Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 970
Filtrar
1.
Langmuir ; 40(19): 10261-10269, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38693862

RESUMO

Carnosine is a natural bioactive dipeptide with important physiological functions widely used in food and medicine. Dipeptidase (PepD) from Serratia marcescens can catalyze the reverse hydrolytic reaction of ß-alanine with l-histidine to synthesize carnosine in the presence of Mn2+. However, it remains challenging to practice carnosine biosynthesis due to the low activity and high cost of the enzyme. Therefore, the development of biocatalysts with high activity and stability is of significance for carnosine synthesis. Here, we proposed to chelate Mn2+ to polyethylenimine (PEI) that induced rapid formation of calcium phosphate nanocrystals (CaP), and Mn-PEI@CaP was used for PepD immobilization via electrostatic interaction. Mn-PEI@CaP as the carrier enhanced the stability of the immobilized enzyme. Moreover, Mn2+ loaded in the carrier acted as an in situ activator of the immobilized PepD for facilitating the biocatalytic process of carnosine synthesis. The as-prepared immobilized enzyme (PepD-Mn-PEI@CaP) kept similar activity with free PepD plus Mn2+ (activity recovery, 102.5%), while exhibiting elevated thermal stability and pH tolerance. Moreover, it exhibited about two times faster carnosine synthesis than the free PepD system. PepD-Mn-PEI@CaP retained 86.8% of the original activity after eight cycles of batch catalysis without the addition of free Mn2+ ions during multiple cycles. This work provides a new strategy for the co-immobilization of PepD and Mn2+, which greatly improves the operability of the biocatalysis and demonstrates the potential of the immobilized PepD system for efficient carnosine synthesis.


Assuntos
Fosfatos de Cálcio , Carnosina , Dipeptidases , Enzimas Imobilizadas , Manganês , Nanopartículas , Polietilenoimina , Carnosina/química , Carnosina/metabolismo , Polietilenoimina/química , Manganês/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Fosfatos de Cálcio/química , Nanopartículas/química , Dipeptidases/metabolismo , Dipeptidases/química , Serratia marcescens/enzimologia , Biocatálise
2.
J Biotechnol ; 389: 86-93, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38718874

RESUMO

l-Carnosine (l-Car), an endogenous dipeptide presents in muscle and brain tissues of various vertebrates, has a wide range of application values. The enzymatic preparation of l-Car is a promising synthetic method because it avoids the protection and deprotection steps. In the present study, a dipeptidase gene (CpPepD) from Clostridium perfringens with high l-Car synthetic activity was cloned and characterized. In an effort to improve the performance of this enzyme, we carried out site saturation mutagenesis using CpPepD as the template. By the o-phthalaldehyde (OPA)-derived high throughput screening method, mutant A171S was obtained with 2.2-fold enhanced synthetic activity. The enzymatic properties of CpPepD and mutant A171S were investigated. Under the optimized conditions, 63.94 mM (14.46 g L-1) or 67.02 mM (15.16 g L-1) l-Car was produced at the substrate concentrations of 6 M ß-Ala and 0.2 M l-His using wild-type or mutant A171S enzyme, respectively. Although the mutation enhanced the enzyme activity, the reaction equilibrium was barely affected.


Assuntos
Carnosina , Clostridium perfringens , Dipeptidases , Clostridium perfringens/enzimologia , Clostridium perfringens/genética , Carnosina/metabolismo , Carnosina/química , Carnosina/análogos & derivados , Dipeptidases/genética , Dipeptidases/metabolismo , Dipeptidases/química , Engenharia de Proteínas/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Mutagênese Sítio-Dirigida
3.
Appl Microbiol Biotechnol ; 108(1): 326, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717487

