Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.510
Filtrar
1.
Sci Rep ; 14(1): 24408, 2024 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-39420206

RESUMO

Gold nanoparticles (AuNPs) are potentially applicable in drug/nucleic acid delivery systems. Low toxicity, high stability, and bioavailability are crucial for the therapeutic use of AuNPs and they are mainly determined by their interactions with proteins and lipids on their route to the target cells. In this work, we investigated the interaction of two pegylated gold nanoparticles, AuNP14a and AuNP14b, with human serum proteins albumin (HSA) and transferrin (Tf) as well as dimyristoyl-phosphatidylcholine (DMPC) liposomes, which can be a representative of biomembranes. We showed that AuNP14a/b interacted with HSA and Tf changing their electrical, thermodynamic, and structural properties as evidenced by dynamic light scattering, zeta potential, transmission electron microscopy, circular dichroism, fluorescence quenching, and isothermal titration calorimetry. These nanoparticles penetrated the DMPC membrane suggesting their ability to reach a target inside the cell. In most of the effects, AuNP14b was more effective than AuNP14a, which might result from its more positive charge. Further studies are needed to evaluate whether the interaction of AuNP14a/b with HSA and Tf is safe for the cell/organism and whether they may safely penetrate natural membranes.


Assuntos
Ouro , Bicamadas Lipídicas , Nanopartículas Metálicas , Polietilenoglicóis , Albumina Sérica Humana , Transferrina , Ouro/química , Humanos , Transferrina/química , Transferrina/metabolismo , Nanopartículas Metálicas/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Polietilenoglicóis/química , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Dimiristoilfosfatidilcolina/química , Lipossomos/química , Termodinâmica , Albumina Sérica/química , Albumina Sérica/metabolismo
2.
Nat Commun ; 15(1): 7533, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215029

RESUMO

Polymers can facilitate detergent-free extraction of membrane proteins into nanodiscs (e.g., SMALPs, DIBMALPs), incorporating both integral membrane proteins as well as co-extracted native membrane lipids. Lipid-only SMALPs and DIBMALPs have been shown to possess a unique property; the ability to exchange lipids through 'collisional lipid mixing'. Here we expand upon this mixing to include protein-containing DIBMALPs, using the rhomboid protease GlpG. Through lipidomic analysis before and after incubation with DMPC or POPC DIBMALPs, we show that lipids are rapidly exchanged between protein and lipid-only DIBMALPs, and can be used to identify bound or associated lipids through 'washing-in' exogenous lipids. Additionally, through the requirement of rhomboid proteases to cleave intramembrane substrates, we show that this mixing can be performed for two protein-containing DIBMALP populations, assessing the native function of intramembrane proteolysis and demonstrating that this mixing has no deleterious effects on protein stability or structure.


Assuntos
Endopeptidases , Proteínas de Escherichia coli , Proteínas de Membrana , Nanopartículas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Endopeptidases/metabolismo , Endopeptidases/química , Nanopartículas/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Polímeros/química , Polímeros/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Proteólise , Lipidômica/métodos , Fosfatidilcolinas
3.
Colloids Surf B Biointerfaces ; 242: 114071, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39002202

RESUMO

Disc-like lipid nanoparticles stabilized by saponin biosurfactants display fascinating properties, including their temperature-driven re-organization. ß-Aescin, a saponin from seed extract of the horse chestnut tree, shows strong interactions with lipid membranes and has gained interest due to its beneficial therapeutic implications as well as its ability to decompose continuous lipid membranes into size-tuneable discoidal nanoparticles. Here, we characterize lipid nanoparticles formed by aescin and the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine. We present site-resolved insights into central molecular interactions and their modulations by temperature and aescin content. Using the membrane protein bacteriorhodopsin, we additionally demonstrate that, under defined conditions, aescin-lipid discs can accommodate medium-sized transmembrane proteins. Our data reveal the general capability of this fascinating system to generate size-tuneable aescin-lipid-protein particles, opening the road for further applications in biochemical, biophysical and structural studies.


