Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 806
Filtrar
1.
Front Immunol ; 15: 1444045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39229279

RESUMO

Introduction: Colitis is an inflammatory bowel disease (IBD) characterized by immune cell dysregulation and alterations in the gut microbiome. In our previous report, we showed a natural product in cruciferous vegetables and ligand of the aryl hydrocarbon receptor (AhR), indole-3-carbinol (I3C), was able to reduce colitis-induced disease severity and microbial dysbiosis in an interleukin-22 (IL-22) dependent manner. Methods: In the current study, we performed single-cell RNA sequencing (scRNAseq) from colonocytes during colitis induction and supplementation with I3C and show how this treatment alters expression of genes involved in IL-22 signaling. To further define the role of IL-22 signaling in I3C-mediated protection during colitis and disease-associated microbial dysbiosis, we generated mice with AhR deficiency in RAR-related orphan receptor c (Rorc)-expressing cells (AhR ΔRorc ) which depletes this receptor in immune cells involved in production of IL-22. Colitis was induced in wildtype (WT), AhR ΔRorc , and littermate (LM) mice with or without I3C treatment. Results: Results showed AhR ΔRorc mice lost the efficacy effects of I3C treatment which correlated with a loss of ability to increase IL-22 by innate lymphoid type 3 (ILC3s), not T helper 22 (Th22) cells. 16S rRNA microbiome profiling studies showed AhR ΔRorc mice were unable to regulate disease-associated increases in Bacteroides, which differed between males and females. Lastly, inoculation with a specific disease-associated Bacteroides species, Bacteroides acidifaciens (B. acidifaciens), was shown to exacerbate colitis in females, but not males. Discussion: Collectively, this report highlights the cell and sex-specific role of AhR in regulating microbes that can impact colitis disease.


Assuntos
Bacteroides , Colite , Interleucina 22 , Interleucinas , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Animais , Interleucinas/metabolismo , Colite/imunologia , Colite/microbiologia , Feminino , Camundongos , Masculino , Bacteroides/imunologia , Microbioma Gastrointestinal/imunologia , Disbiose/imunologia , Camundongos Endogâmicos C57BL , Indóis/farmacologia , Modelos Animais de Doenças , Fatores Sexuais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos Knockout
2.
Front Immunol ; 15: 1434804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301033

RESUMO

This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.


Assuntos
Microbioma Gastrointestinal , Imunoterapia , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Microbioma Gastrointestinal/imunologia , Imunoterapia/métodos , Animais , Pulmão/imunologia , Disbiose/imunologia , Pesquisa Translacional Biomédica
3.
Arch Microbiol ; 206(10): 410, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302484

RESUMO

Atopic dermatitis (AD) is a common and recurrent skin disease characterized by skin barrier dysfunction, inflammation and chronic pruritus, with wide heterogeneity in terms of age of onset, clinical course and persistence over the lifespan. Although the pathogenesis of the disease are unclear, epidermal barrier dysfunction, immune and microbial dysregulation, and environmental factors are known to be critical etiologies in AD pathology. The skin microbiota represents an ecosystem consisting of numerous microbial species that interact with each other as well as host epithelial cells and immune cells. Although the skin microbiota benefits the host by supporting the basic functions of the skin and preventing the colonization of pathogens, disruption of the microbial balance (dysbiosis) can cause skin diseases such as AD. Although AD is a dermatological disease, recent evidence has shown that changes in microbiota composition in the skin and intestine contribute to the pathogenesis of AD. Environmental factors that contribute to skin barrier dysfunction and microbial dysbiosis in AD include allergens, diet, irritants, air pollution, epigenetics and microbial exposure. Knowing the microbial combination of intestin, as well as the genetic and epigenetic determinants associated with the development of autoantibodies, may help elucidate the pathophysiology of the disease. The skin of patients with AD is characterized by microbial dysbiosis as a result of reduced microbial diversity and overgrowth of the pathogens such as Staphylococcus aureus. Recent studies have revealed the importance of building a strong immune response against microorganisms during childhood and new mechanisms of microbial community dynamics in modulating the skin microbiome. Numerous microorganisms are reported to modulate host response through communication with keratinocytes, specific immune cells and adipocytes to improve skin health and barrier function. This growing insight into bioactive substances in the skin microbiota has led to novel biotherapeutic approaches targeting the skin surface for the treatment of AD. This review will provide an updated overview of the skin microbiota in AD and its complex interaction with immune response mechanisms, as well as explore possible underlying mechanisms in the pathogenesis of AD and provide insights into new therapeutic developments for the treatment of AD. It also focuses on restoring skin microbial homeostasis, aiming to reduce inflammation by repairing the skin barrier.


Assuntos
Dermatite Atópica , Disbiose , Pele , Staphylococcus aureus , Dermatite Atópica/microbiologia , Dermatite Atópica/imunologia , Humanos , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Pele/microbiologia , Pele/imunologia , Pele/patologia , Disbiose/microbiologia , Disbiose/imunologia , Microbiota/imunologia , Animais , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia
4.
Front Immunol ; 15: 1444589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253073

RESUMO

Recent years have seen an outstanding growth in the understanding of connections between diet-induced obesity, dysbiosis and alterations in the tumor microenvironment. Now we appreciate that gut dysbiosis can exert important effects in distant target tissues via specific microbes and metabolites. Multiple studies have examined how diet-induced obese state is associated with gut dysbiosis and how gut microbes direct various physiological processes that help maintain obese state in a bidirectional crosstalk. Another tightly linked factor is sustained low grade inflammation in tumor microenvironment that is modulated by both obese state and dysbiosis, and influences tumor growth as well as response to immunotherapy. Our review brings together these important aspects and explores their connections. In this review, we discuss how obese state modulates various components of the breast tumor microenvironment and gut microbiota to achieve sustained low-grade inflammation. We explore the crosstalk between different components of tumor microenvironment and microbes, and how they might modulate the response to immunotherapy. Discussing studies from multiple tumor types, we delve to find common microbial characteristics that may positively or negatively influence immunotherapy efficacy in breast cancer and may guide future studies.


Assuntos
Disbiose , Microbioma Gastrointestinal , Imunoterapia , Inflamação , Obesidade , Microambiente Tumoral , Humanos , Disbiose/imunologia , Obesidade/imunologia , Obesidade/terapia , Obesidade/microbiologia , Microambiente Tumoral/imunologia , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Imunoterapia/métodos , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Feminino
5.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201314

RESUMO

Giardia lamblia, the cause of giardiasis, significantly impacts patients with metabolic disorders related to insulin resistance (IR). Both giardiasis and metabolic disorders share elements such as chronic inflammation and intestinal dysbiosis, which substantially affect the metabolic and cytokine profiles of patients. This review discusses the mechanisms of virulence of G. lamblia, its influence on the immune system, and its association with metabolic disorders. The review aims to show how G. lamblia invasion acts on the immune system and the glucose and lipid metabolism. Key findings reveal that G. lamblia infection, by disrupting intestinal permeability, alters microbiota composition and immune responses, potentially impairing metabolic status. Future research should focus on elucidating the specific mechanisms by which G. lamblia influences the metabolism, exploring the long-term consequences of chronic infection, and developing targeted therapeutic strategies that include both parasitic and metabolic aspects. These insights underscore the need for a multidisciplinary approach to the treatment of giardiasis in patients with metabolic disorders.


Assuntos
Giardia lamblia , Giardíase , Glucose , Metabolismo dos Lipídeos , Humanos , Giardia lamblia/metabolismo , Giardia lamblia/imunologia , Giardíase/parasitologia , Giardíase/imunologia , Giardíase/metabolismo , Glucose/metabolismo , Animais , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Interações Hospedeiro-Parasita/imunologia , Disbiose/imunologia , Disbiose/parasitologia , Microbioma Gastrointestinal
6.
Immunol Lett ; 269: 106906, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122093

RESUMO

The collaboration between the microbiota, mucosa, and intestinal epithelium is crucial for defending against pathogens and external antigens. Dysbiosis disrupts this balance, allowing pathogens to thrive and potentially enter the bloodstream, triggering immune dysregulation and potentially leading to sepsis. Antimicrobial peptides like LL-37 and CRAMP are pivotal in innate immune defense. Their expression varies with infection severity, exhibiting a dual pro- and anti-inflammatory response. Understanding this dynamic is key to comprehending sepsis progression. In our study, we examined the inflammatory response in CRAMP knockout mice post-cecal ligation and puncture (CLP). We assessed its impact on brain tissue damage and the intestinal microbiota. Our findings revealed higher gene expression of S100A8 and S100A9 in the prefrontal cortex of wild-type mice versus CRAMP-knockout mice. This trend was consistent in the hippocampus and cerebellum, although protein concentrations remained constant. Notably, there was a notable increase in Escherichia coli, Lactobacillus spp., and Enterococcus faecalis populations in wild-type mice 24 h post-CLP compared to the CRAMP-deficient group. These results align with our previous data suggesting that the absence of CRAMP may confer protection in this sepsis model.


Assuntos
Eixo Encéfalo-Intestino , Catelicidinas , Modelos Animais de Doenças , Microbioma Gastrointestinal , Camundongos Knockout , Sepse , Animais , Sepse/imunologia , Sepse/etiologia , Sepse/metabolismo , Sepse/microbiologia , Camundongos , Microbioma Gastrointestinal/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Disbiose/imunologia , Masculino , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/imunologia
7.
Front Immunol ; 15: 1413485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144142

RESUMO

Millions of microorganisms make up the complex microbial ecosystem found in the human gut. The immune system's interaction with the gut microbiota is essential for preventing inflammation and maintaining intestinal homeostasis. Numerous metabolic products that can cross-talk between immune cells and the gut epithelium are metabolized by the gut microbiota. Traumatic injury elicits a great and multifaceted immune response in the minutes after the initial offense, containing simultaneous pro- and anti-inflammatory responses. The development of innovative therapies that improve patient outcomes depends on the gut microbiota and immunological responses to trauma. The altered makeup of gut microbes, or gut dysbiosis, can also dysregulate immunological responses, resulting in inflammation. Major human diseases may become more common as a result of chronic dysbiosis and the translocation of bacteria and the products of their metabolism beyond the mucosal barrier. In this review, we briefly summarize the interactions between the gut microbiota and the immune system and human disease and their therapeutic probiotic formulations. We also discuss the immune response to traumatic injury.


Assuntos
Disbiose , Microbioma Gastrointestinal , Ferimentos e Lesões , Humanos , Microbioma Gastrointestinal/imunologia , Disbiose/imunologia , Animais , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/microbiologia , Probióticos/uso terapêutico , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Inflamação/imunologia , Inflamação/microbiologia
8.
Semin Cancer Biol ; 104-105: 32-45, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39127266

RESUMO

Cancer is generally defined as a disease of aging. With aging, the composition, diversity and functional characteristics of the gut microbiota occur changes, with a decline of beneficial commensal microbes triggered by intrinsic and extrinsic factors (e.g., diet, drugs and chronic health conditions). Nowadays, dysbiosis of the gut microbiota is recognized as a hallmark of cancer. At the same time, aging is accompanied by changes in innate and adaptive immunity, known as immunosenescence, as well as chronic low-grade inflammation, known as inflammaging. The elevated cancer incidence and mortality in the elderly are linked with aging-associated alterations in the gut microbiota that elicit systemic metabolic alterations, leading to immune dysregulation with potentially tumorigenic effects. The gut microbiota and immunosenescence might both affect the response to treatment in cancer patients. In-depth understanding of age-associated alterations in the gut microbiota and immunity will shed light on the risk of cancer development and progression in the elderly. Here, we describe the aging-associated changes of the gut microbiota in cancer, and review the evolving understanding of the gut microbiota-targeted intervention strategies. Furthermore, we summarize the knowledge on the cellular and molecular mechanisms of immunosenescence and its impact on cancer. Finally, we discuss the latest knowledge about the relationships between gut microbiota and immunosenescence, with implications for cancer therapy. Intervention strategies targeting the gut microbiota may attenuate inflammaging and rejuvenate immune function to provide antitumor benefits in elderly patients.


Assuntos
Microbioma Gastrointestinal , Imunossenescência , Neoplasias , Humanos , Microbioma Gastrointestinal/imunologia , Neoplasias/imunologia , Neoplasias/microbiologia , Neoplasias/etiologia , Imunossenescência/imunologia , Animais , Envelhecimento/imunologia , Disbiose/imunologia , Disbiose/microbiologia
9.
J Transl Med ; 22(1): 729, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103909

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is highly prevalent in individuals with schizophrenia (SZ), leading to negative consequences like premature mortality. Gut dysbiosis, which refers to an imbalance of the microbiota, and chronic inflammation are associated with both SZ and MetS. However, the relationship between gut dysbiosis, host immunological dysfunction, and SZ comorbid with MetS (SZ-MetS) remains unclear. This study aims to explore alterations in gut microbiota and their correlation with immune dysfunction in SZ-MetS, offering new insights into its pathogenesis. METHODS AND RESULTS: We enrolled 114 Chinese patients with SZ-MetS and 111 age-matched healthy controls from Zhejiang, China, to investigate fecal microbiota using Illumina MiSeq sequencing targeting 16 S rRNA gene V3-V4 hypervariable regions. Host immune responses were assessed using the Bio-Plex Pro Human Cytokine 27-Plex Assay to examine cytokine profiles. In SZ-MetS, we observed decreased bacterial α-diversity and significant differences in ß-diversity. LEfSe analysis identified enriched acetate-producing genera (Megamonas and Lactobacillus), and decreased butyrate-producing bacteria (Subdoligranulum, and Faecalibacterium) in SZ-MetS. These altered genera correlated with body mass index, the severity of symptoms (as measured by the Scale for Assessment of Positive Symptoms and Scale for Assessment of Negative Symptoms), and triglyceride levels. Altered bacterial metabolic pathways related to lipopolysaccharide biosynthesis, lipid metabolism, and various amino acid metabolism were also found. Additionally, SZ-MetS exhibited immunological dysfunction with increased pro-inflammatory cytokines, which correlated with the differential genera. CONCLUSION: These findings suggested that gut microbiota dysbiosis and immune dysfunction play a vital role in SZ-MetS development, highlighting potential therapeutic approaches targeting the gut microbiota. While these therapies show promise, further mechanistic studies are needed to fully understand their efficacy and safety before clinical implementation.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , China , Comorbidade , Citocinas/metabolismo , Disbiose/microbiologia , Disbiose/imunologia , Disbiose/complicações , População do Leste Asiático , Fezes/microbiologia , Imunidade , Síndrome Metabólica/microbiologia , Síndrome Metabólica/imunologia , Síndrome Metabólica/complicações , Esquizofrenia/microbiologia , Esquizofrenia/imunologia , Esquizofrenia/complicações
10.
Proc Natl Acad Sci U S A ; 121(36): e2400528121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39186644

RESUMO

Many chronic inflammatory diseases are attributed to disturbances in host-microbe interactions, which drive immune-mediated tissue damage. Depending on the anatomic setting, a chronic inflammatory disease can exert unique local and systemic influences, which provide an exceptional opportunity for understanding disease mechanism and testing therapeutic interventions. The oral cavity is an easily accessible environment that allows for protective interventions aiming at modulating the immune response to control disease processes driven by a breakdown of host-microbe homeostasis. Periodontal disease (PD) is a prevalent condition in which quantitative and qualitative changes of the oral microbiota (dysbiosis) trigger nonresolving chronic inflammation, progressive bone loss, and ultimately tooth loss. Here, we demonstrate the therapeutic benefit of local sustained delivery of the myeloid-recruiting chemokine (C-C motif) ligand 2 (CCL2) in murine ligature-induced PD using clinically relevant models as a preventive, interventional, or reparative therapy. Local delivery of CCL2 into the periodontium inhibited bone loss and accelerated bone gain that could be ascribed to reduced osteoclasts numbers. CCL2 treatment up-regulated M2-macrophage and downregulated proinflammatory and pro-osteoclastic markers. Furthermore, single-cell ribonucleic acid (RNA) sequencing indicated that CCL2 therapy reversed disease-associated transcriptomic profiles of murine gingival macrophages via inhibiting the triggering receptor expressed on myeloid cells-1 (TREM-1) signaling in classically activated macrophages and inducing protein kinase A (PKA) signaling in infiltrating macrophages. Finally, 16S ribosomal ribonucleic acid (rRNA) sequencing showed mitigation of microbial dysbiosis in the periodontium that correlated with a reduction in microbial load in CCL2-treated mice. This study reveals a novel protective effect of CCL2 local delivery in PD as a model for chronic inflammatory diseases caused by a disturbance in host-microbe homeostasis.


Assuntos
Quimiocina CCL2 , Homeostase , Animais , Camundongos , Quimiocina CCL2/metabolismo , Doenças Periodontais/microbiologia , Doenças Periodontais/imunologia , Doenças Periodontais/terapia , Disbiose/imunologia , Disbiose/microbiologia , Interações entre Hospedeiro e Microrganismos/imunologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Periodontite/microbiologia , Periodontite/imunologia
11.
mSystems ; 9(9): e0079424, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39166878

RESUMO

Budd-Chiari syndrome (B-CS) is a rare and lethal condition characterized by hepatic venous outflow tract blockage. Gut microbiota has been linked to numerous hepatic disorders, but its significance in B-CS pathogenesis is uncertain. First, we performed a case-control study (Ncase = 140, Ncontrol = 63) to compare the fecal microbiota of B-CS and healthy individuals by metagenomics sequencing. B-CS patients' gut microbial composition and activity changed significantly, with a different metagenomic makeup, increased potentially pathogenic bacteria, including Prevotella, and disease-linked microbial function. Imbalanced cytokines in patients were demonstrated to be associated with gut dysbiosis, which led us to suspect that B-CS is associated with gut microbiota and immune dysregulation. Next, 16S ribosomal DNA sequencing on fecal microbiota transplantation (FMT) mice models examined the link between gut dysbiosis and B-CS. FMT models showed damaged liver tissues, posterior inferior vena cava, and increased Prevotella in the disturbed gut microbiota of FMT mice. Notably, B-CS-FMT impaired the morphological structure of colonic tissues and increased intestinal permeability. Furthermore, a significant increase of the same cytokines (IL-5, IL-6, IL-9, IL-10, IL-17A, IL-17F, and IL-13) and endotoxin levels in B-CS-FMT mice were observed. Our study suggested that gut microbial dysbiosis may cause B-CS through immunological dysregulation. IMPORTANCE: This study revealed that gut microbial dysbiosis may cause Budd-Chiari syndrome (B-CS). Gut dysbiosis enhanced intestinal permeability, and toxic metabolites and imbalanced cytokines activated the immune system. Consequently, the escalation of causative factors led to their concentration in the portal vein, thereby compromising both the liver parenchyma and outflow tract. Therefore, we proposed that gut microbial dysbiosis induced immune imbalance by chronic systemic inflammation, which contributed to the B-CS development. Furthermore, Prevotella may mediate inflammation development and immune imbalance, showing potential in B-CS pathogenesis.


Assuntos
Síndrome de Budd-Chiari , Citocinas , Disbiose , Microbioma Gastrointestinal , Disbiose/microbiologia , Disbiose/imunologia , Microbioma Gastrointestinal/fisiologia , Síndrome de Budd-Chiari/imunologia , Síndrome de Budd-Chiari/microbiologia , Síndrome de Budd-Chiari/patologia , Humanos , Animais , Camundongos , Masculino , Estudos de Casos e Controles , Feminino , Citocinas/metabolismo , Citocinas/imunologia , Citocinas/genética , Adulto , Transplante de Microbiota Fecal , Pessoa de Meia-Idade
12.
Int Immunopharmacol ; 141: 112881, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39159556

RESUMO

Glioblastoma (GBM), known as the most malignant and common primary brain tumor of the central nervous system, has finite therapeutic options and a poor prognosis. Studies have shown that host intestinal microorganisms play a role in the immune regulation of parenteral tumors in a number of different ways, either directly or indirectly. However, the potential impact of gut microbiota on tumor microenvironment, particularly glioma immunological milieu, has not been clarified exactly. In this study, by using an orthotopic GBM model, we found gut microbiota dysbiosis caused by antibiotic cocktail treatment boosted the tumor process in vivo. An obvious change that followed gut microbiota dysbiosis was the enhanced percentage of M2-like macrophages in the TME, in parallel with a decrease in the levels of gut microbial metabolite, short-chain fatty acids (SCFAs) in the blood and tumor tissues. Oral supplementation with SCFAs can increase the proportion of M1-like macrophages in the TME, which improves the outcomes of glioma. In terms of mechanism, SCFAs-activated glycolysis in the tumor-associated macrophages may be responsible for the elevated M1 polarization in the TME. This study will enable us to better comprehend the "gut-brain" axis and be meaningful for the development of TAM-targeting immunotherapeutic strategies for GBM patients.


Assuntos
Neoplasias Encefálicas , Disbiose , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Glioblastoma , Microambiente Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Disbiose/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ácidos Graxos Voláteis/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Progressão da Doença , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Camundongos Endogâmicos C57BL , Regulação para Cima/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Masculino
13.
Autoimmun Rev ; 23(9): 103607, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39187222

RESUMO

Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by widespread inflammation affecting various organs. This review discusses the role of oxidative stress and gut microbiota in the pathogenesis of SLE and evaluates the therapeutic potential of intravenous immunoglobulins (IVIg). Oxidative stress contributes to SLE by causing impairment in the function of mitochondria, resulting in reactive oxygen species production, which triggers autoantigenicity and proinflammatory cytokines. Gut microbiota also plays a significant role in SLE. Dysbiosis has been associated to disease's onset and progression. Moreover, dysbiosis exacerbates SLE symptoms and influences systemic immunity, leading to a breakdown in bacterial tolerance and an increase in inflammatory responses. High-dose IVIg has emerged as a promising treatment for refractory cases of SLE. The beneficial effects of IVIg are partly due to its antioxidant property, reducing oxidative stress markers and modulating the immune responses. Additionally, IVIg can normalize the gut flora, as demonstrated in a case of severe intestinal pseudo-obstruction. In summary, both oxidative stress and dysregulation of microbiota are pivotal in the pathogenesis of SLE. The use of IVIg may improve the disease's outcome. Future research should be directed to elucidating the precise mechanisms by which oxidative stress and microbiota are linked with autoimmunity in SLE in developing targeted therapies.


Assuntos
Disbiose , Microbioma Gastrointestinal , Imunoglobulinas Intravenosas , Lúpus Eritematoso Sistêmico , Estresse Oxidativo , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Imunoglobulinas Intravenosas/uso terapêutico , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Disbiose/imunologia , Animais , Microbiota/imunologia , Microbiota/efeitos dos fármacos
14.
Bull Exp Biol Med ; 177(2): 256-260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39093472

RESUMO

The study revealed no effects of pregnancy and childbirth on the course of tuberculosis in female BALB/c mice after aerosol infection with Mycobacterium tuberculosis. However, we demonstrated a negative effect of tuberculosis infection on the fertility of infected females, which manifested in a longer period from mating to pregnancy and in a smaller litter size. Impaired reproductive function in response to the effect of the systemic infectious process was accompanied by the development of immunosuppression confirmed by an immunological test (delayed-type hypersensitivity to tuberculin) and the formation of genital tract dysbiosis during pregnancy and postpartum period.


Assuntos
Fertilidade , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis , Tuberculose , Animais , Feminino , Camundongos , Fertilidade/fisiologia , Gravidez , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Disbiose/microbiologia , Disbiose/imunologia , Hipersensibilidade Tardia/imunologia , Tamanho da Ninhada de Vivíparos
15.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125870

RESUMO

Immune-mediated gastrointestinal (GI) diseases, including achalasia, celiac disease, and inflammatory bowel diseases, pose significant challenges in diagnosis and management due to their complex etiology and diverse clinical manifestations. While genetic predispositions and environmental factors have been extensively studied in the context of these conditions, the role of viral infections and virome dysbiosis remains a subject of growing interest. This review aims to elucidate the involvement of viral infections in the pathogenesis of immune-mediated GI diseases, focusing on achalasia and celiac disease, as well as the virome dysbiosis in IBD. Recent evidence suggests that viral pathogens, ranging from common respiratory viruses to enteroviruses and herpesviruses, may trigger or exacerbate achalasia and celiac disease by disrupting immune homeostasis in the GI tract. Furthermore, alterations in the microbiota and, specifically, in the virome composition and viral-host interactions have been implicated in perpetuating chronic intestinal inflammation in IBD. By synthesizing current knowledge on viral contributions to immune-mediated GI diseases, this review aims to provide insights into the complex interplay between viral infections, host genetics, and virome dysbiosis, shedding light on novel therapeutic strategies aimed at mitigating the burden of these debilitating conditions on patients' health and quality of life.


Assuntos
Disbiose , Viroses , Humanos , Disbiose/imunologia , Viroses/imunologia , Viroses/complicações , Viroses/virologia , Gastroenteropatias/virologia , Gastroenteropatias/imunologia , Gastroenteropatias/etiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/virologia , Animais , Microbioma Gastrointestinal/imunologia , Vírus/imunologia , Vírus/patogenicidade , Doença Celíaca/virologia , Doença Celíaca/imunologia , Viroma
16.
World J Gastroenterol ; 30(27): 3356-3360, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39086745

RESUMO

The concept of inflammatory bowel disease (IBD), which encompasses Crohn's disease and ulcerative colitis, represents a complex and growing global health concern resulting from a multifactorial etiology. Both dysfunctional autophagy and dysbiosis contribute to IBD, with their combined effects exacerbating the related inflammatory condition. As a result, the existing interconnection between gut microbiota, autophagy, and the host's immune system is a decisive factor in the occurrence of IBD. The factors that influence the gut microbiota and their impact are another important point in this regard. Based on this initial perspective, this manuscript briefly highlighted the intricate interplay between the gut microbiota, autophagy, and IBD pathogenesis. In addition, it also addressed the potential targeting of the microbiota and modulating autophagic pathways for IBD therapy and proposed suggestions for future research within a more specific and expanded context. Further studies are warranted to explore restoring microbial balance and regulating autophagy mechanisms, which may offer new therapeutic avenues for IBD management and to delve into personalized treatment to alleviate the related burden.


Assuntos
Autofagia , Disbiose , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/imunologia , Disbiose/imunologia , Doença de Crohn/microbiologia , Doença de Crohn/imunologia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/imunologia , Animais , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/imunologia
17.
Front Immunol ; 15: 1430001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131163

RESUMO

Inflammatory bowel disease (IBD) is an idiopathic and persistent inflammatory illness of the bowels, leading to a substantial burden on both society and patients due to its high incidence and recurrence. The pathogenesis of IBD is multifaceted, partly attributed to the imbalance of immune responses toward the gut microbiota. There is a correlation between the severity of the disease and the imbalance in the oral microbiota, which has been discovered in recent research highlighting the role of oral microbes in the development of IBD. In addition, various oral conditions, such as angular cheilitis and periodontitis, are common extraintestinal manifestations (EIMs) of IBD and are associated with the severity of colonic inflammation. However, it is still unclear exactly how the oral microbiota contributes to the pathogenesis of IBD. This review sheds light on the probable causal involvement of oral microbiota in intestinal inflammation by providing an overview of the evidence, developments, and future directions regarding the relationship between oral microbiota and IBD. Changes in the oral microbiota can serve as markers for IBD, aiding in early diagnosis and predicting disease progression. Promising advances in probiotic-mediated oral microbiome modification and antibiotic-targeted eradication of specific oral pathogens hold potential to prevent IBD recurrence.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Boca , Humanos , Microbioma Gastrointestinal/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/etiologia , Boca/microbiologia , Boca/imunologia , Animais , Disbiose/imunologia , Probióticos/uso terapêutico
18.
J Cancer Res Ther ; 20(4): 1141-1149, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39206975

