Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.487
Filtrar
1.
Sci Rep ; 14(1): 22796, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354056

RESUMO

Excessive caloric intake and obesity due to high-fat (HFD) and high-disaccharide (HDD) diets have been recognized as major contributing factors to dyslipidemia and metabolic dysfunction-associated steatotic liver disease (MASLD). However, the effect of HFD and HDD without excessive caloric intake is obscure. The aim of the study was to evaluate the effect of physiological caloric intake delivered through HFD and HDD on liver and lipid profiles. The study was performed on 6-week-old male and female (50/50%) Sprague Dawley rats, receiving either a standard (controls, n = 16), HFD (n = 14) or HDD (n = 14) chow. All groups received the same, standard daily calorie rations, titrated weekly to the age of growing rats, for 12 weeks. A panel of metabolic in vivo measurement were performed, followed by histological, biochemical and molecular biology assays on tissues harvested from sacrificed rats. There was no significant difference between the groups in body weight. In contrast to controls, HFD and HDD groups showed metabolic dysfunction-associated steatohepatitis (MASH) characterized by liver steatosis, inflammation, ballooning of hepatocytes and fibrosis. These changes were more pronounced in the HFD than in the HDD group. The HFD group showed significantly higher serum LDL than controls or HDD rats. Furthermore, the HFD group had higher liver protein levels of low-density lipoprotein receptor (LDLR) but lower plasma levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) than the controls or HDD group. There were no differences between sexes in evaluated parameters. The excessive caloric intake and obesity are not prerequisites for the development of MASH and dyslipidemia in rats. The liver changes induced by the HFD and HDD diets exhibit differences in severity, as well as in the expression patterns of LDLR and PCSK9. Notably, these effects are independent of the sex of the rats.


Assuntos
Dieta Hiperlipídica , Dislipidemias , Ingestão de Energia , Obesidade , Ratos Sprague-Dawley , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Dislipidemias/etiologia , Dislipidemias/metabolismo , Feminino , Ratos , Obesidade/metabolismo , Obesidade/etiologia , Fígado/metabolismo , Fígado/patologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Pró-Proteína Convertase 9/metabolismo
2.
Clin Sci (Lond) ; 138(17): 1039-1054, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39136693

RESUMO

Maternal high-fat diet intake has profound effects on the long-term health of offspring, predisposing them to a higher susceptibility to obesity and metabolic dysfunction-associated steatotic liver disease. However, the detailed mechanisms underlying the role of a maternal high-fat diet in hepatic lipid accumulation in offspring, especially at the weaning age, remain largely unclear. In this study, female C57BL/6J mice were randomly assigned to either a high-fat diet or a control diet, and lipid metabolism parameters were assessed in male offspring at weaning. Gut microbiota analysis and targeted metabolomics of short-chain fatty acids (SCFAs) in these offspring were further performed. Both in vivo and in vitro studies were conducted to explore the role of butyrate in hepatic cholesterol excretion in the liver and HepG2 cells. Our results showed that maternal high-fat feeding led to obesity and dyslipidemia, and exacerbated hepatic lipid accumulation in the livers of offspring at weaning. We observed significant decreases in the abundance of the Firmicutes phylum and the Allobaculum genus, known as producers of SCFAs, particularly butyrate, in the offspring of dams fed a high-fat diet. Additionally, maternal high-fat diet feeding markedly decreased serum butyrate levels and down-regulated ATP-binding cassette transporters G5 (ABCG5) in the liver, accompanied by decreased phosphorylated AMP-activated protein kinase (AMPK) and histone deacetylase 5 (HADC5) expressions. Subsequent in vitro studies revealed that butyrate could induce ABCG5 activation and alleviate lipid accumulation via the AMPK-pHDAC5 pathway in HepG2 cells. Moreover, knockdown of HDAC5 up-regulated ABCG5 expression and promoted cholesterol excretion in HepG2 cells. In conclusion, our study provides novel insights into how maternal high-fat diet feeding inhibits hepatic cholesterol excretion and down-regulates ABCG5 through the butyrate-AMPK-pHDAC5 pathway in offspring at weaning.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Butiratos , Colesterol , Dieta Hiperlipídica , Microbioma Gastrointestinal , Fígado , Camundongos Endogâmicos C57BL , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Butiratos/metabolismo , Colesterol/metabolismo , Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/metabolismo , Dislipidemias/microbiologia , Dislipidemias/etiologia , Células Hep G2 , Metabolismo dos Lipídeos , Lipoproteínas , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Obesidade/metabolismo , Obesidade/microbiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo
3.
Endocrinol Metab Clin North Am ; 53(3): 483-495, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084821