Assuntos
Escina , Nanopartículas , Tamanho da Partícula , Nanopartículas/química , Escina/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Temperatura , Dimiristoilfosfatidilcolina/química , Estabilidade Proteica , Lipossomos
4.
Phys Chem Chem Phys ; 26(27): 18943-18952, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38952218

RESUMO

The hallmark of amyloidosis, such as Alzheimer's disease and Parkinson's disease, is the deposition of amyloid fibrils in various internal organs. The onset of the disease is related to the strength of cytotoxicity caused by toxic amyloid species. Furthermore, amyloid fibrils show polymorphism, where some types of fibrils are cytotoxic while others are not. It is thus essential to understand the molecular mechanism of cytotoxicity, part of which is caused by the interaction between amyloid polymorphic fibrils and cell membranes. Here, using amyloid polymorphs of hen egg white lysozyme, which is associated with hereditary systemic amyloidosis, showing different levels of cytotoxicity and liposomes of DMPC and DMPG, changes in the secondary structure of the polymorphs and the structural state of phospholipid membranes caused by the interaction were investigated using vacuum-ultraviolet circular dichroism (VUVCD) and Laurdan fluorescence measurements, respectively. Analysis has shown that the more cytotoxic polymorph increases the antiparallel ß-sheet content and causes more disorder in the membrane structure while the other less cytotoxic polymorph shows the opposite structural changes and causes less structural disorder in the membrane. These results suggest a close correlation between the structural properties of amyloid fibrils and the degree of structural disorder of phospholipid membranes, both of which are involved in the fundamental process leading to amyloid cytotoxicity.


Assuntos
Amiloide , Dicroísmo Circular , Muramidase , Fosfolipídeos , Muramidase/química , Muramidase/metabolismo , Amiloide/química , Fosfolipídeos/química , Animais , Estrutura Secundária de Proteína , Dimiristoilfosfatidilcolina/química , Fosfatidilgliceróis/química , Lipossomos/química , Galinhas , Vácuo
5.
Biochim Biophys Acta Biomembr ; 1866(7): 184372, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39047858

RESUMO

Nanodiscs (NDs), self-assembled lipid bilayers encircled by membrane scaffold proteins (MSPs), offer a versatile platform for the reconstitution of membrane proteins for structural and biochemical investigations. Saturated, isoprenoid lipids are commonly found in thermophiles and have been associated with thermotolerance. To test whether these lipids confer additional stability on ND-incorporated membrane proteins, this study focuses on the thermal stability of human cytochrome P450 3A4 (CYP3A4) inside NDs composed of different phosphocholine lipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC). NDs were characterized using size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) and densitometric SDS-PAGE. CYP3A4-DPhPC-NDs were found to comprise three MSP copies instead of the canonical dimer, as reported before for the empty NDs. Rapid, thermally induced unfolding of CYP3A4 inside NDs measured using circular dichroism and differential scanning fluorimetry (nanoDSF) revealed that the CYP3A4 melting temperature was dependent on ND composition. In POPC and DMPC-CYP3A4-NDs the melting temperature was comparable to CYP3A4 without NDs (59 °C). CYP3A4 in DPhPC-NDs showed an increase in melting temperature of 4 °C. Decline in CYP3A4 integrity as well as ND aggregation and disintegration occur at similar rates for all membrane types when subjected to exposure at 37 °C for several hours. The POPC and DMPC- CYP3A4-NDs show significant lipid loss over time, which is not observed for DPhPC-NDs. The results demonstrate that thermally induced denaturation of protein-NDs is a complex, multifaceted process, which is not represented well by rapid thermal unfolding experiments.