RESUMO

Aspartyl dipeptidase (dipeptidase E) can hydrolyze Asp-X dipeptides (where X is any amino acid), and the enzyme plays a key role in the degradation of peptides as nutrient sources. Dipeptidase E remains uncharacterized in Streptomyces. Orf2 from Streptomyces sp. 139 is located in the exopolysaccharide biosynthesis gene cluster, which may be a novel dipeptidase E with "S134-H170-D198" catalytic triad by sequence and structure comparison. Herein, recombinant Orf2 was expressed in E. coli and characterized dipeptidase E activity using the Asp-ρNA substrate. The optimal pH and temperature for Orf2 are 7.5 and 40 ℃; Vmax and Km of Orf2 are 0.0787 mM·min-1 and 1.709 mM, respectively. Orf2 exhibits significant degradation activities to Asp-Gly-Gly, Asp-Leu, Asp-His, and isoAsp-Leu and minimal activities to Asp-Pro and Asp-Ala. Orf2 contains a Ser-His-Asp catalytic triad characterized by point mutation. In addition, the Asp147 residue of Orf2 is also proven to be critical for the enzyme's activity through molecular docking and point mutation. Transcriptome analysis reveals the upregulation of genes associated with ribosomes, amino acid biosynthesis, and aminoacyl-tRNA biosynthesis in the orf2 mutant strain. Compared with the orf2 mutant strain and WT, the yield of crude polysaccharide does not change significantly. However, crude polysaccharides from the orf2 mutant strain exhibit a wider range of molecular weight distribution. The results indicate that the Orf2 links nutrient stress to secondary metabolism as a novel dipeptidase E. KEY POINTS: • A novel dipeptidase E with a Ser-His-Asp catalytic triad was characterized from Streptomyces sp. 139. • Orf2 was involved in peptide metabolism both in vitro and in vivo. • Orf2 linked nutrient stress to mycelia formation and secondary metabolism in Streptomyces.


Assuntos
Dipeptidases , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Dipeptidases/metabolismo , Dipeptidases/genética , Dipeptidases/química , Dipeptídeos/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Família Multigênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Streptomyces/genética , Streptomyces/enzimologia , Especificidade por Substrato , Temperatura
4.
Eur J Med Chem ; 270: 116389, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593588

RESUMO

Dipeptidyl peptidases (DPP) 8 and 9 are intracellular serine proteases that play key roles in various biological processes and recent findings highlight DPP8 and DPP9 as potential therapeutic targets for hematological and inflammasome-related diseases. Despite the substantial progress, the precise biological functions of these proteases remain elusive, and the lack of selective chemical tools hampers ongoing research. In this paper, we describe the synthesis and biochemical evaluation of the first active site-directed DPP8/9 probes which are derived from DPP8/9 inhibitors developed in-house. Specifically, we synthesized fluorescent inhibitors containing nitrobenzoxadiazole (NBD), dansyl (DNS) and cyanine-3 (Cy3) reporters to visualize intracellular DPP8/9. We demonstrate that the fluorescent inhibitors have high affinity and selectivity towards DPP8/9 over related S9 family members. The NBD-labeled DPP8/9 inhibitors were nominated as the best in class compounds to visualize DPP8/9 in human cells. Furthermore, a method has been developed for selective labeling and visualization of active DPP8/9 in vitro by fluorescence microscopy. A collection of potent and selective biotinylated DPP8/9-targeting probes was also prepared by replacing the fluorescent reporter with a biotin group. The present work provides the first DPP8/9-targeting fluorescent compounds as useful chemical tools for the study of DPP8 and DPP9's biological functions.


Assuntos
Dipeptidases , Dipeptidil Peptidase 4 , Humanos , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases , Domínio Catalítico , Serina Endopeptidases , Serina Proteases , Dipeptidases/metabolismo
5.
Int Immunopharmacol ; 133: 111955, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626544

RESUMO

Renal tubular injury is an important pathological change associated with diabetic nephropathy (DN), in which ferroptosis of renal tubular epithelial cells is critical to its pathogenesis. Inhibition of the glutathione/glutathione peroxidase 4 (GSH/GPX4) axis is the most important mechanism in DN tubular epithelial cell ferroptosis, but the underlying reason for this is unclear. Our biogenic analysis showed that a zinc-dependent metalloproteinase, dipeptidase 1 (DPEP1), is associated with DN ferroptosis. Here, we investigated the role and mechanism of DPEP1 in DN tubular epithelial cell ferroptosis. DPEP1 upregulation was observed in the renal tubular epithelial cells of DN patients and model mice, as well as in HK-2 cells stimulated with high glucose. Furthermore, the level of DPEP1 upregulation was associated with the degree of tubular injury in DN patients and HK-2 cell ferroptosis. Mechanistically, knocking down DPEP1 expression could alleviate the inhibition of GSH/GPX4 axis and reduce HK-2 cell ferroptosis levels in a high glucose environment. HK-2 cells with stable DPEP1 overexpression also showed GSH/GPX4 axis inhibition and ferroptosis, but blocking the GSH/GPX4 axis could mitigate these effects. Additionally, treatment with cilastatin, a DPEP1 inhibitor, could ameliorate GSH/GPX4 axis inhibition and relieve ferroptosis and DN progression in DN mice. These results revealed that DPEP1 can promote ferroptosis in DN renal tubular epithelial cells via inhibition of the GSH/GPX4 axis.


Assuntos
Nefropatias Diabéticas , Dipeptidases , Células Epiteliais , Ferroptose , Glutationa , Túbulos Renais , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , Humanos , Dipeptidases/metabolismo , Dipeptidases/genética , Células Epiteliais/metabolismo , Túbulos Renais/patologia , Camundongos , Masculino , Linhagem Celular , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Glutationa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Proteínas Ligadas por GPI
6.
Acta Physiol (Oxf) ; 240(4): e14126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517248

RESUMO

AIM: Although of potential biomedical relevance, dipeptide metabolism has hardly been studied. We found the dipeptidase carnosinase-2 (CN2) to be abundant in human proximal tubules, which regulate water and solute homeostasis. We therefore hypothesized, that CN2 has a key metabolic role, impacting proximal tubular transport function. METHODS: A knockout of the CN2 gene (CNDP2-KO) was generated in human proximal tubule cells and characterized by metabolomics, RNA-seq analysis, paracellular permeability analysis and ion transport. RESULTS: CNDP2-KO in human proximal tubule cells resulted in the accumulation of cellular dipeptides, reduction of amino acids and imbalance of related metabolic pathways, and of energy supply. RNA-seq analyses indicated altered protein metabolism and ion transport. Detailed functional studies demonstrated lower CNDP2-KO cell viability and proliferation, and altered ion and macromolecule transport via trans- and paracellular pathways. Regulatory and transport protein abundance was disturbed, either as a consequence of the metabolic imbalance or the resulting functional disequilibrium. CONCLUSION: CN2 function has a major impact on intracellular amino acid and dipeptide metabolism and is essential for key metabolic and regulatory functions of proximal tubular cells. These findings deserve in vivo analysis of the relevance of CN2 for nephron function and regulation of body homeostasis.


Assuntos
Dipeptidases , Humanos , Dipeptidases/genética , Dipeptidases/metabolismo , Dipeptídeos/metabolismo , Túbulos Renais Proximais/metabolismo , Homeostase , Aminoácidos/metabolismo
7.
Toxicol Lett ; 395: 1-10, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458339

RESUMO

The pathogenesis of glomerular diseases is strongly influenced by abnormal extracellular matrix (ECM) deposition in mesangial cells. Dipeptidyl peptidase IV (DPPIV) enzyme family contains DPP8 and DPP9, which are involved in multiple diseases. However, the pathogenic roles of DPP8 and DPP9 in mesangial cells ECM deposition remain unclear. In this study, we observed that DPP8 and DPP9 were significantly increased in glomerular mesangial cells and podocytes in CKD patients compared with healthy individuals, and DPP9 levels were higher in the urine of IgA nephropathy (IgAN) patients than in control urine. Therefore, we further explored the mechanism of DPP8 and DPP9 in mesangial cells and revealed a significant increase in the expression of DPP8 and DPP9 in human mesangial cells (HMCs) following TGF-ß1 stimulation. Silencing DPP8 and DPP9 by siRNAs alleviated the expression of ECM-related proteins including collagen Ⅲ, collagen Ⅳ, fibronectin, MMP2, in TGF-ß1-treated HMCs. Furthermore, DPP8 siRNA and DPP9 siRNA inhibited TGF-ß1-induced phosphorylation of Smad2 and Smad3, as well as the phosphorylation of Akt in HMCs. The findings suggested the inhibition of DPP8/9 may alleviate HMCs ECM deposition induced by TGF-ß1 via suppressing TGF-ß1/Smad and AKT signaling pathways.


Assuntos
Dipeptidases , Células Mesangiais , Humanos , Células Cultivadas , Colágeno/metabolismo , Dipeptidases/metabolismo , Matriz Extracelular/metabolismo , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
8.
Plant J ; 118(5): 1603-1618, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441834

RESUMO

Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2-acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citosol , Dipeptidases , Glutationa , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glutationa/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dipeptidases/metabolismo , Dipeptidases/genética , Citosol/metabolismo , Dipeptídeos/metabolismo , Enxofre/metabolismo
9.
Drug Discov Today ; 29(2): 103860, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128717

RESUMO

Carnosine, an endogenous dipeptide, has been found to have a plethora of medicinal properties, such as antioxidant, antiageing, and chelating effects, but with one downside: a short half-life. Carnosinases and two hydrolytic enzymes, which remain enigmatic, are responsible for these features. Hence, here we emphasize why research is valuable for better understanding crucial concepts like ageing, neurodegradation, and cancerogenesis, given that inhibition of carnosinases might significantly prolong carnosine bioavailability and allow its further use in medicine. Herein, we explore the literature regarding carnosinases and present a short in silico analysis aimed at elucidating the possible recognition pattern between CN1 and its ligands.


Assuntos
Carnosina , Dipeptidases , Humanos , Carnosina/química , Carnosina/metabolismo , Antioxidantes , Dipeptidases/química , Dipeptidases/metabolismo , Envelhecimento
10.
Methods Enzymol ; 684: 289-323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37230592

RESUMO

Proline residues highly impact protein stability when present either in the first or second N-terminal position. While the human genome encodes for more than 500 proteases, only few proteases are capable of hydrolyzing a proline-containing peptide bond. The two intra-cellular amino-dipeptidyl peptidases DPP8 and DPP9 are exceptional as they possess the rare ability to cleave post-proline. By removing N-terminal Xaa-Pro dipeptides, DPP8 and DPP9 expose a neo N-terminus of their substates, which can consequently alter inter- or intra-molecular interactions of the modified protein. Both DPP8 and DPP9 play key roles in the immune response and are linked to cancer progression, emerging as attractive drug targets. DPP9 is more abundant than DPP8 and is rate limiting for cleavage of cytosolic proline-containing peptides. Only few DPP9 substrates have been characterized; these include Syk, a central kinase for B-cell receptor mediated signaling; Adenylate Kinase 2 (AK2) which is important for cellular energy homeostasis; and the tumor suppressor Breast cancer type 2 susceptibility protein (BRCA2) that is critical for repair of DNA double strand breaks. N-terminal processing of these proteins by DPP9 triggers their rapid turn-over by the proteasome, highlighting a role for DPP9 as upstream components of the N-degron pathway. Whether N-terminal processing by DPP9 leads to substrate-degradation in all cases, or whether additional outcomes are possible, remains to be tested. In this chapter we will describe methods for purification of DPP8 and DPP9 as well as protocols for biochemical and enzymatic characterization of these proteases.


Assuntos
Dipeptidases , Dipeptidil Peptidases e Tripeptidil Peptidases , Humanos , Peptídeos , Endopeptidases , Ensaios Enzimáticos , Dipeptidases/genética , Dipeptidases/química , Dipeptidases/metabolismo
11.
Appl Microbiol Biotechnol ; 107(11): 3523-3533, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37145161

RESUMO

L-Alanyl-L-Glutamine (Ala-Gln) is a common parenteral nutritional supplement. In our previous study, the recombinant whole-cell catalyst Escherichia coli BL21(DE3) overexpressing α-amino acid ester acyltransferase (BPA) to produce Ala-Gln has high activity and has been applied to large-scale production experiments. However, the degradation of Ala-Gln is detected under prolonged incubation, and endogenous broad-spectrum dipeptidase may be the primary cause. In this study, a CRISPR-Cas9 method was used to target pepA, pepB, pepD, pepN, dpp, and dtp to knock out one or more target genes. The deletion combination was optimized, and a triple knockout strain BL21(DE3)-ΔpepADN was constructed. The degradation performance of the knockout chassis was measured, and the results showed that the degradation rate of Ala-Gln was alleviated by 48% compared with the control. On this basis, BpADNPA (BPA-ΔpepADN) was built, and the production of Ala-Gln was 129% of the BPA's accumulation, proving that the ΔpepADN knockout conducive to the accumulation of dipeptide. This study will push forward the industrialization process of Ala-Gln production by whole-cell catalyst Escherichia coli expressing α-amino acid ester acyltransferase. KEY POINTS: • Endogenous dipeptidase knockout alleviates the degradation of Ala-Gln by the chassis • The balanced gene knockout combination is pepA, pepD, and pepN • The accumulation of Ala-Gln with BpADNPA was 129% of the control.


Assuntos
Aminoácidos , Dipeptidases , Aminoácidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Dipeptidases/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Técnicas de Inativação de Genes , Dipeptídeos/metabolismo , Glutamina/metabolismo
12.
Sci Rep ; 13(1): 5153, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991102

RESUMO

In lung adenocarcinoma (LUAD), immune heterogeneity of hot and cold tumors has been recognized as one of the major factors affecting immunotherapy and other common treatments. However, there is still a lack of biomarkers that can effectively identify the immunophenotype of cold and hot tumors. First, the immune signatures were obtained based on literature mining, including macrophage/monocyte, IFN-γ response, TGF-ß response, IL12 response, lymphocyte activation, and ECM/Dve/immune response. Subsequently, LUAD patients were further clustered into different immune phenotypes based on these immune signatures. Next, the key genes related to the immune phenotypes were screened by WGCNA analysis, univariate analysis, and lasso-cox analysis, and the risk signature was established via the key genes. In additional, we compared the clinicopathological characteristics, drug sensitivity, the abundance of immune infiltration, and the efficacy of immunotherapy and commonly used therapies between patients in the high- and low-risk groups in LUAD. LUAD patients were divided into immune hot phenotype and immune cold phenotype groups. The clinical presentation showed that patients with the immune hot phenotype had higher immunoactivity (including higher MHC, CYT, immune, stromal, ESTIMATE scores, higher abundance of immune cell infiltration, higher abundance of TIL, and enrichment of immune-enriched subtypes) and better survival outcomes than those with the immune cold phenotype. Subsequently, WGCNA analysis, univariate analysis, and lasso-cox analysis identified the genes highly associated with the immune phenotype: BTK and DPEP2. The risk signature, consisting of BTK and DPEP2, is highly correlated with the immune phenotype. High-risk scores were enriched in patients with immune cold phenotype and low-risk scores were enriched in patients with immune hot phenotype. Compared to the high-risk group, the low-risk group had better clinical performance, higher drug sensitivity, and a higher degree of immunoactivity, as well as better efficacy in receiving immunotherapy and common adjuvant therapy. This study developed an immune indicator consisting of BTK and DPEP2 based on the heterogeneity of hot and cold Immunophenotypes of the tumor microenvironment. This indicator has good efficacy in predicting prognosis and assessing the efficacy of immunotherapy, chemotherapy, and radiotherapy. It has the potential to facilitate personalized and precise treatment of LUAD in the future.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Terapia Combinada , Imunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Prognóstico , Resultado do Tratamento , Microambiente Tumoral/genética , Dipeptidases/metabolismo
13.
J Nutr Biochem ; 114: 109269, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36641073