RESUMO

Practicing endocrinologists are likely to confront 2 major issues that occur with dyslipidemias during pregnancy. The most dramatic is the development of severe hypertriglyceridemia leading to acute pancreatitis. The second is the approach to treatment of familial hypercholesterolemia, a common genetic disorder. This article reviews the normal physiology and the pathophysiology of lipoproteins that occurs with pregnancy and then discusses the approaches to prevention and/or treatment of dyslipidemia in pregnancy with a focus on lifestyle and acceptable drug therapies.


Assuntos
Complicações na Gravidez , Humanos , Gravidez , Feminino , Complicações na Gravidez/terapia , Dislipidemias/terapia , Dislipidemias/etiologia , Hipertrigliceridemia/terapia , Hipertrigliceridemia/complicações , Hiperlipoproteinemia Tipo II/terapia , Hiperlipoproteinemia Tipo II/tratamento farmacológico
4.
Allergy ; 79(10): 2680-2699, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38864116

RESUMO

BACKGROUND: Allergic diseases begin early in life and are often chronic, thus creating an inflammatory environment that may precede or exacerbate other pathologies. In this regard, allergy has been associated to metabolic disorders and with a higher risk of cardiovascular disease, but the underlying mechanisms remain incompletely understood. METHODS: We used a murine model of allergy and atherosclerosis, different diets and sensitization methods, and cell-depleting strategies to ascertain the contribution of acute and late phase inflammation to dyslipidemia. Untargeted lipidomic analyses were applied to define the lipid fingerprint of allergic inflammation at different phases of allergic pathology. Expression of genes related to lipid metabolism was assessed in liver and adipose tissue at different times post-allergen challenge. Also, changes in serum triglycerides (TGs) were evaluated in a group of 59 patients ≥14 days after the onset of an allergic reaction. RESULTS: We found that allergic inflammation induces a unique lipid signature that is characterized by increased serum TGs and changes in the expression of genes related to lipid metabolism in liver and adipose tissue. Alterations in blood TGs following an allergic reaction are independent of T-cell-driven late phase inflammation. On the contrary, the IgG-mediated alternative pathway of anaphylaxis is sufficient to induce a TG increase and a unique lipid profile. Lastly, we demonstrated an increase in serum TGs in 59 patients after undergoing an allergic reaction. CONCLUSION: Overall, this study reveals that IgG-mediated allergic inflammation regulates lipid metabolism.


Assuntos
Modelos Animais de Doenças , Dislipidemias , Hipersensibilidade , Imunoglobulina G , Inflamação , Metabolismo dos Lipídeos , Transdução de Sinais , Animais , Dislipidemias/metabolismo , Dislipidemias/imunologia , Dislipidemias/etiologia , Camundongos , Inflamação/imunologia , Inflamação/metabolismo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Hipersensibilidade/etiologia , Masculino , Feminino , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/imunologia , Fígado/metabolismo , Fígado/imunologia , Fígado/patologia
5.
Nutrients ; 16(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931216

RESUMO

Atherosclerosis is one of the most important causes of cardiovascular diseases. A disintegrin and metalloprotease (ADAM)10 and ADAM17 have been identified as important regulators of inflammation in recent years. Our study investigated the effect of inhibiting these enzymes with selective inhibitor and propolis on atherosclerosis. In our study, C57BL/6J mice (n = 16) were used in the control and sham groups. In contrast, ApoE-/- mice (n = 48) were used in the case, water extract of propolis (WEP), ethanolic extract of propolis (EEP), GW280264X (GW-synthetic inhibitor), and solvent (DMSO and ethanol) groups. The control group was fed a control diet, and all other groups were fed a high-cholesterol diet for 16 weeks. WEP (400 mg/kg/day), EEP (200 mg/kg/day), and GW (100 µg/kg/day) were administered intraperitoneally for the last four weeks. Animals were sacrificed, and blood, liver, aortic arch, and aortic root tissues were collected. In serum, total cholesterol (TC), triglycerides (TGs), and glucose (Glu) were measured by enzymatic colorimetric method, while interleukin-1ß (IL-1ß), paraoxonase-1 (PON-1), and lipoprotein-associated phospholipase-A2 (Lp-PLA2) were measured by ELISA. Tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), myeloperoxidase (MPO), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-12 (IL-12) levels were measured in aortic arch by ELISA and ADAM10/17 activities were measured fluorometrically. In addition, aortic root and liver tissues were examined histopathologically and immunohistochemically (ADAM10 and sortilin primary antibody). In the WEP, EEP, and GW groups compared to the case group, TC, TG, TNF-α, IL-1ß, IL-6, IL-12, PLA2, MPO, ADAM10/17 activities, plaque burden, lipid accumulation, ADAM10, and sortilin levels decreased, while IL-10 and PON-1 levels increased (p < 0.003). Our study results show that propolis can effectively reduce atherosclerosis-related inflammation and dyslipidemia through ADAM10/17 inhibition.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Dislipidemias , Inflamação , Camundongos Endogâmicos C57BL , Própole , Animais , Proteína ADAM10/metabolismo , Própole/farmacologia , Inflamação/prevenção & controle , Dislipidemias/tratamento farmacológico , Dislipidemias/etiologia , Camundongos , Masculino , Secretases da Proteína Precursora do Amiloide/metabolismo , Aterosclerose/prevenção & controle , Aterosclerose/etiologia , Colesterol na Dieta/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Proteínas de Membrana/metabolismo , Modelos Animais de Doenças
6.
BMC Pediatr ; 24(1): 320, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724982

RESUMO

BACKGROUND: Alcohol consumption by children and adolescents is receiving increasing attention. It may cause dyslipidemia, a risk factor for cardiovascular disease. However, the association between alcohol consumption and blood lipids in children and adolescents is unclear, and so we aimed to characterize this association. METHODS: Data from the China Health and Nutrition Survey were extracted from children and adolescents aged 7-18 years for whom information was available on alcohol consumption. The population was divided into drinking and nondrinking groups. The χ2, Student's t, or Mann-Whitney U test was used to compare groups. Univariate and multivariate linear regression and propensity score matching (PSM) analysis were used to identify the association between alcohol consumption and blood lipids. RESULTS: This study included 408 children and adolescents with 35 drinkers and 373 nondrinkers. The drinkers had significantly lower values of total cholesterol (TC) (3.8 mmol/L for nondrinkers versus 3.5 mmol/L for drinkers, p = 0.002) and high-density lipoprotein cholesterol (HDL-C) (1.3 mmol/L for nondrinkers versus 1.2 mmol/L for drinkers, p = 0.007), but not for low-density lipoprotein cholesterol (LDL-C) (2.1 mmol/L for nondrinkers versus 2.0 mmol/L for drinkers, p = 0.092) or triglyceride (TG) (0.9 mmol/L for nondrinkers versus 0.8 mmol/L for drinkers, p = 0.21). The univariate and multivariate analyses led to the same conclusions. After PSM there was still a significant negative association between alcohol consumption and TC or HDL-C. CONCLUSION: Alcohol consumption in children and adolescents exhibited significant negative associated with TC and HDL-C, but not with LDL-C or TG. These findings need to be confirmed in future prospective research, and the health effects of blood lipid changes caused by drinking in children and adolescents need to be clarified.


Assuntos
Consumo de Bebidas Alcoólicas , Inquéritos Nutricionais , Adolescente , Criança , Feminino , Humanos , Masculino , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , China/epidemiologia , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudos Transversais , Dislipidemias/sangue , Dislipidemias/epidemiologia , Dislipidemias/etiologia , População do Leste Asiático , Lipídeos/sangue , Fatores de Risco , Triglicerídeos/sangue
7.
Metabolism ; 156: 155919, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653373