Assuntos
Citocromo P-450 CYP3A , Bicamadas Lipídicas , Nanoestruturas , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Humanos , Bicamadas Lipídicas/química , Nanoestruturas/química , Fosfatidilcolinas/química , Dimiristoilfosfatidilcolina/química , Estabilidade Enzimática , Temperatura
6.
J Oleo Sci ; 73(6): 887-894, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825541

RESUMO

Bicellar mixtures containing diacetylene molecules, such as diynoic acids, can be used as parent materials for functional membranes. A bicellar mixture consisting of a diynoic acid-10,12-tricosadiynoic acid (TCDA)-, a phospholipid-1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-, and a detergent-3-[(3-cholamidopropyl) dimethylammonio]-2-hydroxypropanesulfonate (CHAPSO)-was evaluated for its morphology and packing of TCDA molecules in its bicellar mixture. A TCDA/DMPC vesicle was prepared at different molar ratios, TCDA/DMPC = 2/8, 5/5, and 8/2; a TCDA/DMPC/CHAPSO bicellar mixture was prepared by mixing a CHAPSO solution with a TCDA/DMPC vesicle solution as a detergent at different composition ratios, x TCDA/DMPC = [TCDA/DMPC]/([TCDA/DMPC]+[CHAPSO]), of 1.0, 0.70, 0.50, and 0.30. A DMPC molecule formed a bilayer membrane structure and was used to suppress its precipitation. The packing density of the TCDA/DMPC/CHAPSO bicellar mixtures was increased by mixing a CHAPSO molecule in x TCDA/DMPC = 1.0 to 0.70 or 0.50. A TEM image of a TCDA/DMPC/CHAPSO bicellar mixture showed many discoidal assemblies at x TCDA/DMPC = 0.5 of TCDA/DMPC = 5/5. Polymerization of the TCDA molecules in the bicellar mixture by UV light suggested an ordered arrangement of TCDA. Polymerization at x TCDA/DMPC = 0.70 and 0.50 correlated with improved packing density.


Assuntos
Dimiristoilfosfatidilcolina , Dimiristoilfosfatidilcolina/química , Detergentes/química , Bicamadas Lipídicas/química , Separação de Fases
7.
J Chem Inf Model ; 64(9): 3841-3854, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38635679

RESUMO

A series of atomistic molecular dynamics (MD) simulations were carried out with a hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer with the variation of glucose concentrations from 0 to 30 wt % in the presence of 0.3 M NaCl. The study suggested that although the thickness of the lipid bilayer dropped significantly with the increase in glucose concentration, it expanded laterally at high glucose levels due to the intercalation of glucose between the headgroups of adjacent lipids. We adopted the surface assessment via the grid evaluation method to compute the deviation of the bilayer's key structural features for the different amounts of glucose present. This suggested that the accumulation of glucose molecules near the headgroups influences the local lipid bilayer undulation and crimping of the lipid tails. We find that the area compressibility modulus increases with the glucose level, causing enhanced bilayer rigidity arising from the slow lateral diffusion of lipids. The restricted lipid motion at high glucose concentrations controls the sustainability of the curved bilayer surface. Calculations revealed that certain orientations of CO→ of interfacial glucose with the PN→ of lipid headgroups are preferred, which helps the glucose to form direct hydrogen bonds (HBs) with the lipid headgroups. Such lipid-glucose (LG) HBs relax slowly at low glucose concentrations and exhibit a higher lifetime, whereas fast structural relaxation of LG HBs with a shorter lifetime was noticed at a higher glucose level. In contrast, lipid-water (LW) HBs exhibited a higher lifetime at a higher glucose level, which gradually decreased with the glucose level lowering. The study interprets that the glucose concentration-driven LW and LG interactions are mutually inclusive. Our detailed analysis will exemplify small saccharide concentration-driven membrane stabilizing efficiency, which is, in general, helpful for drug delivery study.