RESUMO

Certain dietary supplements such as trans-10, cis-12 conjugated linoleic acid (t10-c12 CLA), and diets including caloric-restricted diets can promote weight loss in certain animal models and humans. A very recent study showed that exercise induces the biosynthesis of N-lactoyl-phenylalanine (Lac-Phe), a circulating signaling metabolite that suppresses feeding and obesity selectively in mice fed with a high-fat diet, and that cytosolic nonspecific dipeptidase 2 (CNDP2) catalyzes the synthesis of Lac-Phe from lactate (Lac) and phenylalanine (Phe). In this in silico study, we found that two anti-obesity strategies, namely treatment with t10-c12 CLA and caloric restriction, increase CNDP2 expression in adipose tissue in mice and rats, respectively. We showed that the effect of t10-c12 CLA on CNDP2 expression might be isomer-specific. We hypothesized that these t10-c12 CLA treatment- or caloric-restricted diet-mediated increases in CNDP2 expression might contribute to their anti-obesity effects, possibly due to increased Lac-Phe levels and ultimately due to Lac-Phe-mediated decreases in daily food consumption, reduced body weight and fat mass. A better understanding of the regulation of CNDP2 expression in diverse tissues in mammals might be of high importance in the treatment of obesity, considering its role in the synthesis of Lac-Phe, a metabolite that decreases body weight and fat mass selectively in mice fed with a high-fat diet. Further research is needed to find out how these two strategies lead to the upregulation of CNDP2 expression and whether this increased expression of CNDP2 might translate to reduced body weight and fat mass through higher Lac-Phe levels.


Assuntos
Dipeptidases , Ácidos Linoleicos Conjugados , Camundongos , Humanos , Ratos , Animais , Ácidos Linoleicos Conjugados/farmacologia , Restrição Calórica , Roedores/metabolismo , Regulação para Cima , Fígado/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Peso Corporal , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dipeptidases/metabolismo , Dipeptidases/farmacologia
14.
Biochim Biophys Acta Gen Subj ; 1867(3): 130290, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36529243

RESUMO

Anserine and carnosine represent histidine-containing dipeptides that exert a pluripotent protective effect on human physiology. Anserine is known to protect against oxidative stress in diabetes and cardiovascular diseases. Human carnosinases (CN1 and CN2) are dipeptidases involved in the homeostasis of carnosine. In poikilothermic vertebrates, the anserinase enzyme is responsible for hydrolyzing anserine. However, there is no specific anserine hydrolyzing enzyme present in humans. In this study, we have systematically investigated the anserine hydrolyzing activity of human CN1 and CN2. A targeted multiple reaction monitoring (MRM) based approach was employed for studying the enzyme kinetics of CN1 and CN2 using carnosine and anserine as substrates. Surprisingly, both CN1 and CN2 can hydrolyze anserine effectively. The observed catalytic turnover rate (Vmax/[E]t) was 21.6 s-1 and 2.8 s-1 for CN1 and CN2, respectively. CN1 is almost eight-fold more efficient in hydrolyzing anserine compared to CN2, which is comparable to the efficiency of the carnosine hydrolyzing activity of CN2. The Michaelis constant (Km) value for CN1 (1.96 mM) is almost three-fold lower compared to CN2 (6.33 mM), representing higher substrate affinity for anserine-CN1 interactions. Molecular docking studies showed that anserine binds at the catalytic site of the carnosinases with an affinity similar to carnosine. Overall, the present study elucidated the inherent promiscuity of human carnosinases in hydrolyzing anserine using a sensitive LC-MS/MS approach.