RESUMO

Childhood obesity with its growing prevalence worldwide presents one of the most important health challenges nowadays. Multiple mechanisms are involved in the development of this condition, as well as in its associations with various cardiometabolic complications, such as insulin resistance, diabetes, metabolic dysfunction-associated steatotic liver disease and cardiovascular diseases. Recent findings suggest that childhood obesity and associated dyslipidemia at least partly originate from epigenetic modifications that take place in the earliest periods of life, namely prenatal and perinatal periods. Hence, alterations of maternal metabolism could be fundamentally responsible for fetal and neonatal metabolic programming and consequently, for metabolic health of offspring in later life. In this paper, we will review recent findings on the associations among intrauterine and early postnatal exposure to undesirable modulators of metabolism, development of childhood obesity and later cardiometabolic complications. Special attention will be given to maternal dyslipidemia as a driven force for undesirable epigenetic modulations in offspring. In addition, newly proposed lipid biomarkers of increased cardiometabolic risk in obese children and adolescents will be analyzed, with respect to their predictive potential and clinical applicability.


Assuntos
Dislipidemias , Obesidade Infantil , Humanos , Dislipidemias/metabolismo , Dislipidemias/etiologia , Obesidade Infantil/complicações , Obesidade Infantil/metabolismo , Gravidez , Feminino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/metabolismo , Epigênese Genética , Criança , Fatores de Risco Cardiometabólico , Fatores de Risco , Obesidade/complicações , Obesidade/metabolismo
8.
Am J Vet Res ; 85(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604223

RESUMO

OBJECTIVE: The goal of this study was to characterize changes induced by a high-fat diet in body composition, insulin levels and sensitivity, blood lipids, and other key biomarkers also associated with the metabolic dysfunction that occurs with natural aging. ANIMALS: 24 male Beagle dogs, 3 to 7 years of age, of mixed castration status. METHODS: Dogs were randomly assigned to continue twice daily feeding of the commercial adult maintenance diet (n = 12, including 2 intact) that they were previously fed or to a high-fat diet (12, including 2 intact) for 17 weeks between December 1, 2021, and April 28, 2022. Assessments included body composition (weight, body condition score, and adipose mass determined by deuterium enrichment), clinical chemistries, plasma fatty acid quantification, oral glucose tolerance test, and histology of subcutaneous and visceral adipose biopsy samples. RESULTS: The high-fat diet led to increased body weight, body condition score, fat mass and adipocyte size, hyperinsulinemia and peripheral insulin resistance, and elevations in serum lipids, including cholesterol, triglycerides, and several species of free fatty acids. Leptin levels increased in dogs fed a high-fat diet but not in control dogs. There were no significant changes in routine clinical chemistry values in either group. CLINICAL RELEVANCE: Feeding a high-fat diet for 17 weeks led to potentially deleterious changes in metabolism similar to those seen in natural aging in dogs, including hyperinsulinemia, insulin resistance, and dyslipidemia. A high-fat diet model may provide insights into the similar metabolic dysfunction that occurs during natural aging.


Assuntos
Envelhecimento , Dieta Hiperlipídica , Doenças do Cão , Dislipidemias , Hiperinsulinismo , Resistência à Insulina , Animais , Cães , Masculino , Dieta Hiperlipídica/veterinária , Dieta Hiperlipídica/efeitos adversos , Hiperinsulinismo/veterinária , Doenças do Cão/metabolismo , Doenças do Cão/etiologia , Doenças do Cão/sangue , Dislipidemias/etiologia , Dislipidemias/veterinária , Dislipidemias/metabolismo , Composição Corporal , Ração Animal/análise , Distribuição Aleatória
9.
Nutrients ; 16(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613062