Assuntos
Dimiristoilfosfatidilcolina , Glucose , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Água , Bicamadas Lipídicas/química , Glucose/química , Dimiristoilfosfatidilcolina/química , Água/química
8.
Biochim Biophys Acta Biomembr ; 1866(5): 184328, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38688404

RESUMO

The interaction of L-Phe with the membrane components, i.e., lipids and proteins, has been discussed in the current literature due to the interest to understand the effect of single amino acids in relation to the formation of amyloid aggregates. In the present work, it is shown that L-Phe interacts with 9:1 DMPC (1,2-dimyristoyl-sn-glycero-3 phosphocholine)/DPPC (1,2-dipalmitoyl-sn-glycero-3 phosphocholine) mixtures but not in the 1:9 one. An important observation is that the interaction disappears when DPPC is replaced by diether PC (2-di-O-hexadecyl-sn-glycero-3-phosphocholine) a lipid lacking carbonyl groups (CO). This denotes that CO groups may interact specifically with L-Phe in accordance with the appearance of a new peak observed by Infrared spectroscopy (FTIR-ATR). The interaction of L-Phe affects the compressibility pattern of the 9:1 DMPC/DPPC mixture which is congruent with the changes observed by Raman spectra. The specific interaction of L-Phe with CO, propagates to phosphate and choline groups in this particular mixture as analyzed by FTIR-ATR spectroscopy and is absent when DMPC is dopped with diether PC.


Assuntos
Dimiristoilfosfatidilcolina , Fenilalanina , Fenilalanina/química , Fenilalanina/metabolismo , Dimiristoilfosfatidilcolina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo
9.
Biophys Chem ; 309: 107233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579435

RESUMO

Emodin is a natural anthraquinone derivative found in nature, widely known as an herbal medicine. Here, the partition, location, and interaction of emodin with lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are experimentally investigated with different techniques. Our studies have considered the neutral form of emodin (EMH) and its anionic/deprotonated form (EM-), and their interaction with a more and less packed lipid membrane, DMPC at the gel and fluid phases, respectively. Though DSC results indicate that the two species, EMH and EM-, similarly disrupt the packing of DMPC bilayers, spin labels clearly show that EMH causes a stronger bilayer disruption, both in gel and fluid DMPC. Fluorescence spectroscopy shows that both EMH and EM- have a high affinity for DMPC: the binding of EM- to both gel and fluid DMPC bilayers was found to be quite similar, and similar to that of EMH to gel DMPC, Kp = (1.4 ± 0.3)x103. However, EMH was found to bind twice more strongly to fluid DMPC bilayers, Kp = (3.2 ± 0.3)x103. Spin labels and optical absorption spectroscopy indicate that emodin is located close to the lipid bilayer surface, and suggest that EM- is closer to the lipid/water interface than EMH, as expected. The present studies present a relevant contribution to the current understanding of the effect the two species of emodin, EMH and EM-, present on different microregions of an organism, as local pH values can vary significantly, can cause in a neutral lipid membrane, either more or less packed, liked gel and fluid DMPC, respectively, and could be extended to lipid domains of biological membranes.


Assuntos
Emodina , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Marcadores de Spin
10.
Biochimie ; 224: 3-15, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38663457