RESUMO

ABSTRACT: As the initial point for digestion, the balance of oral microorganisms plays an important role in maintaining local and systemic health. Oral dysbiosis, or an imbalance in the oral microbial community, may lead to the onset of various diseases. The presence or abnormal increase of microbes in the oral cavity has attracted significant attention due to its complicated relationship with oral cancer. Oral cancer can remodel microbial profiles by creating a more beneficial microenvironment for its progression. On the other hand, altered microbial profiles can promote tumorigenesis by evoking a complex inflammatory response and affecting host immunity. This review analyzes the oncogenic potential of oral microbiome alterations as a driver and biomarker. Additionally, a potentially therapeutic strategy via the reversal of the oral microbiome dysbiosis in oral cancers has been discussed.


Assuntos
Disbiose , Microbiota , Neoplasias Bucais , Boca , Humanos , Neoplasias Bucais/microbiologia , Neoplasias Bucais/patologia , Disbiose/microbiologia , Disbiose/complicações , Disbiose/imunologia , Boca/microbiologia , Boca/patologia , Microambiente Tumoral/imunologia
19.
J Reprod Immunol ; 165: 104300, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004033

RESUMO

The global public health emergency of COVID-19 in January 2020 prompted a surge in research focusing on the pathogenesis and clinical manifestations of the virus. While numerous reports have been published on the acute effects of COVID-19 infection, the review explores the multifaceted long-term implications of COVID-19, with a particular focus on severe maternal COVID-19 infection, gut microbiome dysbiosis, and neurodevelopmental disorders in offspring. Severe COVID-19 infection has been associated with heightened immune system activation and gastrointestinal symptoms. Severe COVID-19 may also result in gut microbiome dysbiosis and a compromised intestinal mucosal barrier, often referred to as 'leaky gut'. Increased gut permeability facilitates the passage of inflammatory cytokines, originating from the inflamed intestinal mucosa and gut, into the bloodstream, thereby influencing fetal development during pregnancy and potentially elevating the risk of neurodevelopmental disorders such as autism and schizophrenia. The current review discusses the role of cytokine signaling molecules, microglia, and synaptic pruning, highlighting their potential involvement in the pathogenesis of neurodevelopmental disorders following maternal COVID-19 infection. Additionally, this review addresses the potential of probiotic interventions to mitigate gut dysbiosis and inflammatory responses associated with COVID-19, offering avenues for future research in optimizing maternal and fetal health outcomes.


Assuntos
COVID-19 , Disbiose , Microbioma Gastrointestinal , Transtornos do Neurodesenvolvimento , Complicações Infecciosas na Gravidez , SARS-CoV-2 , Humanos , COVID-19/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Gravidez , Feminino , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/microbiologia , Complicações Infecciosas na Gravidez/virologia , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/microbiologia , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Citocinas/metabolismo , Citocinas/imunologia
20.
Immunity ; 57(8): 1939-1954.e7, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39013465

RESUMO

Antibiotic use in early life disrupts microbial colonization and increases the risk of developing allergies and asthma. We report that mice given antibiotics in early life (EL-Abx), but not in adulthood, were more susceptible to house dust mite (HDM)-induced allergic airway inflammation. This susceptibility was maintained even after normalization of the gut microbiome. EL-Abx decreased systemic levels of indole-3-propionic acid (IPA), which induced long-term changes to cellular stress, metabolism, and mitochondrial respiration in the lung epithelium. IPA reduced mitochondrial respiration and superoxide production and altered chemokine and cytokine production. Consequently, early-life IPA supplementation protected EL-Abx mice against exacerbated HDM-induced allergic airway inflammation in adulthood. These results reveal a mechanism through which EL-Abx can predispose the lung to allergic airway inflammation and highlight a possible preventative approach to mitigate the detrimental consequences of EL-Abx.


Assuntos
Antibacterianos , Asma , Disbiose , Microbioma Gastrointestinal , Indóis , Pyroglyphidae , Animais , Camundongos , Disbiose/imunologia , Indóis/farmacologia , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Asma/imunologia , Pyroglyphidae/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Feminino , Inflamação/imunologia , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Citocinas/metabolismo , Hipersensibilidade/imunologia , Propionatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...