RESUMO

The adverse influence of maternal obesity on offspring metabolic health throughout the life-course is a significant public health challenge with few effective interventions. We examined if black bean powder (BBP) supplementation to a high-calorie maternal pregnancy diet or a postnatal offspring diet could offer protection against the metabolic programming of metabolic disease risk in adult offspring. Female Sprague Dawley rats were randomly assigned to one of three diets (n = 10/group) for a 3-week pre-pregnancy period and throughout gestation and lactation: (i) a low-caloric control diet (CON); (ii) a high-caloric obesity-inducing diet (HC); or (iii) the HC diet with 20% black bean powder (HC-BBP). At weaning [postnatal day (PND) 21], one male pup from each dam was weaned onto the CON diet throughout the postnatal period until adulthood (PND120). In addition, a second male from the HC group only was weaned onto the CON diet supplemented with BBP (CON-BBP). Thus, based on the maternal diet exposure and offspring postnatal diet, four experimental adult offspring groups were compared: CON/CON, HC/CON, HC-BPP/CON, and HC/CON-BBP. On PND120, blood was collected for biochemical analysis (e.g., lipids, glycemic control endpoints, etc.), and livers were excised for lipid analysis (triglycerides [TG] and cholesterol) and the mRNA/protein expression of lipid-regulatory targets. Compared with the CON/CON group, adult offspring from the HC/CON group exhibited a higher (p < 0.05) body weight (BW) (682.88 ± 10.67 vs. 628.02 ± 16.61 g) and hepatic TG (29.55 ± 1.31 vs. 22.86 ± 1.85 mmol/g). Although maternal BBP supplementation (HC-BBP/CON) had little influence on metabolic outcomes, the consumption of BBP in the postnatal period (HC/CON-BBP) lowered hepatic TG and cholesterol compared with the other treatment groups. Reduced hepatic TG in the HC/CON-BBP was likely associated with lower postnatal BW gain (vs. HC/CON), lower mRNA and protein expression of hepatic Fasn (vs. HC/CON), and lower serum leptin concentration (vs. CON/CON and HC groups). Our results suggest that the postnatal consumption of a black-bean-powder-supplemented diet may protect male rat offspring against the programming of obesity and dyslipidemia associated with maternal obesity. Future work should investigate the bioactive fraction of BBP responsible for the observed effect.


Assuntos
Dislipidemias , Obesidade Materna , Humanos , Gravidez , Adulto , Feminino , Masculino , Ratos , Animais , Pós , Filhos Adultos , Ratos Sprague-Dawley , Obesidade/etiologia , Obesidade/prevenção & controle , Dislipidemias/etiologia , Dislipidemias/prevenção & controle , Colesterol , RNA Mensageiro , Lipídeos
10.
Food Funct ; 15(5): 2679-2692, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38375746

RESUMO

High-fat diet (HFD)-induced dyslipidemia is frequently accompanied by gut microbiota dysbiosis and a compromised gut barrier. Enhancing the intestinal barrier function emerges as a potential therapeutic approach for dyslipidemia. The ILC3-IL22-IL22R pathway, which responds to dietary and microbial signals, has not only attracted attention for its crucial role in maintaining the intestinal barrier, but recent reports have also suggested its potential in regulating lipid metabolism. Limonin is derived from the Chinese herb Evodiae fructus, which has shown potential in ameliorating dysbiosis of serum lipids. However, its underlying mechanisms remain elusive. Consequently, targeting the ILC3-IL22-IL22R pathway to enhance intestinal barrier function holds promise as a therapeutic approach for dyslipidemia. In this study, male C57BL/6 mice were subjected to a 16-week HFD to induce dyslipidemia and concurrently administered oral limonin. We discovered that limonin supplementation dramatically reduced serum lipid profiles in HFD-fed mice, significantly curbing HFD-induced weight gain and epididymal fat accumulation. Ileal histopathological evaluation indicated limonin's ameliorative effects on HFD-induced intestinal barrier impairment. Limonin also moderated the intestinal microbiota dysbiosis, which is characterized by the elevation of Firmicutes in HFD mice, and notably amplified the abundance of probiotic Lactobacillus. In addition, supported by flow cytometry and other analyses, we observed that limonin upregulated the ILC3-IL22-IL22R pathway, enhancing phosphorylated STAT3 (pSTAT3) in intestinal epithelial cells (IECs), thereby reducing lipid transporter expression. In conclusion, our study revealed that limonin exerted a promising preventive effect against HFD-induced dyslipidemia by the mitigation of the intestinal barrier function and intestinal microbiota, and its mechanism was related to the upregulation of the ILC3-IL22-IL22R pathway.


Assuntos
Dislipidemias , Microbioma Gastrointestinal , Limoninas , Masculino , Animais , Camundongos , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Disbiose/tratamento farmacológico , Disbiose/metabolismo , Limoninas/farmacologia , Camundongos Endogâmicos C57BL , Lipídeos , Dislipidemias/tratamento farmacológico , Dislipidemias/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...