RESUMO

TSPO is a ubiquitous transmembrane protein used as a pharmacological marker in neuroimaging. The only known atomic structure of mammalian TSPOs comes from the solution NMR of mouse TSPO (mTSPO) bound to the PK11195 ligand and in a DPC surfactant environment. No structure is available in a biomimetic environment and without PK11195 which strongly stiffens the protein. We measured the effect of different amphiphilic environments on ligand-free mTSPO to study its structure/function and find optimal solubilization conditions. By replacing the SDS surfactant, where the recombinant protein is purified, with mixed lipid:surfactant (DMPC:DPC) micelles at different ratios (0:1, 1:2, and 2:1, w:w), the α-helix content and interactions and the intrinsic tryptophan (Trp) fluorescence of mTSPO are gradually increased. Small-angle X-ray scattering (SAXS) shows a more extended mTSPO/belt complex with the addition of lipids: Dmax ∼95 Å in DPC alone versus ∼142 Å in DMPC:DPC (1:2). SEC-MALLS shows that the molecular composition of the mTSPO belt is ∼98 molecules for DPC alone and ∼58 DMPC and ∼175 DPC for DMPC:DPC (1:2). Additionally, DMPC:DPC micelles stabilize mTSPO compared to DPC alone, where the protein has a greater propensity to aggregate. These structural changes are consistent with the increased affinity of mTSPO for the PK11195 ligand in presence of lipids (Kd ∼70 µM in DPC alone versus ∼0.91 µM in DMPC:DPC, 1:2), as measured by microscale thermophoresis (MST). In conclusion, mixed lipid:surfactant micelles open new possibilities for the stabilization of membrane proteins and for their study in solution in a more biomimetic amphiphilic environment.


Assuntos
Micelas , Receptores de GABA , Tensoativos , Animais , Tensoativos/química , Camundongos , Receptores de GABA/química , Receptores de GABA/metabolismo , Lipídeos/química , Dimiristoilfosfatidilcolina/química , Relação Estrutura-Atividade
11.
Soft Matter ; 20(13): 2892-2899, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38465518

RESUMO

The use of DEHP (diethylhexyl phthalate) is now banned for most applications in Europe; the exception is for blood bags, where its toxicity is overshadowed by its ability to extend the storage life of red blood cells. Another plasticiser, BTHC (butanoyl trihexyl citrate), is used in paediatric blood bags but does not stabilise blood cells as effectively. Interactions between plasticisers and lipids are investigated with a phospholipid, DMPC, to understand the increased stability of blood cells in the presence of DEHP as well as bioaccumulation and identify differences with BTHC. Mixed monolayers of DMPC and DEHP or BTHC were studied on Langmuir troughs where surface pressure/area isotherms can be measured. Neutron reflection measurements were made to determine the composition and structure of these mixed layers. A large amount of plasticiser can be incorporated into a DMPC monolayer but once an upper limit is reached, plasticiser is selectively removed from the interface at high surface pressures. The upper limit is found to occur between 40-60 mol% for DEHP and 20-40 mol% for BTHC. The areas per molecule are also different with DEHP being in the range of 50-100 Å2 and BTHC being 65-120 Å2. Results indicate that BTHC does not fit as well as DEHP in DMPC monolayers which could help explain the differences observed with regards to the stability of blood cells.


Assuntos
Butiratos , Dietilexilftalato , Humanos , Criança , Fosfolipídeos , Dimiristoilfosfatidilcolina , Preservação de Sangue/métodos
12.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542936

RESUMO

Nanodiscs belong to a category of water-soluble lipid bilayer nanoparticles. In vivo nanodisc platforms are useful for studying isolated membrane proteins in their native lipid environment. Thus, the development of a practical method for nanodisc reconstruction has garnered consider-able research interest. This paper reports the self-assembly of a mixture of bio-derived cyclic peptide, surfactin (SF), and l-α-dimyristoylphosphatidylcholine (DMPC). We found that SF induced the solubilization of DMPC multilamellar vesicles to form their nanodiscs, which was confirmed by size-exclusion chromatography, dynamic light scattering, and transmission electron microscopy analyses. Owing to its amphiphilic nature, the self-assembled structure prevents the exposure of the hydrophobic lipid core to aqueous media, thus embedding ubiquinol (CoQ10) as a hydrophobic model compound within the inner region of the nanodiscs. These results highlight the feasibility of preparing nanodiscs without the need for laborious procedures, thereby showcasing their potential to serve as promising carriers for membrane proteins and various organic compounds. Additionally, the regulated self-assembly of the DMPC/SF mixture led to the formation of fibrous architectures. These results show the potential of this mixture to function as a nanoscale membrane surface for investigating molecular recognition events.