Assuntos
Carnosina , Dipeptidases , Animais , Humanos , Anserina/metabolismo , Carnosina/metabolismo , Dipeptidases/química , Dipeptidases/metabolismo , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem
15.
Angew Chem Int Ed Engl ; 61(47): e202210498, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36089535

RESUMO

Dipeptidyl peptidases 8 and 9 (DPP8/9) have gathered interest as drug targets due to their important roles in biological processes like immunity and tumorigenesis. Elucidation of their distinct individual functions remains an ongoing task and could benefit from the availability of novel, chemically diverse and selective chemical tools. Here, we report the activity-based protein profiling (ABPP)-mediated discovery of 4-oxo-ß-lactams as potent, non-substrate-like nanomolar DPP8/9 inhibitors. X-ray crystallographic structures revealed different ligand binding modes for DPP8 and DPP9, including an unprecedented targeting of an extended S2' (eS2') subsite in DPP8. Biological assays confirmed inhibition at both target and cellular levels. Altogether, our integrated chemical proteomics and structure-guided small molecule design approach led to novel DPP8/9 inhibitors with alternative molecular inhibition mechanisms, delivering the highest selectivity index reported to date.


Assuntos
Dipeptidases , Dipeptidases/metabolismo , beta-Lactamas/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases , Proteômica , Cristalografia por Raios X
16.
Sci Adv ; 8(5): eabl8920, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108055

RESUMO

Dexamethasone is widely used as an immunosuppressive therapy and recently as COVID-19 treatment. Here, we demonstrate that dexamethasone sensitizes to ferroptosis, a form of iron-catalyzed necrosis, previously suggested to contribute to diseases such as acute kidney injury, myocardial infarction, and stroke, all of which are triggered by glutathione (GSH) depletion. GSH levels were significantly decreased by dexamethasone. Mechanistically, we identified that dexamethasone up-regulated the GSH metabolism regulating protein dipeptidase-1 (DPEP1) in a glucocorticoid receptor (GR)-dependent manner. DPEP1 knockdown reversed the phenotype of dexamethasone-induced ferroptosis sensitization. Ferroptosis inhibitors, the DPEP1 inhibitor cilastatin, or genetic DPEP1 inactivation reversed the dexamethasone-induced increase in tubular necrosis in freshly isolated renal tubules. Our data indicate that dexamethasone sensitizes to ferroptosis by a GR-mediated increase in DPEP1 expression and GSH depletion. Together, we identified a previously unknown mechanism of glucocorticoid-mediated sensitization to ferroptosis bearing clinical and therapeutic implications.


Assuntos
Dexametasona/farmacologia , Dipeptidases/genética , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Receptores de Glucocorticoides/metabolismo , Carbolinas/efeitos adversos , Carbolinas/farmacologia , Linhagem Celular , Dipeptidases/metabolismo , Imunofluorescência , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Imunofenotipagem , Oxirredução/efeitos dos fármacos , Piperazinas/efeitos adversos , Piperazinas/farmacologia
17.
Sci Adv ; 8(5): eabm0142, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108057

RESUMO

The mechanisms that drive leukocyte recruitment to the kidney are incompletely understood. Dipeptidase-1 (DPEP1) is a major neutrophil adhesion receptor highly expressed on proximal tubular cells and peritubular capillaries of the kidney. Renal ischemia reperfusion injury (IRI) induces robust neutrophil and monocyte recruitment and causes acute kidney injury (AKI). Renal inflammation and the AKI phenotype were attenuated in Dpep1-/- mice or mice pretreated with DPEP1 antagonists, including the LSALT peptide, a nonenzymatic DPEP1 inhibitor. DPEP1 deficiency or inhibition primarily blocked neutrophil adhesion to peritubular capillaries and reduced inflammatory monocyte recruitment to the kidney after IRI. CD44 but not ICAM-1 blockade also decreased neutrophil recruitment to the kidney during IRI and was additive to DPEP1 effects. DPEP1, CD44, and ICAM-1 all contributed to the recruitment of monocyte/macrophages to the kidney following IRI. These results identify DPEP1 as a major leukocyte adhesion receptor in the kidney and potential therapeutic target for AKI.


Assuntos
Injúria Renal Aguda , Dipeptidases/metabolismo , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Animais , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Proteins ; 90(1): 299-308, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431561

RESUMO

Gene encoding aspartyl dipeptidase from Xenopus levies (PepExl) is upregulated by thyroid hormone and is proposed to play a significant role in resorption of tadpole tail during metamorphosis. However, the importance of peptidase activity for the resorption of the tail remain elusive. Here we report the crystal structures of first eukaryotic S51 peptidase, PepExl, in its ligand-free and Asp-bound states at 1.4 and 1.8 Å resolutions, respectively. The active site is located at dimeric interface and the catalytic triad is found to be dissembled in ligand-free and assembled in Asp-bound state. Structural comparison and molecular dynamic simulations of ligand-free and Asp-bound states shows that distinct loop (loop-A) plays an important role in active site shielding, substrate binding and enzyme activation. This study illuminates the Asp-X dipeptide binding in PepExl is associated with ordering of the loop-A and assembly of residues of catalytic triad in active conformation for enzymatic activity.


Assuntos
Domínio Catalítico/genética , Dipeptidases/química , Xenopus laevis , Sequência de Aminoácidos , Animais , Ácido Aspártico/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Dipeptidases/genética , Dipeptidases/metabolismo , Ligantes , Modelos Moleculares , Conformação Proteica
19.
Commun Biol ; 4(1): 1373, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880421

RESUMO

Tumor suppressor p53, a critical regulator of cell fate, is frequently mutated in cancer. Mutation of p53 abolishes its tumor-suppressing functions or endows oncogenic functions. We recently found that p53 binds via its proline-rich domain to peptidase D (PEPD) and is activated when the binding is disrupted. The proline-rich domain in p53 is rarely mutated. Here, we show that oncogenic p53 mutants closely resemble p53 in PEPD binding but are transformed into tumor suppressors, rather than activated as oncoproteins, when their binding to PEPD is disrupted by PEPD knockdown. Once freed from PEPD, p53 mutants undergo multiple posttranslational modifications, especially lysine 373 acetylation, which cause them to refold and regain tumor suppressor activities that are typically displayed by p53. The reactivated p53 mutants strongly inhibit cancer cell growth in vitro and in vivo. Our study identifies a cellular mechanism for reactivation of the tumor suppressor functions of oncogenic p53 mutants.


Assuntos
Transformação Celular Neoplásica/genética , Dipeptidases/genética , Mutação , Proteína Supressora de Tumor p53/genética , Linhagem Celular , Dipeptidases/metabolismo , Humanos , Proteína Supressora de Tumor p53/metabolismo
20.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884603

RESUMO

The naturally occurring dipeptide carnosine (ß-alanyl-l-histidine) has beneficial effects in different diseases. It is also frequently used as a food supplement to improve exercise performance and because of its anti-aging effects. Nevertheless, after oral ingestion, the dipeptide is not detectable in human serum because of rapid degradation by serum carnosinase. At the same time, intact carnosine is excreted in urine up to five hours after intake. Therefore, an unknown compartment protecting the dipeptide from degradation has long been hypothesized. Considering that erythrocytes may constitute this compartment, we investigated the uptake and intracellular amounts of carnosine in human erythrocytes cultivated in the presence of the dipeptide and human serum using liquid chromatography-mass spectrometry. In addition, we studied carnosine's effect on ATP production in red blood cells and on their response to oxidative stress. Our experiments revealed uptake of carnosine into erythrocytes and protection from carnosinase degradation. In addition, no negative effect on ATP production or defense against oxidative stress was observed. In conclusion, our results for the first time demonstrate that erythrocytes can take up carnosine, and, most importantly, thereby prevent its degradation by human serum carnosinase.


Assuntos
Trifosfato de Adenosina/metabolismo , Carnosina/metabolismo , Dipeptidases/metabolismo , Eritrócitos/metabolismo , Estresse Oxidativo , Soro/enzimologia , Carnosina/química , Eritrócitos/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA