Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.102
Filtrar
1.
PeerJ ; 12: e17498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827305

RESUMO

Background: The method currently available to diagnose shigellosis is insensitive and has many limitations. Thus, this study was designed to identify specific antigenic protein(s) among the cell surface associated proteins (SAPs) of Shigella that would be valuable in the development of an alternative diagnostic assay for shigellosis, particularly one that could be run using a stool sample rather than serum. Methods: The SAPs of clinical isolates of S. dysenteriae, S. boydii, Shigella flexneri, and S. sonnei were extracted from an overnight culture grown at 37 °C using acidified-glycine extraction methods. Protein profiles were observed by SDS-PAGE. To determine if antibodies specific to certain Shigella SAPs were present in both sera and stool suspensions, Western blot analysis was used to detect the presence of IgA, IgG, and IgM. Results: Immunoblot analysis revealed that sera from patients infected with S. flexneri recognized 31 proteins. These SAP antigens are recognized by the host humoral response during Shigella infection. Specific antibodies against these antigens were also observed in intestinal secretions of shigellosis patients. Of these 31 S. flexneri proteins, the 35 kDa protein specifically reacted against IgA present in patients' stool suspensions. Further study illustrated the immunoreactivity of this protein in S. dysenteriae, S. boydii, and S. sonnei. This is the first report that demonstrates the presence of immunoreactive Shigella SAPs in stool suspensions. The SAPSs could be very useful in developing a simple and rapid serodiagnostic assay for shigellosis directly from stool specimens.


Assuntos
Proteínas de Bactérias , Disenteria Bacilar , Fezes , Shigella flexneri , Humanos , Fezes/microbiologia , Fezes/química , Disenteria Bacilar/diagnóstico , Disenteria Bacilar/imunologia , Disenteria Bacilar/microbiologia , Shigella flexneri/imunologia , Shigella flexneri/isolamento & purificação , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/análise , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/análise , Western Blotting , Eletroforese em Gel de Poliacrilamida , Imunoglobulina A/imunologia , Imunoglobulina A/sangue , Imunoglobulina A/análise
2.
Infect Genet Evol ; 122: 105611, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823431

RESUMO

Shigellosis, induced by Shigella flexneri, constitutes a significant health burden in developing nations, particularly impacting socioeconomically disadvantaged communities. Designated as the second most prevalent cause of diarrheal illness by the World Health Organization (WHO), it precipitates an estimated 212,000 fatalities annually. Within the spectrum of S. flexneri strains, serotype X is notably pervasive and resilient, yet its comprehensive characterization remains deficient. The present investigation endeavors to discern potential pharmacological targets and repurpose existing drug compounds against S. flexneri serotype X. Employing the framework of subtractive genomics, the study interrogates the reference genome of S. flexneri Serotype X (strain 2,002,017; UP000001884) to delineate its proteome into categories of non-homologous, non-paralogous, essential, virulent, and resistant constituents, thereby facilitating the identification of therapeutic targets. Subsequently, a screening of approximately 9000 compounds from the FDA library against the identified drug target aims to delineate efficacious agents for combating S. flexneri serotype X infections. The application of subtractive genomics methodology yields prognostic insights, unveiling non-paralogous proteins (n = 4122), non-homologues (n = 1803), essential (n = 1246), drug-like (n = 389), resistant (n = 167), alongside 42 virulent proteins within the reference proteome. This iterative process culminates in the identification of Serine O-acetyltransferase as a viable drug target. Subsequent virtual screening endeavors to unearth FDA-approved medicinal compounds capable of inhibiting Serine O-acetyltransferase. Noteworthy candidates such as DB12983, DB15085, DB16098, DB16185, and DB16262 emerge, exhibiting potential for mitigating S. flexneri Serotype X. Despite the auspicious findings, diligent scrutiny is imperative to ascertain the efficacy and safety profile of the proposed drug candidates vis-à-vis S. flexneri.


Assuntos
Antibacterianos , Reposicionamento de Medicamentos , Disenteria Bacilar , Genômica , Sorogrupo , Shigella flexneri , Shigella flexneri/efeitos dos fármacos , Shigella flexneri/genética , Reposicionamento de Medicamentos/métodos , Genômica/métodos , Antibacterianos/farmacologia , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/microbiologia , Humanos , Genoma Bacteriano , Simulação por Computador , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834194

RESUMO

Vinculin is a cytoskeletal linker strengthening cell adhesion. The Shigella IpaA invasion effector binds to vinculin to promote vinculin supra-activation associated with head-domain-mediated oligomerization. Our study investigates the impact of mutations of vinculin D1D2 subdomains' residues predicted to interact with IpaA VBS3. These mutations affected the rate of D1D2 trimer formation with distinct effects on monomer disappearance, consistent with structural modeling of a closed and open D1D2 conformer induced by IpaA. Notably, mutations targeting the closed D1D2 conformer significantly reduced Shigella invasion of host cells as opposed to mutations targeting the open D1D2 conformer and later stages of vinculin head-domain oligomerization. In contrast, all mutations affected the formation of focal adhesions (FAs), supporting the involvement of vinculin supra-activation in this process. Our findings suggest that IpaA-induced vinculin supra-activation primarily reinforces matrix adhesion in infected cells, rather than promoting bacterial invasion. Consistently, shear stress studies pointed to a key role for IpaA-induced vinculin supra-activation in accelerating and strengthening cell-matrix adhesion.


Assuntos
Adesão Celular , Adesões Focais , Vinculina , Vinculina/metabolismo , Vinculina/genética , Humanos , Adesões Focais/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mutação , Interações Hospedeiro-Patógeno , Células HeLa , Ligação Proteica , Shigella/metabolismo , Shigella/genética , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/genética , Disenteria Bacilar/microbiologia , Disenteria Bacilar/metabolismo
4.
BMC Pediatr ; 24(1): 311, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711011

RESUMO

BACKGROUND: Diarrhea caused by Salmonella and Shigella species are the leading cause of illness especially in developing countries. These infections are considered as the main public health problems in children, including Ethiopia. This study aimed to assess the prevalence, associated factors, and antimicrobial susceptibility patterns of Salmonella and Shigella species in Sheik Hassan Yabere Referral Hospital Jigjiga, Eastern Ethiopia from August 05 to November 15, 2022. METHOD: A cross-sectional study was conducted among 239 under-five children with diarrhea selected through a convenient sampling technique. A structured questionnaire was used to collect associated factors. A stool sample was collected and processed for the identification of Salmonella and Shigella species using MacConkey adar, Xylose Lysine Deoxycholate agar (Oxoid Ltd) and Biochemical tests. The antimicrobial susceptibility pattern of isolates was performed using the Kirby-Bauer disc diffusion technique. The data was entered into Epi-data version 4.6 and exported to the statistical package of social science version 22 for analysis. The association between outcome and independent variables was assessed using bivariate, multivariable, and chi-square and P-value < 0.05 was considered as statistical significance. RESULT: Overall prevalence of Salmonella and Shigella species was 6.3% (95% CI, 5.7-6.9%), of which 3.8% (95 CI, 3.2-4.4%) were Salmonella species and 2.5% (95% CI, 1.95-3%) were Shigella species. Unimproved water source (AOR = 5.08, 95% CI = 1.45, 17.25), open field (AOR = 2.3, 95% CI = 1.3, 5.03), rural residence (AOR = 1.8, 95% CI = 1.4, 7.5), Hand-washing practice (p = 0.001), and raw meat consumption (p = 0.002) were associated with occurrence of Salmonella and Shigella species. Salmonella and Shigella isolates were resistant to Ampicilin (100%). However, Salmonella isolates was sensitive to Norfloxacin (100%). About 22.2% and 16.7% of Salmonella and Shigella isolates were multi-drug resistant, respectively. CONCLUSION: Prevalence of Salmonella and Shigella species were lower than most studies done in Ethiopia. Hand-washing habit, water source type, Open field waste disposal habit, raw meat consumption and rural residence were associated with Salmonellosis and shigellosis. All isolated Salmonella were sensitive to norfloxacin. The evidence from this study underscores the need for improved water, sanitation and hygiene (WASH) system and the imperative to implement drug susceptibility tests for the treatment of Salmonella and Shigella infection.


Assuntos
Diarreia , Disenteria Bacilar , Testes de Sensibilidade Microbiana , Salmonella , Shigella , Humanos , Etiópia/epidemiologia , Estudos Transversais , Pré-Escolar , Feminino , Salmonella/isolamento & purificação , Salmonella/efeitos dos fármacos , Masculino , Prevalência , Shigella/efeitos dos fármacos , Shigella/isolamento & purificação , Lactente , Diarreia/microbiologia , Diarreia/epidemiologia , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Disenteria Bacilar/tratamento farmacológico , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fatores de Risco , Fezes/microbiologia , Farmacorresistência Bacteriana
6.
J Infect Public Health ; 17(6): 1065-1078, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705059

RESUMO

We meta-analyzed the diagnostic accuracy of rapid diagnostic tests (dipsticks) and loop-mediated isothermal amplification (LAMP) method to detect Shigella species. We searched MEDLINE, Embase, Web of Science and Google Scholar from inception to 2023 for studies reporting on the performance of Shigella dipstick and LAMP tests compared with culture or polymerase chain reaction (PCR). Our search identified 2618 studies, of which fourteen met the inclusion criteria for the systematic review. Ten studies covering 4056 tests (from twelve countries) were included in the meta-analysis. The overall pooled sensitivity and specificity were 98% (95% CI: 94-100) and 97% (95% CI: 92-99), respectively. Pooled sensitivity and specificity of dipsticks were 95% and 98%, respectively. In contrast, LAMP showed higher pooled sensitivity (100%) and diagnostic odds ratio (431752), but similar specificity (97%). LAMP and dipstick tests exhibited promising performance, suggesting that they could be useful for assisting in the diagnosis of shigellosis.


Assuntos
Disenteria Bacilar , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Shigella , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Shigella/isolamento & purificação , Shigella/genética , Disenteria Bacilar/diagnóstico , Disenteria Bacilar/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Testes Diagnósticos de Rotina/métodos , Testes de Diagnóstico Rápido
7.
PLoS One ; 19(5): e0303048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753867

RESUMO

Shigella dysenteriae, is a Gram-negative bacterium that emerged as the second most significant cause of bacillary dysentery. Antibiotic treatment is vital in lowering Shigella infection rates, yet the growing global resistance to broad-spectrum antibiotics poses a significant challenge. The persistent multidrug resistance of S. dysenteriae complicates its management and control. Hence, there is an urgent requirement to discover novel therapeutic targets and potent medications to prevent and treat this disease. Therefore, the integration of bioinformatics methods such as subtractive and comparative analysis provides a pathway to compute the pan-genome of S. dysenteriae. In our study, we analysed a dataset comprising 27 whole genomes. The S. dysenteriae strain SD197 was used as the reference for determining the core genome. Initially, our focus was directed towards the identification of the proteome of the core genome. Moreover, several filters were applied to the core genome, including assessments for non-host homology, protein essentiality, and virulence, in order to prioritize potential drug targets. Among these targets were Integration host factor subunit alpha and Tyrosine recombinase XerC. Furthermore, four drug-like compounds showing potential inhibitory effects against both target proteins were identified. Subsequently, molecular docking analysis was conducted involving these targets and the compounds. This initial study provides the list of novel targets against S. dysenteriae. Conclusively, future in vitro investigations could validate our in-silico findings and uncover potential therapeutic drugs for combating bacillary dysentery infection.


Assuntos
Antibacterianos , Simulação por Computador , Disenteria Bacilar , Simulação de Acoplamento Molecular , Shigella dysenteriae , Shigella dysenteriae/efeitos dos fármacos , Shigella dysenteriae/genética , Shigella dysenteriae/patogenicidade , Humanos , Antibacterianos/farmacologia , Disenteria Bacilar/microbiologia , Disenteria Bacilar/tratamento farmacológico , Genoma Bacteriano , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos
8.
Nat Commun ; 15(1): 3890, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719850

RESUMO

Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.