Assuntos
Nanopartículas , Nanoestruturas , Fosfolipídeos/química , Dimiristoilfosfatidilcolina/química , Nanopartículas/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Nanoestruturas/química
13.
Chem Commun (Camb) ; 60(30): 4036-4039, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38466016

RESUMO

Herein, we report ethosome (ET) formulations composed of a safe amount of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)-based ionic liquid with various concentrations of ethanol as a carrier for the transdermal delivery of a high molecular weight drug, insulin. The Insulin-loaded ET vesicles exhibited long-term stability compared to conventional DMPC ETs, showing significantly higher drug encapsulation efficiency and increased skin permeation ability.


Assuntos
Líquidos Iônicos , Insulina , Dimiristoilfosfatidilcolina , Administração Cutânea , Pele , Preparações Farmacêuticas , Lipossomos
14.
Sci Rep ; 14(1): 4972, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424117

RESUMO

The 21-residue PGLa peptide is well known for antimicrobial activity attributed to its ability to compromize bacterial membranes. Using all-atom explicit solvent replica exchange molecular dynamics with solute tempering, we studied PGLa binding to a model anionic DMPC/DMPG bilayer at the high peptide:lipid ratio that promotes PGLa dimerization (a two peptides per leaflet system). As a reference we used our previous simulations at the low peptide:lipid ratio (a one peptide per leaflet system). We found that the increase in the peptide:lipid ratio suppresses PGLa helical propensity, tilts the bound peptide toward the bilayer hydrophobic core, and forces it deeper into the bilayer. Surprisingly, at the high peptide:lipid ratio PGLa binding induces weaker bilayer thinning, but deeper water permeation. We explain these effects by the cross-correlations between lipid shells surrounding PGLa that leads to a much diminished efflux of DMPC lipids from the peptide proximity at the high peptide:lipid ratio. Consistent with the experimental data the propensity for PGLa dimerization was found to be weak resulting in coexistence of monomers and dimers with distinctive properties. PGLa dimers assemble via apolar criss-cross interface and become partially expelled from the bilayer residing at the bilayer-water boundary. We rationalize their properties by the dimer tendency to preserve favorable electrostatic interactions between lysine and phosphate lipid groups as well as to avoid electrostatic repulsion between lysines in the low dielectric environment of the bilayer core. PGLa homedimer interface is predicted to be distinct from that involved in PGLa-magainin heterodimers.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Dimerização , Dimiristoilfosfatidilcolina/química , Água
15.
Arch Biochem Biophys ; 753: 109913, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38286353

RESUMO

This study analyses the insertion of Chlorogenic acid (CGA) in phosphatidylcholine (PC) membranes enriched with cholesterol (Chol). While cholesterol decreases the area per lipid and increases the dipole potential, CGA increases and decreases these values, respectively. When CGA is inserted into cholesterol-containing DMPC membranes, these effects cancel out, resulting in values that overlap with those of DMPC monolayers without Chol and CGA. The presence of CGA also compensates the increase of dipole potential produced by Chol which can be explain as a consequence of the orientation of CGA molecule at the interphase opposing the cholesterol dipole moieties and water dipoles. This compensatory effect is less effective when lipids lack carbonyl groups (CO). When monolayers are composed by unsaturated PCs the Chol compensation is found at higher concentrations of CGA due to the direct interaction between CGA and Chol. These results suggest that cholesterol modulates the interaction and distribution of CGA in the lipid membrane, which may have implications for its biological activity.


Assuntos
Dimiristoilfosfatidilcolina , Fosfatidilcolinas , Ácido Clorogênico , Colesterol , Bicamadas Lipídicas , Propriedades de Superfície
16.
Arch Biochem Biophys ; 752: 109883, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211638

RESUMO

Free fatty acids, like palmitic acid (PA), and xanthophyll pigments, like lutein (LUT) are the natural membrane compounds in plants. To study the effect of PA on LUT and their organization, a model membrane of 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) enriched with 2 mol% PA and 1 mol% LUT was formed. Molecular mechanisms underlying the interaction between these two compounds were examined with application of molecular spectroscopy techniques, e.g., visible spectroscopy, electron paramagnetic resonance and Fourier transform infrared. We determined the monomeric/dimeric organization of LUT in the membrane. We proved that the presence of PA in the lipid phase facilitated and stabilized the formation of LUT structures in the membrane. Lutein with PA did not form strong molecular aggregates like H- and J-structures. We presented the simplified model membrane that could be a suitable representation of the physiological process of de-esterification of PA from LUT appearing in natural biomembranes in humans.


Assuntos
Luteína , Xantofilas , Humanos , Luteína/farmacologia , Luteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Ácidos Palmíticos , Lipídeos , Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química
17.
Biophys J ; 123(1): 68-79, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37978799

RESUMO

Measuring protein thermostability provides valuable information on the biophysical rules that govern the structure-energy relationships of proteins. However, such measurements remain a challenge for membrane proteins. Here, we introduce a new experimental system to evaluate membrane protein thermostability. This system leverages a recently developed nonfluorescent membrane scaffold protein to reconstitute proteins into nanodiscs and is coupled with a nano-format of differential scanning fluorimetry (nanoDSF). This approach offers a label-free and direct measurement of the intrinsic tryptophan fluorescence of the membrane protein as it unfolds in solution without signal interference from the "dark" nanodisc. In this work, we demonstrate the application of this method using the disulfide bond formation protein B (DsbB) as a test membrane protein. NanoDSF measurements of DsbB reconstituted in dark nanodiscs loaded with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) lipids show a complex biphasic thermal unfolding pattern with a minor unfolding transition followed by a major transition. The inflection points of the thermal denaturation curve reveal two distinct unfolding midpoint melting temperatures (Tm) of 70.5°C and 77.5°C, consistent with a three-state unfolding model. Further, we show that the catalytically conserved disulfide bond between residues C41 and C130 drives the intermediate state of the unfolding pathway for DsbB in a DMPC and DMPG nanodisc. To extend the utility of this method, we evaluate and compare the thermostability of DsbB in different lipid environments. We introduce this method as a new tool that can be used to understand how compositionally and biophysically complex lipid environments drive membrane protein stability.


Assuntos
Dimiristoilfosfatidilcolina , Proteínas de Membrana , Dimiristoilfosfatidilcolina/química , Temperatura , Fluorometria , Dissulfetos , Bicamadas Lipídicas/química
18.
Biochim Biophys Acta Biomembr ; 1866(2): 184258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995846

RESUMO

Experimental binding free energies of 27 adamantyl amines against the influenza M2(22-46) WT tetramer, in its closed form at pH 8, were measured by ITC in DPC micelles. The measured Kd's range is ~44 while the antiviral potencies (IC50) range is ~750 with a good correlation between binding free energies computed with Kd and IC50 values (r = 0.76). We explored with MD simulations (ff19sb, CHARMM36m) the binding profile of complexes with strong, moderate and weak binders embedded in DMPC, DPPC, POPC or a viral mimetic membrane and using different experimental starting structures of M2. To predict accurately differences in binding free energy in response to subtle changes in the structure of the ligands, we performed 18 alchemical perturbative single topology FEP/MD NPT simulations (OPLS2005) using the BAR estimator (Desmond software) and 20 dual topology calculations TI/MD NVT simulations (ff19sb) using the MBAR estimator (Amber software) for adamantyl amines in complex with M2(22-46) WT in DMPC, DPPC, POPC. We observed that both methods with all lipids show a very good correlation between the experimental and calculated relative binding free energies (r = 0.77-0.87, mue = 0.36-0.92 kcal mol-1) with the highest performance achieved with TI/MBAR and lowest performance with FEP/BAR in DMPC bilayers. When antiviral potencies are used instead of the Kd values for computing the experimental binding free energies we obtained also good performance with both FEP/BAR (r = 0.83, mue = 0.75 kcal mol-1) and TI/MBAR (r = 0.69, mue = 0.77 kcal mol-1).


Assuntos
Influenza Humana , Bicamadas Lipídicas , Humanos , Bicamadas Lipídicas/química , Influenza Humana/metabolismo , Simulação de Dinâmica Molecular , Aminas , Dimiristoilfosfatidilcolina/química , Antivirais/farmacologia
19.
J Liposome Res ; 34(1): 31-43, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37158827

RESUMO

A cochleate formulation was developed to enhance the oral bioavailability of revaprazan (RVP). Dimyristoyl phosphatidylcholine (DMPC) liposome containing dicetyl phosphate (DCP) successfully formed a cochleate after treatment with CaCl2, whereas that containing sodium deoxycholate did not. Cochleate was optimised using a D-optimal mixture design with three independent variables-DMPC (X1, 70.58 mol%), cholesterol (X2, 22.54 mol%), and DCP (X3, 6.88 mol%)-and three response variables: encapsulation efficiency (Y1, 76.92%), released amount of free fatty acid at 2 h (Y2, 39.82%), and released amount of RVP at 6 h (Y3, 73.72%). The desirability function was 0.616, showing an excellent agreement between the predicted and experimental values. The cylindrical morphology of the optimised cochleate was visualised, and laurdan spectroscopy confirmed the dehydrated membrane interface, showing an increased generalised polarisation value (approximately 0.5) over small unilamellar vesicle of RVP (RVP-SUV; approximately 0.1). The optimised cochleate showed greater resistance to pancreatic enzyme than RVP-SUV. RVP was released in a controlled manner, achieving approximately 94% release in 12 h. Following oral administration in rats, the optimised cochleate improved the relative bioavailability of RVP by approximately 274%, 255%, and 172% compared to RVP suspension, a physical mixture of RVP and the cochleate, and RVP-SUV, respectively. Thus, the optimised cochleate formulation might be a good candidate for the practical development of RVP.


Assuntos
Dimiristoilfosfatidilcolina , Lipossomos , Pirimidinonas , Tetra-Hidroisoquinolinas , Ratos , Animais , Disponibilidade Biológica , Administração Oral , Tamanho da Partícula
20.
Biochim Biophys Acta Biomembr ; 1866(3): 184266, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38151198

RESUMO

This work describes the electrochemical studies on the interactions between V57G mutant of human cystatin C (hCC V57G) and membrane bilayer immobilized on the surface of a gold electrode. The electrode was modified with 6-mercaptohexan-1-ol (MCH) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). DMPC was used as a membrane mimetic for monitoring electrochemical changes resulting from the interactions between the functionalized electrode surface and human cystatin C. The interactions between the modified electrode and hCC V57G were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a phosphate buffered saline (PBS) containing Fe(CN)63-/4- as a redox probe. The electrochemical measurements confirm that fabricated electrode is sensitive to hCC V57G at the concentration of 1 × 10-14 M. The incubation studies carried out at higher concentrations resulted in insignificant changes observed in cyclic voltammetry and electrochemical impedance spectroscopy measurements. The calculated values of surface coverage θR confirm that the electrode is equally covered at higher concentrations of hCC V57G. Measurements of wettability and surface free energy made it possible to determine the influence of individual structural elements of the modified gold electrode on its properties, and thus allowed to understand the nature of the interactions. Contact angle values confirmed the results obtained during electrochemical measurements, indicating the sensitivity of the electrode towards hCC V57G at the concentration of 1 × 10-14 M. In addition, the XPS spectra confirmed the successful anchoring of hCC V57G to the DMPC-functionalized surface.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Humanos , Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química , Ouro/química , Cistatina C , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...