic drug but has short duration and adverse effects. Acupoints are critical linkages in the meridian system and are potential candidates for drug delivery. Herein, we fabricated a DS-loaded multilayer-modified acupuncture needle (DS-MMAN) and investigated its capacity for inhibiting RA. This DS-MMAN possesses sustained release properties and in vitro anti-inflammatory effects. Experimental results showed that the DS-MMAN with microdoses can enhance analgesia and efficiently relieve joint swelling compared to the oral or intra-articular administration of DS with gram-level doses. Moreover, the combination of acupoint and DS exerts a synergistic improvement in inflammation and joint damage. Cytokine and T cell analyses in the serum indicated that the application of DS-MMAN suppressed the levels of pro-inflammatory factors and increased the levels of anti-inflammatory factors. Furthermore, the acupoint administration via DS-MMAN could decrease the accumulation of DS in the liver and kidneys, which may express better therapeutic efficiency and low toxicity. The present study demonstrated that the acupuncture needle has the potential to build a bridge between acupuncture and medication, which would be a promising alternative to the combination of traditional and modern medicine.


Assuntos
Terapia por Acupuntura , Artrite Reumatoide , Diclofenaco , Agulhas , Diclofenaco/administração & dosagem , Diclofenaco/farmacologia , Diclofenaco/química , Artrite Reumatoide/terapia , Artrite Reumatoide/tratamento farmacológico , Animais , Camundongos , Masculino , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Ratos
4.
J Appl Oral Sci ; 32: e20240017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775598

RESUMO

OBJECTIVE: To compare the effect of submucosal cryotherapy using cold saline to dexamethasone sodium phosphate and diclofenac sodium injections on substance P and interleukin 6 release in experimentally induced pulpal inflammation in rabbits' molar teeth. METHODOLOGY: Fifteen rabbits were randomly classified into 3 groups according to the submucosal injection given: cold saline, dexamethasone sodium phosphate, and diclofenac sodium. A split-mouth design was adopted, the right mandibular molars were experimental, and the left molars served as the control without injections. Intentional pulp exposures were created and left for 6 hours to induce pulpitis. Pulpal tissue was extracted and examined for SP and IL-6 levels using ELISA. Within each group, the level of cytokines released was measured for both control and experimental groups for intragroup comparison to determine the effect of injection. The percentage reduction of each mediator was calculated compared with the control side for intergroup comparison then the correlation between SP and IL-6 levels was analyzed using Spearman's rank order correlation coefficient. Statistical analysis was performed, and the significance level was set at p<0.05. RESULTS: Submucosal cryotherapy, dexamethasone sodium phosphate, and diclofenac sodium significantly reduced SP and IL-6 pulpal release. Submucosal cryotherapy significantly reduced SP more than and IL-6 more than dexamethasone sodium phosphate and diclofenac sodium. Pulpal reduction of SP and IL-6 showed a strong positive significant correlation. CONCLUSIONS: Submucosal cryotherapy reduces the pulpal release of SP and IL-6 and could be tested as an alternative to premedication to potentiate the effect of anesthesia and control postoperative endodontic pain.


Assuntos
Anti-Inflamatórios não Esteroides , Crioterapia , Polpa Dentária , Dexametasona , Diclofenaco , Ensaio de Imunoadsorção Enzimática , Interleucina-6 , Pulpite , Distribuição Aleatória , Substância P , Animais , Coelhos , Pulpite/terapia , Diclofenaco/farmacologia , Dexametasona/farmacologia , Dexametasona/análogos & derivados , Interleucina-6/análise , Crioterapia/métodos , Substância P/análise , Anti-Inflamatórios não Esteroides/farmacologia , Polpa Dentária/efeitos dos fármacos , Fatores de Tempo , Reprodutibilidade dos Testes , Resultado do Tratamento , Masculino , Estatísticas não Paramétricas , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia , Solução Salina , Valores de Referência
5.
Int J Pharm ; 659: 124276, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38821436

RESUMO

Neuropathic pain is chronic pain caused by a lesion or disease of the somatosensory nervous system. Neuropathic pain, with a high incidence and complex pathogenesis, is one of the most significant areas of clinical medicine and basic research. Currently, prescribed treatments are still unsatisfactory or have limited effectiveness. A medicinal preparation is required that relieves the neuropathic pain and prolongs action time, which has not yet been discovered. In this study, MIL-101 (Fe) was employed as a drug carrier to regulate the release of diclofenac sodium, thereby achieving the effect of analgesia and sustained release. The release curves demonstrated that diclofenac sodium could be continuously released from MIL-101 (Fe) for more than 48 h. There was no toxicity in vitro and in vivo, and the safety of MIL-101 (Fe) was confirmed by hematoxylin and eosin as well as ELISA tests in vivo. The results of behavioral testing, pharmacokinetics, and RNA sequencing analysis showed that MIL-101 (Fe) loaded with diclofenac sodium could enhance the mechanical withdrawal threshold and alleviate cold allodynia induced by Spared Nerve Injury, prolonging the work time by three days. The results indicated that MIL-101 (Fe) exhibited excellent biocompatibility, while the MIL-101 (Fe)-DS demonstrated analgesic and controlled-release properties. These findings provide a scientific foundation for the clinical management of neuropathic pain and the development of a novel formulation.


Assuntos
Diclofenaco , Nanomedicina , Neuralgia , Ratos Sprague-Dawley , Medula Espinal , Transcriptoma , Animais , Diclofenaco/administração & dosagem , Diclofenaco/farmacologia , Neuralgia/tratamento farmacológico , Masculino , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Nanomedicina/métodos , Ratos , Portadores de Fármacos/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Liberação Controlada de Fármacos , Preparações de Ação Retardada , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico
6.
Bull Exp Biol Med ; 176(5): 585-590, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38724813

RESUMO

Leukocyte elastase is a marker of inflammation. Previously, a relationship was found between the severity of mental disorders in patients and elastase-like activity of blood plasma. The effect of various neurotropic drugs on leukocyte elastase activity was analyzed in an in vitro experiment. We revealed an inhibitory effect of the benzodiazepine tranquilizers diazepam and bromodihydrochlorophenylbenzodiazepine and immunomodulators aminodihydrophthalazinedione and diclofenac on the plasma elastase-like activity of healthy donors and pure human neutrophil elastase. The antipsychotics chlorpromazine and alimemazine, as well as the nootropic vinpocetine increased elastase-like activity in a dose-dependent manner. The activating effect of chlorpromazine and vinpocetine, but not alimemazine, was reproduced in neutrophil elastase. We hypothesized that these drugs can affect the development of inflammatory reactions in the complex therapy of mental disorders.


Assuntos
Antipsicóticos , Clorpromazina , Diazepam , Elastase de Leucócito , Humanos , Elastase de Leucócito/metabolismo , Clorpromazina/farmacologia , Diazepam/farmacologia , Antipsicóticos/farmacologia , Diclofenaco/farmacologia , Nootrópicos/farmacologia , Tranquilizantes/farmacologia , Fatores Imunológicos/farmacologia , Alcaloides de Vinca
7.
Bull Exp Biol Med ; 176(5): 581-584, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38724817

RESUMO

A bradykinin B1 receptors antagonist PAV-0056, an 1,4-benzodiazepin-2-one derivative, intragastrically administrated to mice at doses of 0.1 and 1 mg/kg causes analgesia in the "formalin test" not inferior to that of diclofenac sodium (10 mg/kg) and tramadol (20 mg/kg). PAV-0056 at doses of 0.1 and 10 mg/kg has no anxiolytic and central muscle relaxant effects in mice and does not damage the gastric mucosa in rats. Based on the results of the conditioned place preference test, PAV-0056 also does not induce addiction in mice.


Assuntos
Analgésicos , Animais , Camundongos , Ratos , Masculino , Analgésicos/farmacologia , Diclofenaco/farmacologia , Tramadol/farmacologia , Psicotrópicos/farmacologia , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Ansiolíticos/farmacologia , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Ratos Wistar , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos
8.
BMC Biotechnol ; 24(1): 26, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724967

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, and it leads to irreversible inflammation in intra-articular joints. Current treatment approaches for RA include non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), corticosteroids, and biological agents. To overcome the drug-associated toxicity of conventional therapy and transdermal tissue barrier, an injectable NSAID-loaded hydrogel system was developed and explored its efficacy. RESULTS: The surface morphology and porosity of the hydrogels indicate that they mimic the natural ECM, which is greatly beneficial for tissue healing. Further, NSAIDs, i.e., diclofenac sodium, were loaded into the hydrogel, and the in vitro drug release pattern was found to be burst release for 24 h and subsequently sustainable release of 50% drug up to 10 days. The DPPH assay revealed that the hydrogels have good radical scavenging activity. The biocompatibility study carried out by MTT assay proved good biocompatibility and anti-inflammatory activity of the hydrogels was carried out by gene expression study in RAW 264.7 cells, which indicate the downregulation of several key inflammatory genes such as COX-2, TNF-α & 18s. CONCLUSION: In summary, the proposed ECM-mimetic, thermo-sensitive in situ hydrogels may be utilized for intra-articular inflammation modulation and can be beneficial by reducing the frequency of medication and providing optimum lubrication at intra-articular joints.


Assuntos
Anti-Inflamatórios não Esteroides , Artrite Reumatoide , Hidrogéis , Hidrogéis/química , Animais , Camundongos , Artrite Reumatoide/tratamento farmacológico , Células RAW 264.7 , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/química , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Liberação Controlada de Fármacos
9.
Medicina (Kaunas) ; 60(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792973

RESUMO

Background and Objectives: Stem cell-based regeneration strategies have shown therapeutic efficacy in various fields of regenerative medicine. These include bone healing after bone augmentation, often complicated by pain, which is managed by using nonsteroidal anti-inflammatory drugs (NSAIDs). However, information is limited about how NSAIDs affect the therapeutic potential of stem cells. Materials and Methods: We investigated the effects of ibuprofen and diclofenac on the characteristics, morphology, and immunophenotype of human mesenchymal stromal cells isolated from the dental pulp (DPSCs) and cultured in vitro, as well as their effects on the expression of angiogenic growth factors (VEGFA and HGF) and selected genes in apoptosis signalling pathways (BAX, BAK, CASP3, CASP9, and BCL2). Results: Ibuprofen and diclofenac significantly reduced the viability of DPSCs, while the expression of mesenchymal stem cell surface markers was unaffected. Both ibuprofen and diclofenac treatment significantly upregulated the expression of HGF, while the expression of VEGFA remained unchanged. Ibuprofen significantly altered the expression of several apoptosis-related genes, including the upregulation of CASP9 and BCL2, with decreased CASP3 expression. BAK, CASP3, CASP9, and BCL2 expressions were significantly increased in the diclofenac-treated DPSCs, while no difference was demonstrated in BAX expression. Conclusions: Our results suggest that concomitant use of the NSAIDs ibuprofen or diclofenac with stem cell therapy may negatively impact cell viability and alter the expression of apoptosis-related genes, affecting the efficacy of stem cell therapy.


Assuntos
Apoptose , Sobrevivência Celular , Polpa Dentária , Diclofenaco , Ibuprofeno , Humanos , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/citologia , Diclofenaco/farmacologia , Apoptose/efeitos dos fármacos , Ibuprofeno/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Células-Tronco/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células Cultivadas
10.
J Pharm Sci ; 113(7): 1769-1778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663499

RESUMO

Our study focuses on creating hybrid compounds and assessing their suitability for use in skincare products. The synergistic combination of Kojic acid, NSAIDs, and Palmitic acid proved to be an effective approach in inhibiting melanin production, making it a promising solution for individuals with hyperpigmentation concerns with Kojic acid (KA) Ibuprofen monoester (IBUM) and Ibuprofen-Kojic acid-Palmitic acid diester (IBUD) exhibiting a potential tyrosinase (38 % and 49 % inhibition at 200 µM) and anti-melanogenesis activity (77 % and 79 % inhibition at 100 µM). Furthermore, these compounds exhibited potent anti-inflammatory effects, Kojic acid-Diclofenac monoester (DICM) and Diclofenac-Kojic acid-Palmitic acid diester (DICD) offering potential benefits for inflammation by lowering the paw volume. A stability study under chemical conditions and enzymatic conditions was also performed, wherein DICM and DICD showed a better half-life of 515, 593 h under chemical stability and 6.3, 7.5 h under enzymatic stability studies respectively. The diester hybrids IBUD, DICD, Naproxen-Kojic acid-Palmitic acid diester (NAPD) showed a better permeation and penetration profiles compared to their parent drugs. In-vitro cell line studies were conducted to assess the safety and efficacy of these hybrid esters, with promising results. The dual inhibitor demonstrated minimal cytotoxicity and remarkable anti-melanogenic and anti-inflammatory activities, showing its potential as a versatile agent in addressing both melanogenesis and inflammation.


Assuntos
Anti-Inflamatórios não Esteroides , Melaninas , Ácido Palmítico , Pironas , Ácido Palmítico/farmacologia , Melaninas/metabolismo , Pironas/farmacologia , Pironas/química , Pironas/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Animais , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Camundongos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ésteres/química , Ésteres/farmacologia , Masculino , Ratos , Humanos , Ibuprofeno/farmacologia , Ibuprofeno/química , Diclofenaco/farmacologia , Diclofenaco/administração & dosagem , Melanogênese
11.
J Mater Chem B ; 12(17): 4248-4261, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602387

RESUMO

Prolonged use of very commonly prescribed non-steroidal anti-inflammatory drugs (NSAIDs) is often associated with undesired side effects, including gastrointestinal ulcers due to the non-selective inhibition of cyclooxygenases. We describe the development of an inflammatory-stimuli-responsive turn-on fluorogenic theranostic prodrug DCF-HS for adjuvant drug delivery. Upon activation by reactive oxygen species (ROS), the prodrug releases diclofenac DCF (active drug) and the NIR fluorophore DCI-NH2 along with carbonyl sulfide (COS). The second activation of COS by the enzyme carbonic anhydrase (CA) generates hydrogen sulfide (H2S). The prodrug was conveniently synthesized using multi-step organic synthesis. The UV-Vis and fluorescence studies revealed the selective reactivity of DCF-HS towards ROS such as H2O2 in the aqueous phase and the desired uncaging of the drug DCF with turn-on NIR fluorescent reporter under physiological conditions. Furthermore, the release of fluorophore DCI-NH2 and drug DCF was confirmed using the reverse phase HPLC method. Compatibility of prodrug activation was studied next in the cellular medium. The prodrug DCF-HS was non-toxic in a representative cancer cell line (HeLa) and a macrophage cell line (RAW 264.7) up to 100 µM concentration, indicating its biocompatibility. The intracellular ROS-mediated activation of the prodrug with the release of NIR dye DCI-NH2 and H2S was investigated in HeLa cells using the H2S-selective probe WSP2. The anti-inflammatory activity of the active drug DCF from the prodrug DCF-HS was studied in the lipopolysaccharide (LPS)-induced macrophage cell line and compared to that of the parent drug DCF using western blot analysis and it was found that the active drug resulted in pronounced inhibition of COX-2 in a dose-dependent manner. Finally, the anti-inflammatory potential of the prodrug and the turn-on fluorescence were validated in the inflammation-induced Wister rat models.


Assuntos
Anti-Inflamatórios não Esteroides , Diclofenaco , Sulfeto de Hidrogênio , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/síntese química , Sulfeto de Hidrogênio/metabolismo , Animais , Humanos , Diclofenaco/farmacologia , Células HeLa , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/síntese química , Ratos , Nanomedicina Teranóstica , Inflamação/tratamento farmacológico , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/síntese química , Camundongos , Células RAW 264.7 , Sistemas de Liberação de Medicamentos , Edema/tratamento farmacológico , Edema/induzido quimicamente
12.
Int J Biol Macromol ; 268(Pt 1): 131476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614181

RESUMO

This study involved creating oligomeric conjugates of 3-hydroxy fatty acids and diclofenac, named Dic-oligo(3HAs). Advanced NMR techniques confirmed no free diclofenac in the mix. We tested diclofenac release under conditions resembling healthy and chronic wound skin. These oligomers were used to make P(3HO) blends, forming patches for drug delivery. Their preparation used the solvent casting/porogen leaching (SCPL) method. The patches' properties like porosity, roughness, and wettability were thoroughly analysed. Antimicrobial assays showed that Dic-oligo(3HAs) exhibited antimicrobial activity against reference (S. aureus, S. epidermis, S. faecalis) and clinical (Staphylococcus spp.) strains. Human keratinocytes (HaCaT) cell line tests, as per ISO 10993-5, showed no toxicity. A clear link between material roughness and HaCaT cell adhesion was found. Deep cell infiltration was verified using DAPI and phalloidin staining, observed under confocal microscopy. SEM also confirmed HaCaT cell growth on these scaffolds. The strong adhesion and proliferation of HaCaT cells on these materials indicate their potential as wound dressing layers. Additionally, the successful diclofenac release tests point to their applicability in treating both normal and chronic wounds.


Assuntos
Diclofenaco , Pele , Diclofenaco/farmacologia , Diclofenaco/química , Humanos , Pele/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/citologia , Células HaCaT , Cicatrização/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fenômenos Químicos , Linhagem Celular , Polímeros/química , Porosidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
13.
Toxicon ; 241: 107679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447765

RESUMO

The search for mechanism-based anti-inflammatory therapies is of fundamental importance to avoid undesired off-target effects. Phospholipase A2 (PLA2) activity is a potential molecular target for anti-inflammatory drugs because it fuels arachidonic acid needed to synthesize inflammation mediators, such as prostaglandins. Herein, we aim to investigate the molecular mechanism by which ß-keto amyrin isolated from a methanolic extract of Cryptostegia grandiflora R. Br. Leaves can inhibit inflammation caused by Daboia russellii viper (DR) venom that mainly contains PLA2. We found that ß-keto amyrin neutralizes DR venom-induced paw-edema in a mouse model. Molecular docking of PLA2 with ß-keto amyrin complex resulted in a higher binding energy score of -8.86 kcal/mol and an inhibition constant of 611.7 nM. Diclofenac had a binding energy of -7.04 kcal/mol and an IC50 value of 620 nM, which predicts a poorer binding interaction than ß-keto amyrin. The higher conformational stability of ß-keto amyrin interaction compared to diclofenac is confirmed by molecular dynamics simulation. ß-keto amyrin isolated from C. grandiflora inhibits the PLA2 activity contained in Daboia russellii viper venom. The anti-inflammatory property of ß-keto amyrin is due to its direct binding into the active site of PLA2, thus inhibiting its enzyme activity.


Assuntos
Apocynaceae , Daboia , Inflamação , Ácido Oleanólico , Venenos de Víboras , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Apocynaceae/química , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Simulação de Acoplamento Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Fosfolipases A2/efeitos dos fármacos , Fosfolipases A2/metabolismo , Venenos de Víboras/química , Venenos de Víboras/toxicidade
14.
Top Companion Anim Med ; 59: 100861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508490

RESUMO

Pre-emptive analgesia consists of administering drugs such as opioids and nonsteroid anti-inflammatory drugs. This study aims to evaluate the intraoperative antinociceptive effects of diclofenac administered alone in premedication or combined with morphine along with its potential influence on recovery of dogs undergoing ovariohysterectomy. A total of 34 dogs (ASA I or II) admitted for ovariohysterectomy were randomly allocated into three groups according to the drugs given in premedication: Diclofenac (D) (n = 11), Morphine (M) (n = 13) and Diclofenac-Morphine (DM) (n = 10) groups. Induction and maintenance of anesthesia were standardized in all dogs. To assess intraoperative nociception, the heart rate (HR) and mean arterial pressure (MAP) were recorded during the surgery and at predefined time points: St (steady-state), Cut (cutaneous incision), P1 (first ovarian manipulation), P2 (second ovarian manipulation) and Cerv (cervical manipulation). The dynamic variation of HR (ΔHR) and MAP (ΔMAP) over 2 min was calculated at each time point. After extubation, early quality of recovery was assessed. Compared to St, a significant increase in HR and MAP at P1, P2 and Cerv was shown in all groups. MAP in the M group was lower at St than in the other groups. The dynamic variation of HR (ΔHR) and MAP (ΔMAP) was significantly less important at P2 and Cerv compared to P1 only in the DM group. Also, a better quality of recovery was shown in the D group compared to the M and DM groups. Diclofenac may be considered a suitable premedication drug and a part of a multimodal anesthetic approach in dogs.


Assuntos
Analgésicos Opioides , Diclofenaco , Animais , Cães , Feminino , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Diclofenaco/farmacologia , Histerectomia/veterinária , Morfina/farmacologia , Ovariectomia/veterinária , Pré-Medicação/veterinária , Distribuição Aleatória
15.
Eur J Pharm Sci ; 198: 106735, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423227

RESUMO

Time-dependent inhibition of cytochrome P450 (CYP) enzymes has been observed for a few glucuronide metabolites of clinically used drugs. Here, we investigated the inhibitory potential of 16 glucuronide metabolites towards nine major CYP enzymes in vitro. Automated substrate cocktail methods were used to screen time-dependent inhibition of CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2J2 and 3A in human liver microsomes. Seven glucuronides (carvedilol ß-D-glucuronide, diclofenac acyl-ß-D-glucuronide, 4-hydroxyduloxetine ß-D-glucuronide, ezetimibe phenoxy-ß-D-glucuronide, raloxifene 4'-glucuronide, repaglinide acyl-ß-D-glucuronide and valproic acid ß-D-glucuronide) caused NADPH- and time-dependent inhibition of at least one of the CYPs investigated, including CYP2A6, CYP2C19 and CYP3A. In more detailed experiments, we focused on the glucuronides of carvedilol and diclofenac, which inhibited CYP3A. Carvedilol ß-D-glucuronide showed weak time-dependent inhibition of CYP3A, but the parent drug carvedilol was found to be a more potent inhibitor of CYP3A, with the half-maximal inhibitor concentration (IC50) decreasing from 7.0 to 1.1 µM after a 30-min preincubation with NADPH. The maximal inactivation constant (kinact) and the inhibitor concentration causing half of kinact (KI) for CYP3A inactivation by carvedilol were 0.051 1/min and 1.8 µM, respectively. Diclofenac acyl-ß-D-glucuronide caused time-dependent inactivation of CYP3A at high concentrations, with a 4-fold IC50 shift (from 400 to 98 µM after a 30-min preincubation with NADPH) and KI and kinact values of >2,000 µM and >0.16 1/min. In static predictions, carvedilol caused significant (>1.25-fold) increase in the exposure of the CYP3A substrates midazolam and simvastatin. In conclusion, we identified several glucuronide metabolites with CYP inhibitory properties. Based on detailed experiments, the inactivation of CYP3A by carvedilol may cause clinically significant drug-drug interactions.


Assuntos
Glucuronídeos , Microssomos Hepáticos , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Glucuronídeos/metabolismo , Diclofenaco/farmacologia , Diclofenaco/análogos & derivados , Inibidores do Citocromo P-450 CYP3A/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Citocromo P-450 CYP3A/metabolismo
16.
Arch Microbiol ; 206(3): 112, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374471

RESUMO

Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible polymer that can gradually and consistently release drugs in a controlled manner. In this study, diclofenac sodium-loaded PLGA nanoparticles (DS-PLGA NPs) were produced by solvent evaporation technique and characterized using SEM, DLS, and zeta potential analyses. The antibacterial and antivirulence potential of DS-PLGA NPs against P. aeruginosa strains were examined using broth microdilution, crystal violet staining, hemolysis, and twitching quantification assays. Furthermore, the expression of the quorum sensing (QS) genes, lasI and lasR in P. aeruginosa strains after treatment with 1/2 MIC of DS-PLGA NPs was assessed using real-time PCR. SEM imaging of the synthesized NPs exhibited that the NPs have a spherical structure with a size range of 60-150 nm. The zeta potential of the NPs was - 15.2 mV, while the size of the particles in the aquatic environment was in a range of 111.5-153.8 nm. The MIC of prepared NPs against various strains of P. aeruginosa ranged from 4.5 to 9 mg/mL. Moreover, exposure of bacteria to sub-MIC of DS-PLGA NPs significantly down-regulated the expression of the lasI and lasR genes to 0.51- and 0.75-fold, respectively. Further, prepared NPs efficiently reduced the biofilm formation of P. aeruginosa strains by 9-27%, compared with the controls. Besides, DS-PLGA NPs showed considerable attenuation in bacterial hemolytic activity by 32-88% and twitching motility by 0-32.3%, compared with untreated cells. Overall, the present work exhibited the anti-QS activity of DS-PLGA NPs, which could be a safe and useful approach for treating P. aeruginosa infections.


Assuntos
Nanopartículas , Percepção de Quorum , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Percepção de Quorum/genética , Diclofenaco/farmacologia , Pseudomonas aeruginosa/genética , Nanopartículas/química
17.
Sci Rep ; 14(1): 4185, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379013

RESUMO

Dry eye syndrome (DES) is a complex ocular condition characterized by an unstable tear film and inadequate tear production, leading to tissue damage. Despite its common occurrence, there is currently no comprehensive in vitro model that accurately reproduce the cellular characteristics of DES. Here we modified a corneal epithelium-on-a-chip (CEpOC) model to recapitulate DES by subjecting HCE-T human corneal epithelial cells to an air-liquid (AL) interface stimulus. We then assessed the effects of AL stimulation both in the presence and absence of diclofenac (DCF), non-steroidal anti-inflammatory drug. Transcriptomic analysis revealed distinct gene expression changes in response to AL and AL_DCF, affecting pathways related to development, epithelial structure, inflammation, and extracellular matrix remodeling. Both treatments upregulated PIEZO2, linked to corneal damage signaling, while downregulating OCLN, involved in cell-cell junctions. They increased the expression of inflammatory genes (e.g., IL-6) and reduced mucin production genes (e.g., MUC16), reflecting dry eye characteristics. Metabolomic analysis showed increased secretion of metabolites associated with cell damage and inflammation (e.g., methyl-2-oxovaleric acid, 3-methyl-2-oxobutanoic acid, lauroyl-carnitine) in response to AL and even more with AL_DCF, indicating a shift in cellular metabolism. This study showcases the potential use of AL stimulus within the CEpOC to induce cellular characteristics relevant to DES.


Assuntos
Síndromes do Olho Seco , Epitélio Corneano , Humanos , Epitélio Corneano/metabolismo , Síndromes do Olho Seco/metabolismo , Lágrimas/metabolismo , Inflamação/metabolismo , Diclofenaco/farmacologia , Diclofenaco/metabolismo , Dispositivos Lab-On-A-Chip
18.
Radiat Oncol ; 19(1): 7, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229111

RESUMO

BACKGROUND: An enhanced aerobic glycolysis ("Warburg effect") associated with an increase in lactic acid in the tumor microenvironment contributes to tumor aggressiveness and resistance to radiation and chemotherapy. We investigated the radiation- and chemo-sensitizing effects of the nonsteroidal anti-inflammatory drug (NSAID) diclofenac in different cancer cell types. METHODS: The effects of a non-lethal concentration of diclofenac was investigated on c-MYC and Lactate Dehydrogenase (LDH) protein expression/activity and the Heat shock Protein (HSP)/stress response in human colorectal (LS174T, LoVo), lung (A549), breast (MDA-MB-231) and pancreatic (COLO357) carcinoma cells. Radiation- and chemo-sensitization of diclofenac was determined using clonogenic cell survival assays and a murine xenograft tumor model. RESULTS: A non-lethal concentration of diclofenac decreases c-MYC protein expression and LDH activity, reduces cytosolic Heat Shock Factor 1 (HSF1), Hsp70 and Hsp27 levels and membrane Hsp70 positivity in LS174T and LoVo colorectal cancer cells, but not in A549 lung carcinoma cells, MDA-MB-231 breast cancer cells and COLO357 pancreatic adenocarcinoma cells. The impaired lactate metabolism and stress response in diclofenac-sensitive colorectal cancer cells was associated with a significantly increased sensitivity to radiation and 5Fluorouracil in vitro, and in a human colorectal cancer xenograft mouse model diclofenac causes radiosensitization. CONCLUSION: These findings suggest that a decrease in the LDH activity and/or stress response upon diclofenac treatment predicts its radiation/chemo-sensitizing capacity.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Lactatos/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
19.
J Emerg Med ; 66(2): 83-90, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267297

RESUMO

BACKGROUND: The optimal pain relief method for acute renal colic in the emergency department remains controversial. OBJECTIVE: We compared the safety and efficacy of intradermal sterile water injection (ISWI) to treatment with intramuscular (IM) diclofenac, intravenous (IV) opioids, and IV paracetamol in patients with acute renal colic. METHODS: This randomized, single-blind study included 320 patients with renal colic to one of four treatment groups. The first group received ISWI at four different points around the most painful flank area. Patients in the DI, PARA, and TRAM groups received 75 mg IM diclofenac, 1 g IV paracetamol, and 100 mg IV tramadol, respectively. Pain intensity was measured using a visual analog scale (VAS) before treatment and 15, 30, and 60 min after treatment. RESULTS: VAS scores 15 and 30 min after treatment were significantly lower in group ISWI than in groups DI, PARA, and TRAM. However, there were no significant differences in the decrease in the pain score at baseline and at 60 min after treatment. In addition, fewer patients required rescue analgesia in group ISWI than in group TRAM. However, no significant differences were observed between group ISWI and group DI or PARA in terms of the need for rescue analgesia. Finally, there were significantly fewer adverse events in group ISWI than in groups DI and TRAM. CONCLUSIONS: ISWI had similar efficacy, faster pain relief, and lower need for rescue analgesia compared with diclofenac, paracetamol, and tramadol for the management of acute renal colic. In addition, ISWI was well-tolerated and had no adverse effects.


Assuntos
Cólica , Cólica Renal , Tramadol , Humanos , Acetaminofen/farmacologia , Acetaminofen/uso terapêutico , Cólica Renal/tratamento farmacológico , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Tramadol/farmacologia , Tramadol/uso terapêutico , Método Simples-Cego , Dor , Serviço Hospitalar de Emergência , Água , Método Duplo-Cego
20.
J Colloid Interface Sci ; 659: 449-462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183811

RESUMO

Ionic liquids (ILs) have great potential to facilitate transdermal and topical drug delivery. Here, we investigated the mechanism of action of amphiphilic ILs 1-methyl-3-octylimidazolium bromide (C8MIM) and 3-dodecyl-1-methylimidazolium bromide (C12MIM) in skin barrier lipid models in comparison to their complex effects in human skin. C8MIM incorporated in a skin lipid model was a better permeation enhancer than C12MIM for water and model drugs, theophylline and diclofenac. Solid state 2H NMR and X-ray diffraction indicated that both ILs prefer the cholesterol-rich regions in skin lipids without significantly perturbing their lamellar arrangement and that C8MIM induces the formation of an isotropic lipid phase to a greater extent compared to C12MIM. C12MIM applied topically to the lipid model or human skin as a pretreatment was more potent than C8MIM. When co-applied with the drugs to human skin, aqueous C12MIM was more potent than C8MIM in enhancing theophylline permeation, but neither IL affected (even decreased) diclofenac permeation. Thus, the IL's ability to permeabilize skin lipid barrier is strongly modulated by its ability to reach the site of action and its interactions with drug and solvent. Such an interplay is far from trivial and requires detailed investigation to realize the full potential of ILs.


Assuntos
Líquidos Iônicos , Humanos , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Diclofenaco/farmacologia , Teofilina/farmacologia , Administração Cutânea , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...