Assuntos
Proteínas de Bactérias , Septinas , Shigella flexneri , Transdução de Sinais , Ubiquitina , Ubiquitinação , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Septinas/metabolismo , Septinas/genética , Humanos , Ubiquitina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosforilação , Interações Hospedeiro-Patógeno , Células HeLa , Proteínas Culina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Disenteria Bacilar/microbiologia , Disenteria Bacilar/metabolismo
9.
Front Immunol ; 15: 1374293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680489

RESUMO

Introduction: Shigella is the etiologic agent of a bacillary dysentery known as shigellosis, which causes millions of infections and thousands of deaths worldwide each year due to Shigella's unique lifestyle within intestinal epithelial cells. Cell adhesion/invasion assays have been extensively used not only to identify targets mediating host-pathogen interaction, but also to evaluate the ability of Shigella-specific antibodies to reduce virulence. However, these assays are time-consuming and labor-intensive and fail to assess differences at the single-cell level. Objectives and methods: Here, we developed a simple, fast and high-content method named visual Adhesion/Invasion Inhibition Assay (vAIA) to measure the ability of anti-Shigellaantibodies to inhibit bacterial adhesion to and invasion of epithelial cells by using the confocal microscope Opera Phenix. Results: We showed that vAIA performed well with a pooled human serum from subjects challenged with S. sonnei and that a specific anti-IpaD monoclonal antibody effectively reduced bacterial virulence in a dose-dependent manner. Discussion: vAIA can therefore inform on the functionality of polyclonal and monoclonal responses thereby supporting the discovery of pathogenicity mechanisms and the development of candidate vaccines and immunotherapies. Lastly, this assay is very versatile and may be easily applied to other Shigella species or serotypes and to different pathogens.


Assuntos
Anticorpos Antibacterianos , Aderência Bacteriana , Disenteria Bacilar , Humanos , Aderência Bacteriana/imunologia , Disenteria Bacilar/imunologia , Disenteria Bacilar/microbiologia , Disenteria Bacilar/diagnóstico , Anticorpos Antibacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Shigella/imunologia , Shigella/patogenicidade , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Shigella sonnei/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Células HeLa
10.
Biomed Res Int ; 2024: 5554208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595330

RESUMO

Shigella stands as a major contributor to bacterial dysentery worldwide scale, particularly in developing countries with inadequate sanitation and hygiene. The emergence of multidrug-resistant strains exacerbates the challenge of treating Shigella infections, particularly in regions where access to healthcare and alternative antibiotics is limited. Therefore, investigations on how bacteria evade antibiotics and eventually develop resistance could open new avenues for research to develop novel therapeutics. The aim of this study was to analyze whole genome sequence (WGS) of human pathogenic Shigella spp. to elucidate the antibiotic resistance genes (ARGs) and their mechanism of resistance, gene-drug interactions, protein-protein interactions, and functional pathways to screen potential therapeutic candidate(s). We comprehensively analyzed 45 WGS of Shigella, including S. flexneri (n = 17), S. dysenteriae (n = 14), S. boydii (n = 11), and S. sonnei (n = 13), through different bioinformatics tools. Evolutionary phylogenetic analysis showed three distinct clades among the circulating strains of Shigella worldwide, with less genomic diversity. In this study, 2,146 ARGs were predicted in 45 genomes (average 47.69 ARGs/genome), of which only 91 ARGs were found to be shared across the genomes. Majority of these ARGs conferred their resistance through antibiotic efflux pump (51.0%) followed by antibiotic target alteration (23%) and antibiotic target replacement (18%). We identified 13 hub proteins, of which four proteins (e.g., tolC, acrR, mdtA, and gyrA) were detected as potential hub proteins to be associated with antibiotic efflux pump and target alteration mechanisms. These hub proteins were significantly (p < 0.05) enriched in biological process, molecular function, and cellular components. Therefore, the finding of this study suggests that human pathogenic Shigella strains harbored a wide range of ARGs that confer resistance through antibiotic efflux pumps and antibiotic target modification mechanisms, which must be taken into account to devise and formulate treatment strategy against this pathogen. Moreover, the identified hub proteins could be exploited to design and develop novel therapeutics against MDR pathogens like Shigella.


Assuntos
Disenteria Bacilar , Shigella , Humanos , Filogenia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Shigella/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/genética , Disenteria Bacilar/microbiologia , Shigella flexneri
12.
Foodborne Pathog Dis ; 21(6): 378-385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38557159

RESUMO

The urgent need for comprehensive and systematic analyses of Shigella as the key pathogen led us to meticulously explore the epidemiology and molecular attributes of Shigella isolates. Accordingly, we procured 24 isolates (10 from Xinjiang and 14 from Wuhan, China) and performed serotype identification and antimicrobial susceptibility testing. Resistance gene detection and homology analysis by polymerase chain reaction and pulsed-field gel electrophoresis (PFGE), respectively, were performed for genetic diversity analysis. All isolates were identified as Shigella flexneri, with 70% (35.4-91.9%) and 30% (8.1-64.6%) of the Xinjiang isolates and 85.7% (56.2-97.5%) and 14.3% (2/14, 2.5-43.9%) of the Wuhan isolates belonging to serotype 2a and serotype 2b, respectively. All isolates displayed resistance to at least two antibiotics and complete resistance to ampicillin. Multidrug resistance (MDR) was recorded in 70.8% (48.8-86.6%) of isolates, with Xinjiang isolates exhibiting relatively higher resistance to ampicillin-sulbactam, piperacillin, ceftriaxone, and aztreonam. Conversely, Wuhan isolates displayed higher MDR and resistance to tetracycline, ciprofloxacin, levofloxacin, and cefepime relative to Xinjiang isolates. Molecular scrutiny of antibiotic-resistance determinants revealed that blaTEM was the main mechanism of ampicillin resistance, blaCTX-M was the main gene for resistance to third- and fourth-generation cephalosporins, and tetB was the predominant gene associated with tetracycline resistance. Four Xinjiang and seven Wuhan isolates shared T1-clone types (>85%), and two Xinjiang and one Wuhan isolates were derived from the T6 clone with a high similarity of 87%. Six PFGE patterns (T1, T2, T5, T6-3, T8, and T10) of S. flexneri were associated with MDR. Thus, there is a critical need for robust surveillance and control strategies in managing Shigella infections, along with the development of targeted interventions and antimicrobial stewardship programs tailored to the distinct characteristics of Shigella isolates in different regions of China.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Disenteria Bacilar , Eletroforese em Gel de Campo Pulsado , Variação Genética , Testes de Sensibilidade Microbiana , Shigella flexneri , China/epidemiologia , Antibacterianos/farmacologia , Humanos , Disenteria Bacilar/microbiologia , Disenteria Bacilar/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Shigella flexneri/efeitos dos fármacos , Shigella flexneri/genética , Shigella flexneri/isolamento & purificação , Shigella flexneri/classificação , Shigella/genética , Shigella/efeitos dos fármacos , Shigella/isolamento & purificação , Shigella/classificação , Sorogrupo , Reação em Cadeia da Polimerase
13.
Recent Adv Antiinfect Drug Discov ; 19(3): 182-196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317464

RESUMO

Antimicrobial agents are essential in reducing illness and mortality brought on by infectious diseases in both humans and animals. However, the therapeutic effect of antibiotics has diminished due to an increase in antimicrobial drug resistance (AMR). This article provides a retrospective analysis of AMR in Shigella infections in India, showing a rise in resistance that has contributed to a global burden. Shigella spp. are widespread and the second-leading cause of diarrheal death in people of all ages. The frequency and mortality rates of Shigella infections are decreased by antibiotic treatment. However, the growth of broad-spectrum antibiotic resistance is making it more difficult to treat many illnesses. Reduced cell permeability, efflux pumps, and the presence of enzymes that break down antibiotics are the causes of resistance. AMR is a multifaceted and cross-sectoral problem that affects humans, animals, food, and the environment. As a result, there is a growing need for new therapeutic approaches, and ongoing surveillance of Shigella spp. infections which should definitely be improved for disease prevention and management. This review emphasizes on the epidemiological data of India, and antimicrobial resistance in Shigella spp.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Disenteria Bacilar , Shigella , Humanos , Índia/epidemiologia , Shigella/efeitos dos fármacos , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/efeitos dos fármacos , Animais
14.
Foodborne Pathog Dis ; 21(6): 353-359, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38265447

RESUMO

Shigellosis is spread through the fecal-oral route, including sexual activity. The Centers for Disease Control and Prevention recommends collecting a sexual history from people diagnosed with shigellosis to enhance the understanding of its epidemiology and outbreak detection and the design of disease prevention messaging, although individual jurisdictions decide if and how this is done. Moreover, enteric disease interviewers typically receive in-depth general interviewing training, but often not sexual history question training. The goal of this project was to inform national practices around sexual history questions asked during shigellosis interviews by collecting information from U.S. state health agencies and evaluating sexual history data from people diagnosed with shigellosis in Colorado. From November 2021 to January 2022, information on sexual history questions asked of persons with reported shigellosis and accompanying training resources were collected from U.S. state health departments. Data completeness and quality of shigellosis sexual history questions from Colorado's notifiable disease database from 2018 to 2022 were also evaluated. Of 48 states, 54% reported routinely asking all adults about their sexual history during shigellosis interviews. Of 44 states, 18% indicated having accompanying training materials for interviewers. In Colorado, the proportion of unknown/missing responses to questions about recent sexual contact with male and female partners was lower for males (3.3% unknown and 3.3% missing) than females (5.4% and 6.2%) and highest among those 66 years and older (6.7% and 10%). Among those reporting new sexual partners, 93.5% indicated how they met. The evaluation of Colorado data demonstrates that routine collection of complete, high-quality, actionable sexual history data from all adults with reported shigellosis is feasible. Nearly half of the responding states indicated not doing so, and few had training resources. We recommend training enteric disease interviewers to routinely ask all adults with reported shigellosis about their sexual history, including new partner meeting location.


Assuntos
Disenteria Bacilar , Humanos , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Feminino , Masculino , Adulto , Colorado/epidemiologia , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Comportamento Sexual , Confiabilidade dos Dados , Adulto Jovem , Idoso , Adolescente , Surtos de Doenças , Centers for Disease Control and Prevention, U.S.
15.
J Antimicrob Chemother ; 79(1): 55-60, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37965757

RESUMO

OBJECTIVES: To utilize long-read nanopore sequencing (R10.4.1 flowcells) for WGS of a cluster of MDR Shigella sonnei, specifically characterizing genetic predictors of antimicrobial resistance (AMR). METHODS: WGS was performed on S. sonnei isolates identified from stool and blood between September 2021 and October 2022. Bacterial DNA from clinical isolates was extracted on the MagNA Pure 24 and sequenced on the GridION utilizing R10.4.1 flowcells. Phenotypic antimicrobial susceptibility testing was interpreted based on CLSI breakpoints. Sequencing data were processed with BugSeq, and AMR was assessed with BugSplit and ResFinder. RESULTS: Fifty-six isolates were sequenced, including 53 related to the cluster of cases. All cluster isolates were identified as S. sonnei by sequencing, with global genotype 3.6.1.1.2 (CipR.MSM5), MLST 152 and PopPUNK cluster 3. Core genome MLST (cgMLST, examining 2513 loci) and reference-based MLST (refMLST, examining 4091 loci) both confirmed the clonality of the isolates. Cluster isolates were resistant to ampicillin (blaTEM-1), trimethoprim/sulfamethoxazole (dfA1, dfrA17; sul1, sul2), azithromycin (ermB, mphA) and ciprofloxacin (gyrA S83L, gyrA D87G, parC S80I). No genomic predictors of resistance to carbapenems were identified. CONCLUSIONS: WGS with R10.4.1 enabled rapid sequencing and identification of an MDR S. sonnei community cluster. Genetic predictors of AMR were concordant with phenotypic antimicrobial susceptibility testing.


Assuntos
Disenteria Bacilar , Sequenciamento por Nanoporos , Nanoporos , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Shigella sonnei/genética , Tipagem de Sequências Multilocus , Testes de Sensibilidade Microbiana , Disenteria Bacilar/microbiologia , Farmacorresistência Bacteriana/genética
16.
Infect Disord Drug Targets ; 24(1): e110823219657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37723953

RESUMO

Shigella infection is commonly related to diarrhea and has been a noteworthy source of morbidity and mortality worldwide. There is a wide range of symptoms associated with these contagious microorganisms, from watery diarrhea to fulminant dysentery manifesting with recurrent bloody stools, fever, and prostration. While the mortality rate from Shigellosis has decreased significantly during the past three decades, it remains a principal cause of death in the world. The use of antibiotics in Shigella treatment remarkably lowers the mortality rates and even the prevalence of the infection. However, strains are becoming increasingly resistant, while antibiotics are becoming increasingly ineffective. Shigella species, which were previously susceptible to common antibiotics such as nalidixic acid, co-trimoxazole, chloramphenicol, and ampicillin, have become resistant to cephalosporins, fluoroquinolones and macrolides like azithromycin. These strains have caused many Shigellosis outbreaks. Men who have had sex with men (MSM) and travelers have contributed to the spreading of multiresistant Shigella strains across continents, which has prompted new antibiotic recommendations. People should be informed about the threat of antimicrobial-resistant bacteria, so a periodic report of antibiotic susceptibility after analysis is essential for antibiotic treatment guidance. The present study provides a brief overview of the pathogenicity of Shigella spp., and the antibiotic resistance patterns of two common Shigella species during the last seven years in Iran were evaluated.


Assuntos
Disenteria Bacilar , Minorias Sexuais e de Gênero , Shigella , Humanos , Masculino , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Homossexualidade Masculina , Irã (Geográfico)/epidemiologia , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Diarreia/microbiologia , Testes de Sensibilidade Microbiana
17.
Int J Antimicrob Agents ; 63(2): 107070, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141834

RESUMO

Bacillary dysentery caused by Shigella spp. is a significant concern for human health. Small non-coding RNA (sRNA) plays a crucial role in regulating antibiotic resistance and virulence in Shigella spp. However, the specific mechanisms behind this phenomenon are still not fully understood. This study discovered two sRNAs (sRNA1039 and sRNA1600) that may be involved in bacterial resistance and virulence. By constructing deletion mutants (WT/ΔSR1039 and WT/ΔSR1600), this study found that the WT/ΔSR1039 mutants caused a two-fold increase in sensitivity to ampicillin, gentamicin and cefuroxime, and the WT/ΔSR1600 mutants caused a two-fold increase in sensitivity to cefuroxime. Furthermore, the WT/ΔSR1600 mutants caused a decrease in the adhesion and invasion of bacteria to HeLa cells (P<0.01), and changed the oxidative stress level of bacteria to reduce their survival rate (P<0.001). Subsequently, this study explored the molecular mechanisms by which sRNA1039 and sRNA1600 regulate antibiotic resistance and virulence. The deletion of sRNA1039 accelerated the degradation of target gene cfa mRNA and reduced its expression, thereby regulating the expression of pore protein gene ompD indirectly and negatively to increase bacterial sensitivity to ampicillin, gentamicin and cefuroxime. The inactivation of sRNA1600 reduced the formation of persister cells to reduce resistance to cefuroxime, and reduced the expression of type-III-secretion-system-related genes to reduce bacterial virulence by reducing the expression of target gene tomB. These results provide new insights into Hfq-sRNA-mRNA regulation of the resistance and virulence network of Shigella sonnei, which could potentially promote the development of more effective treatment strategies.


Assuntos
Disenteria Bacilar , Pequeno RNA não Traduzido , Shigella , Humanos , Shigella sonnei/genética , Virulência/genética , Células HeLa , Cefuroxima/metabolismo , Shigella flexneri/genética , Disenteria Bacilar/microbiologia , Ampicilina/farmacologia , Ampicilina/metabolismo , Resistência Microbiana a Medicamentos , Gentamicinas , RNA Mensageiro , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
18.
Biomed Eng Online ; 22(1): 119, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071319

RESUMO

BACKGROUND: Shigella flexneri (S. flexneri) is a common intestinal pathogenic bacteria that mainly causes bacillary dysentery, especially in low socioeconomic countries. This study aimed to apply cold atmospheric plasma (CAP) on S. flexneri directly to achieve rapid, efficient and environmentally friendly sterilization. METHODS: The operating parameters of the equipment were determined by plasma diagnostics. The plate count and transmission electron microscope were employed to calculate bacterial mortality rates and observe the morphological damage of bacterial cells. Measurement of intracellular reactive oxygen species (ROS) and superoxide anions were detected by 2,7-dichlorodihydrofluorescein (DCFH) and Dihydroethidium fluorescence probes, respectively. The fluorescence intensity (a. u.) reflects the relative contents. Additionally, the experiment about the single effect of temperature, ultraviolet (UV), and ROS on bacteria was conducted. RESULTS: The peak discharge voltage and current during plasma operation were 3.92kV and 66mA. After discharge, the bacterial mortality rate of 10, 20, 30 and 40 s of plasma treatment was 60.71%, 74.02%, 88.11% and 98.76%, respectively. It was shown that the intracellular ROS content was proportional to the plasma treatment time and ROS was the major contributor to bacterial death. CONCLUSION: In summary, our results illustrated that the plasma treatment could inactivate S. flexneri efficiently, and the ROS produced by plasma is the leading cause of bacterial mortality. This highly efficient sterilization method renders plasma a highly promising solution for hospitals, clinics, and daily life.


Assuntos
Disenteria Bacilar , Shigella flexneri , Humanos , Temperatura , Espécies Reativas de Oxigênio , Disenteria Bacilar/microbiologia , Temperatura Baixa
19.
PLoS Negl Trop Dis ; 17(11): e0011771, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976308

RESUMO

BACKGROUND: Bacillary dysentery (BD) has brought a significant public health concern in China. Temperature is one of the main factors affecting BD incidence. Due to the largely different temperature ranges between regions, the classic multi-region time series studies could only explore the relative temperature-BD association and showed that BD incidence is positively associated with relative temperature (i.e., temperature percentile), which does not conform to the laboratory knowledge that both high and low temperature interfere with the survival of bacteria. The association on relative temperature scale also limits the intuition of epidemiological meanings. METHODS: A novel two-stage strategy was proposed to investigate the association between monthly temperature and BD incidence on the original temperature scale in 31 provinces, China. In the first stage, truncated polynomial splines, as the substitute of the common natural splines or B-splines in generalized additive models, were used to characterize the temperature-BD association on the original temperature scale in each province. In the second stage, a multivariate meta-analysis compatible with missing values was used to pool the associations. The classic strategy based on relative temperature was used as a reference. RESULTS: The average temperature-BD association presented a U-inverted shape, but not a monotonically increasing shape obtained using the classic strategy. This inverted U-shaped association conforms more to the laboratory knowledge and the original-scale association also provided an intuitive perspective and an easily explanatory result. Another advantage is that the novel strategy can extrapolate the province-specific association outside the observed temperature ranges by utilizing information from other provinces, which is meaningful considering the frequent incidences of extreme temperatures. CONCLUSIONS: The association between temperature and BD incidence presented a U-inverted shape. The proposed strategy can efficiently characterize the association between exposure and outcome on original scale in a multi-region study with largely different exposure ranges.


Assuntos
Disenteria Bacilar , Humanos , Temperatura , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Incidência , Temperatura Alta , Análise Multivariada , China/epidemiologia
20.
PLoS One ; 18(11): e0289773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992050

RESUMO

Shigella sonnei is a gram-negative bacterium and is the primary cause of shigellosis in advanced countries. An exceptional rise in the prevalence of the disease has been reported in Asia, the Middle East, and Latin America. To date, no preventive vaccine is available against S. sonnei infections. This pathogen has shown resistances towards both first- and second-line antibiotics. Therefore, an effective broad spectrum vaccine development against shigellosis is indispensable. In the present study, vaccinomics-aided immunoinformatics strategies were pursued to identify potential vaccine candidates from the S. sonnei whole proteome data. Pathogen essential proteins that are non-homologous to human and human gut microbiome proteome set, are feasible candidates for this purpose. Three antigenic outer membrane proteins were prioritized to predict lead epitopes based on reverse vaccinology approach. Multi-epitope-based chimeric vaccines was designed using lead B- and T-cell epitopes combined with suitable linker and adjuvant peptide sequences to enhance immune responses against the designed vaccine. The SS-MEVC construct was prioritized based on multiple physicochemical, immunological properties, and immune-receptors docking scores. Immune simulation analysis predicted strong immunogenic response capability of the designed vaccine construct. The Molecular dynamic simulations analysis ensured stable molecular interactions of lead vaccine construct with the host receptors. In silico restriction and cloning analysis predicted feasible cloning capability of the SS-MEVC construct within the E. coli expression system. The proposed vaccine construct is predicted to be more safe, effective and capable of inducing robust immune responses against S. sonnei infections and may be worthy of examination via in vitro/in vivo assays.


Assuntos
Disenteria Bacilar , Shigella sonnei , Humanos , Shigella sonnei/genética , Disenteria Bacilar/prevenção & controle , Disenteria Bacilar/microbiologia , Proteoma/metabolismo , Escherichia coli/metabolismo , Quimioinformática , Simulação de Acoplamento Molecular , Vacinas Bacterianas , Vacinas de Subunidades Antigênicas , Epitopos de Linfócito T , Simulação de Dinâmica Molecular , Biologia Computacional , Epitopos de Linfócito B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA