Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.868
Filtrar
1.
J Environ Sci (China) ; 149: 628-637, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181673

RESUMO

Phthalate esters (PAEs), recognized as endocrine disruptors, are released into the environment during usage, thereby exerting adverse ecological effects. This study investigates the occurrence, sources, and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins. The total concentration of PAEs in the Yellow River spans from 124.5 to 836.5 ng/L, with Dimethyl phthalate (DMP) (75.4 ± 102.7 ng/L) and Diisobutyl phthalate (DiBP) (263.4 ± 103.1 ng/L) emerging as the predominant types. Concentrations exhibit a pattern of upstream (512.9 ± 202.1 ng/L) > midstream (344.5 ± 135.3 ng/L) > downstream (177.8 ± 46.7 ng/L). In the Yangtze River, the total concentration ranges from 81.9 to 441.6 ng/L, with DMP (46.1 ± 23.4 ng/L), Diethyl phthalate (DEP) (93.3 ± 45.2 ng/L), and DiBP (174.2 ± 67.6 ng/L) as the primary components. Concentration levels follow a midstream (324.8 ± 107.3 ng/L) > upstream (200.8 ± 51.8 ng/L) > downstream (165.8 ± 71.6 ng/L) pattern. Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH, and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate (DNOP). Conversely, in other regions, the associated risk with PAEs is either low or negligible. The main source of PAEs in Yellow River is attributed to the release of construction land, while in the Yangtze River Basin, it stems from the accumulation of pollutants in lakes and forests discharged into the river. These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers, providing valuable insights for global PAEs research in other major rivers.


Assuntos
Monitoramento Ambiental , Ésteres , Ácidos Ftálicos , Rios , Poluentes Químicos da Água , Ácidos Ftálicos/análise , Rios/química , China , Poluentes Químicos da Água/análise , Medição de Risco , Ésteres/análise , Disruptores Endócrinos/análise , Dibutilftalato/análise , Dibutilftalato/análogos & derivados
2.
J Environ Sci (China) ; 146: 251-263, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969453

RESUMO

The continuous and rapid increase of chemical pollution in surface waters has become a pressing and widely recognized global concern. As emerging contaminants (ECs) in surface waters, pharmaceutical and personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) have attracted considerable attention due to their wide occurrence and potential threat to human health. Therefore, a comprehensive understanding of the occurrence and risks of ECs in Chinese surface waters is urgently required. This study summarizes and assesses the environmental occurrence concentrations and ecological risks of 42 pharmaceuticals, 15 personal care products (PCPs), and 20 EDCs frequently detected in Chinese surface waters. The ECs were primarily detected in China's densely populated and highly industrialized regions. Most detected PPCPs and EDCs had concentrations between ng/L to µg/L, whereas norfloxacin, caffeine, and erythromycin had relatively high contamination levels, even exceeding 2000 ng/L. Risk evaluation based on the risk quotient method revealed that 34 PPCPs and EDCs in Chinese surface waters did not pose a significant risk, whereas 4-nonylphenol, 4-tert-octylphenol, 17α-ethinyl estradiol, 17ß-estradiol, and triclocarban did. This review provides a comprehensive summary of the occurrence and associated hazards of typical PPCPs and EDCs in Chinese surface waters over the past decade, and will aid in the regulation and control of these ECs in Chinese surface waters.


Assuntos
Cosméticos , Disruptores Endócrinos , Monitoramento Ambiental , Poluentes Químicos da Água , China , Cosméticos/análise , Disruptores Endócrinos/análise , Preparações Farmacêuticas/análise , Medição de Risco , Poluentes Químicos da Água/análise
3.
Environ Geochem Health ; 46(9): 314, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002000

RESUMO

The levels of three phenolic endocrine-disrupting compounds (EDCs), NP, BPA and 4-t-OP were determined in water and sediment collected from sites along the Xiangjiang River, Zunyi, China. The NP, BPA and 4-t-OP concentrations ranged from 18.02 to 311.79 ng/L in the surface water, 16.04-408.12 ng/L in the submerged water, and 21.13-892.37 µg/kg dw in the sediment. NP contamination was most severe in both the river water and sediment. The ranges of the three phenolic EDCs were slightly greater in the submerged water than in the surface water (p > 0.05). The concentrations in the middle reaches were greater than those in the upstream and downstream reaches in both the water and sediment, and significant differences in content were detected in some reaches. The levels of three phenolic EDCs in the water and sediment had a positive correlation. In addition, the distribution coefficient (Kd) indicated that NP was more likely to adsorb to the sediment, and BPA and 4-t-OP were more likely to adsorb to river water. Moreover, the risk quotient (RQ) and hazard quotients (HQ) were used to reveal the environmental and health risks caused by coexposure to the three phenolic pollutants. The results showed that the current pollution is a threat to the environment of the study area and not a threat to the health of the local population.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Monitoramento Ambiental , Sedimentos Geológicos , Fenóis , Rios , Poluentes Químicos da Água , Disruptores Endócrinos/análise , Rios/química , Poluentes Químicos da Água/análise , China , Fenóis/análise , Medição de Risco , Sedimentos Geológicos/química , Compostos Benzidrílicos/análise
4.
Sci Total Environ ; 947: 174511, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972411

RESUMO

Materials in car cabins contain performance-enhancing semi-volatile organic compounds (SVOCs). As these SVOCs are not chemically bound to the materials, they can emit from the materials at slow rates to the surrounding, causing human exposure. This study aimed at increasing the understanding on abundance of SVOCs in car cabins by studying 18 potential endocrine disrupting chemicals in car cabin air (gas phase and airborne particles) and dust. We also studied how levels of these chemicals varied by temperature inside the car cabin along with ventilation settings, relevant to human exposure. A positive correlation was observed between temperature and SVOC concentration in both the gas and the particle phase, where average gas phase levels at 80 °C were a factor of 18-16,000 higher than average levels at 25 °C, while average particle phase levels were a factor of 4.6-40,000 higher for the studied substances. This study also showed that levels were below the limit of detection for several SVOCs during realistic driving conditions, i.e., with the ventilation activated. To limit human exposure to SVOCs in car cabins, it is recommended to ventilate a warm car before entering and have the ventilation on during driving, as both temperature and ventilation have a significant impact on SVOC levels.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Automóveis , Poeira , Disruptores Endócrinos , Monitoramento Ambiental , Temperatura , Ventilação , Compostos Orgânicos Voláteis , Disruptores Endócrinos/análise , Compostos Orgânicos Voláteis/análise , Poeira/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Humanos
5.
J Hazard Mater ; 476: 135067, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38964039

RESUMO

Endocrine-disrupting chemicals (EDCs) are persistent and pervasive compounds that pose serious risks. Numerous studies have explored the effects of EDCs on human health, among which tumors have been the primary focus. However, because of study design flaws, lack of effective exposure levels of EDCs, and inconsistent population data and findings, it is challenging to draw clear conclusions on the effect of these compounds on tumor-related outcomes. Our study is the first to systematically integrate observational studies and randomized controlled trials from over 20 years and summarize over 300 subgroup associations. We found that most EDCs promote tumor development, and that exposure to residential environmental pollutants may be a major source of pesticide exposure. Furthermore, we found that phytoestrogens exhibit antitumor effects. The findings of this study can aid in the development of global EDCs regulatory health policies and alleviate the severe risks associated with EDCs exposure.


Assuntos
Disruptores Endócrinos , Exposição Ambiental , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/análise , Humanos , Neoplasias/induzido quimicamente , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Carcinógenos/toxicidade , Carcinógenos/análise , Praguicidas/toxicidade
6.
Environ Sci Process Impacts ; 26(8): 1360-1372, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38957940

RESUMO

This study evaluated the pollution characteristics, spatiotemporal distribution, and ecological risks of eight endocrine-disrupting chemicals (EDCs) in the Minjiang and Tuojiang rivers. Utilizing 3S technology (ArcGIS, remote sensing, GPS) and Fragstats, the research calculated eight landscape pattern indices related to land use types along the Minjiang river and established correlations between landscape factors and EDC distribution through stepwise multiple regression. The results indicated that bisphenol A (BPA) and nonylphenol (NP) were the most concerning EDCs, with detection frequencies of 97-100% and peak concentrations up to 63.35 ng L-1, primarily located in the middle and lower reaches of the Minjiang river and the upper reaches of the Tuojiang river. There was a significant correlation between the spatial distribution of pollutants and landscape patterns, where increased fragmentation, a higher number of patches, and complex patch shapes within a 10-kilometer buffer zone were associated with elevated levels of river pollution. By integrating four classical mathematical models to fit curves for acute and chronic toxicity data of BPA and NP, the findings suggested that BPA posed a higher ecological risk. This interdisciplinary research provided essential theoretical insights for investigating river pollution and its influencing factors, offering a new perspective on simultaneous river pollution control, urban functional zoning, and adjustment of watershed landscape spatial patterns from an urban planning standpoint.


Assuntos
Disruptores Endócrinos , Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Disruptores Endócrinos/análise , Poluentes Químicos da Água/análise , Rios/química , Monitoramento Ambiental/métodos , China , Medição de Risco , Fenóis/análise , Compostos Benzidrílicos/análise
7.
Chemosphere ; 363: 142708, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971446

RESUMO

Bisphenol A (BPA), an endocrine-disrupting contaminant, is ubiquitous in the environment due to its presence in plastics, wastewater, and agricultural runoff. This study investigated the photodegradation behavior of BPA in coastal aquaculture waters near Qingdao, China. Lower salinity promoted BPA photodegradation, while higher salinity has an inhibitory effect, suggesting slower degradation in seawater compared to ultrapure water. Triplet-excited dissolved organic matter (3DOM*) was identified as the primary mediator of BPA degradation, with additional contributions from hydroxyl radicals (•OH), singlet oxygen (1O2), and halogen radicals (HRS). Alepocephalidae aquaculture water exhibited the fastest degradation rate, likely due to its high DOM and nitrate/nitrite (NO3-/NO2-) content, which are sources of 3DOM* and •OH. A positive correlation existed between NO3-/NO2- concentration and the BPA degradation rate. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) analysis identified the primary BPA photodegradation products, formed mainly through oxidative degradation, hydroxyl substitution, nitration, and chlorination pathways. Elucidating these photodegradation mechanisms provides valuable insights into the environmental fate and potential ecological risks of BPA in aquaculture environments. This knowledge can inform strategies for marine environmental protection and the development of sustainable practices.


Assuntos
Aquicultura , Compostos Benzidrílicos , Disruptores Endócrinos , Fenóis , Fotólise , Água do Mar , Poluentes Químicos da Água , Compostos Benzidrílicos/química , Fenóis/química , Fenóis/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Disruptores Endócrinos/química , Disruptores Endócrinos/análise , China , Água do Mar/química , Salinidade
8.
Food Chem ; 459: 140328, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38981386

RESUMO

In this study, we examined multiple endocrine-disrupting ultraviolet-absorbing compounds (UVACs) in marine invertebrates used in personal care products and packaging. Modified QuEChERS and liquid chromatography UniSpray ionization tandem mass spectrometry were used to identify 16 UVACs in marine invertebrates. Matrix-matched calibration curves revealed high linearity (r ≥ 0.9929), with limits of detection and quantification of 0.006-1.000 and 0.020-3.000 ng/g w.w., respectively. In oysters, intraday and interday analyses revealed acceptable accuracy (93%-120%) and precision (≤18%), except for benzophenone (BP) and ethylhexyl 4-(dimethylamino) benzoate. Analysis of 100 marine invertebrate samples revealed detection frequencies of 100%, 98%, 89%, 64%, and 100% for BP, 4-hydroxybenzophenone, 4-methylbenzophenone, 4-methylbenzylidene camphor, and benzophenone-3 (BP-3), respectively. BP and BP-3 were detected at concentrations of 4.40-27.39 and < 0.020-0.560 ng/g w.w., respectively, indicating their widespread presence. Overall, our proposed method successfully detected UVACs in marine invertebrates, raising concerns regarding their potential environmental and health effects.


Assuntos
Espectrometria de Massas em Tandem , Animais , Protetores Solares/química , Protetores Solares/análise , Disruptores Endócrinos/análise , Disruptores Endócrinos/química , Organismos Aquáticos/química , Organismos Aquáticos/efeitos da radiação , Benzofenonas/análise , Benzofenonas/química , Invertebrados/química , Contaminação de Alimentos/análise , Cromatografia Líquida de Alta Pressão , Raios Ultravioleta , Cromatografia Líquida
9.
Environ Int ; 189: 108791, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838488

RESUMO

Plastics constitute a vast array of substances, with over 16000 known plastic chemicals, including intentionally and non-intentionally added substances. Thousands of chemicals, including toxic ones, are extractable from plastics, however, the extent to which these compounds migrate from everyday products into food or water remains poorly understood. This study aims to characterize the endocrine and metabolism disrupting activity, as well as the chemical composition of migrates from plastic food contact articles (FCAs) from four countries as significant sources of human exposure. Fourteen plastic FCAs covering seven polymer types with high global market shares were migrated into water and a water-ethanol mixture as food simulants according to European regulations. The migrates were analyzed using reporter gene assays for nuclear receptors relevant to human health and non-target chemical analysis to characterize the chemical composition. Chemicals migrating from each FCA interfered with at least two nuclear receptors, predominantly targeting pregnane X receptor (24/28 migrates). Moreover, peroxisome proliferator receptor gamma was activated by 19 out of 28 migrates, though mostly with lower potencies. Estrogenic and antiandrogenic activity was detected in eight and seven migrates, respectively. Fewer chemicals and less toxicity migrated into water compared to the water-ethanol mixture. However, 73 % of the 15 430 extractable chemical features also transferred into food simulants, and the water-ethanol migrates exhibited a similar toxicity prevalence compared to methanol extracts. The chemical complexity differed largely between FCAs, with 8 to 10631 chemical features migrating into food simulants. Using stepwise partial least squares regressions, we successfully narrowed down the list of potential active chemicals, identified known endocrine disrupting chemicals, such as triphenyl phosphate, and prioritized chemical features for further identification. This study demonstrates the migration of endocrine and metabolism disrupting chemicals from plastic FCAs into food simulants, rendering a migration of these compounds into food and beverages probable.


Assuntos
Disruptores Endócrinos , Embalagem de Alimentos , Plásticos , Disruptores Endócrinos/análise , Humanos , Contaminação de Alimentos
10.
Food Chem ; 455: 139875, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823145

RESUMO

Bisphenol A (BPA), an endocrine disruptor, is widely used in food packaging materials, including drink containers. Sensitive detection of BPA is crucial to food safety. Herein, we have developed a novel optical-driven hydrogel film sensor for sensitive BPA detection based on the displacement of spiropyran (SP) from ß-cyclodextrin (ß-CD) cavity by BPA followed by the photochromism of the released SP. The released SP converts to the ring-opened merocyanine form which shows an enhanced red fluorescence in the dark. The sensor demonstrates a linear detection range from 0.1 to 20 µg mL-1 with a limit of detection at 0.027 µg mL-1 and a limit of quantification at 0.089 µg mL-1. Notably, the proposed ß-CD/SP hydrogel can be reused due to the reversible isomerization of SP and the reversible host-guest interaction. This sensor also shows good performance for BPA determination in real samples, indicating its great potential for food safety monitoring.


Assuntos
Compostos Benzidrílicos , Benzopiranos , Contaminação de Alimentos , Embalagem de Alimentos , Hidrogéis , Indóis , Nitrocompostos , Fenóis , beta-Ciclodextrinas , Fenóis/química , Fenóis/análise , beta-Ciclodextrinas/química , Hidrogéis/química , Compostos Benzidrílicos/química , Compostos Benzidrílicos/análise , Embalagem de Alimentos/instrumentação , Benzopiranos/química , Indóis/química , Nitrocompostos/química , Contaminação de Alimentos/análise , Limite de Detecção , Disruptores Endócrinos/análise , Disruptores Endócrinos/química
11.
Environ Toxicol Pharmacol ; 109: 104480, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825092

RESUMO

Endocrine disrupting chemicals or carcinogens have been known for decades for their endocrine signal disruption. Endocrine disrupting chemicals are a serious concern and they have been included in the top priority toxicants and persistent organic pollutants. Therefore, researchers have been working for a long time to understand their mechanisms of interaction in different human organs. Several reports are available about the carcinogen potential of these chemicals. The presented review is an endeavor to understand the hazard identification associated with endocrine disrupting carcinogens in relation to the human body. The paper discusses the major endocrine disrupting carcinogens and their potency for carcinogenesis. It discusses human exposure, route of entry, carcinogenicity and mechanisms. In addition, the paper discusses the research gaps and bottlenecks associated with the research. Moreover, it discusses the limitations associated with the analytical techniques for detection of endocrine disrupting carcinogens.


Assuntos
Carcinógenos , Disruptores Endócrinos , Neoplasias , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/análise , Humanos , Neoplasias/induzido quimicamente , Carcinógenos/toxicidade , Carcinógenos/análise , Animais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
12.
Chemosphere ; 362: 142601, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880263

RESUMO

In response to the need for the diversification of regulatory bioassays to screen estrogen-like endocrine disrupting chemical (EEDC) in the environment, we propose the use of a reporter gene assay involving all nuclear estrogen receptors from Dicentrarchus labrax (i.e., sbEsr1, sbEsr2a, or sbEsr2b). Named DLES test (D. labrax estrogen screen), it aims at complementing existing standardized in vitro tests by implementing more estrogen receptors notably those that do not originate from humans. Positive responses were obtained with all three estrogen receptors, and-consistently with observations from other species-variations in sensitivity to E2 were measured. Sensitivity and EC50 values could be classified as follows: sbEsr2b < sbEsr2a < sbEsr1. The pharmacological characterization with a human estrogen receptor antagonist (fulvestrant) successfully validated the specific involvement of each sbEsr and evidenced the capacity of the DLES test to highlight antagonist interactions. The DLES test was applied to WWTP contaminant extracts. A positive response was detected in the inflow sample in accordance with the YES test, but not in the outflow sample. Notwithstanding, the DLES test (sbEsr2b) exhibited greater sensitivity for the screening of those samples. This study demonstrates the need for more comprehensive testing including representatives of marine species for a better detection of EEDCs. The DLES test appears as a pertinent tool to predict adverse effects and to widen the scope of screening and hazard assessment of EEDCs in the environment.


Assuntos
Bass , Disruptores Endócrinos , Estrogênios , Poluentes Químicos da Água , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/análise , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Estrogênios/toxicidade , Estrogênios/análise , Receptores de Estrogênio/metabolismo , Bioensaio , Monitoramento Ambiental/métodos , Genes Reporter , Humanos
13.
Arch Toxicol ; 98(8): 2441-2461, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38864942

RESUMO

In this review article, the research works covering the analytical determination of bisphenol A (BPA) and its structural analogues published from 2018 to present (February 2024) were examined. The review offers an overview of the concentration levels of these xenoestrogens in food and beverages, and discusses concerns that these may possibly pose to the human health and scrutinises, from an analytical perspective, the main biomonitoring approaches that are applied. This comes as a natural evolution of a previous review that covered the same topic but in earlier years (up to 2017). As compared to the past, while the volume of published literature on this topic has not necessarily decreased, the research studies are now much more homogeneous in terms of their geographical origin, i.e., Southern Europe (mainly Italy and Spain). For this reason, an estimated daily intake of the European population could not be calculated at this time. In terms of the analytical approaches that were applied, 67% of the research groups exploited liquid chromatography (LC), with a detection that was prevalently (71%) afforded by mass spectrometry, with over one-fourth of the research teams using fluorescence (26%) and a minority (3%) detecting the analytes with diode array detection. One-third of the groups used gas chromatography (GC)-mass spectrometry achieving comparatively superior efficiency as compared to LC. Derivatisation was performed in 59% of the GC studies to afford more symmetrical signals and enhanced sensitivity. Although the contamination levels are well below the threshold set by governments, routinely biomonitoring is encouraged because of the possible accumulation of these contaminants in the human body and of their interplay with other xenoestrogens.


Assuntos
Compostos Benzidrílicos , Contaminação de Alimentos , Fenóis , Compostos Benzidrílicos/análise , Fenóis/análise , Contaminação de Alimentos/análise , Humanos , Europa (Continente) , Monitoramento Biológico/métodos , Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos
14.
Regul Toxicol Pharmacol ; 151: 105667, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925470

RESUMO

Methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) are among the most widely used preservatives in cosmetics, drugs, and foods. These compounds have been associated with toxic effects due to the overuse of products with parabens in their formulation. The toxicity of parabens may be correlated to endocrine disruption, owing to their ability to mimic the actions of estradiol. In this paper, a simple, sustainable, robust, and innovative dispersive liquid-liquid microextraction (DLLME) technique was developed and employed to extract these xenobiotics from body cream samples, aiming to calculate the margin of safety (MoS) to assess the risk of exposure. The validated method presented suitable linearity (r > 0.99), lower limits of detection (ranging from 0.01 to 0.04 % w/w), and satisfactory precision and accuracy (ranging from 4.33 to 10.47, and from -14.25 to 13.85, respectively). Seven of the ten analysed samples presented paraben contents within the acceptable concentration according to European legislation. The MoS value obtained for PrP (37.58) suggested its reduced safety, indicating that PrP may significantly contribute to systemic exposure resulting from the use of personal care products.


Assuntos
Cosméticos , Parabenos , Parabenos/análise , Parabenos/toxicidade , Medição de Risco , Conservantes Farmacêuticos/análise , Microextração em Fase Líquida/métodos , Humanos , Reprodutibilidade dos Testes , Limite de Detecção , Disruptores Endócrinos/análise
15.
Mar Pollut Bull ; 205: 116598, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885576

RESUMO

The concerning of plastic pollution in different ecosystems has been worsened by the widespread presence. Phthalate esters (PAEs), plasticizers found in everyday products, can migrate into the environment, especially into the oceans. Researches on their effects on cetaceans are still rare. Metabolomics helps assess perturbations induced by exposure to PAEs, which act as persistent endocrine disruptors. Four PAEs (dimethyl phthalate - DMP, diethyl phthalate - DEP, dibutyl phthalate - DBP, and di(2-ethylhexyl phthalate - DEHP) were analyzed, along with cholesterol and fatty acid profiles of P. blainvillei's blubber samples collected in southern Brazil. The study reveals pervasive contamination by PAEs - especially DEHP, present in all samples - with positive correlations between DEP content and animal size and weight, as well as between the DEHP amount and the C17:1 fatty acid. These findings will be relevant to conservation efforts aimed at this threatened species and overall marine ecosystems.


Assuntos
Golfinhos , Monitoramento Ambiental , Ésteres , Metaboloma , Ácidos Ftálicos , Poluentes Químicos da Água , Animais , Brasil , Ácidos Ftálicos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Ésteres/análise , Ésteres/metabolismo , Golfinhos/metabolismo , Tecido Adiposo/metabolismo , Dietilexilftalato/metabolismo , Plastificantes , Disruptores Endócrinos/análise , Masculino , Feminino , Dibutilftalato
16.
Talanta ; 277: 126339, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823321

RESUMO

Bisphenols and benzophenones are two typical kinds of endocrine-disrupting compounds (EDCs) that have been extensively detected in water environments, posing unanticipated risks to aquatic organisms and humans. It is urgent to develop efficient sample pretreatment methods for precise measurement of such EDCs. In this study, a magnetic and multi-shelled metal-organic framework derivative material has been prepared to extract and enrich trace bisphenols and benzophenones from water. Via a solvothermal reaction induced by sodium citrate followed by a carbonization treatment, a ZIF-67@ZIF-8 derived CoZn-magnetic hierarchical carbon (CoZn-MHC) material has been synthesized as a high-performance magnetic solid-phase extraction (MSPE) adsorbent. This adsorbent exhibited a good specific surface area (213.80 m2⋅g-1) and a saturation magnetization of 63.2 emu·g-1. After the optimization of several parameters (including adsorbent dosage, extraction time, pH, ionic strength, desorption solvent, and solvent volume), an efficient MSPE method for several EDCs (comprising bisphenols and benzophenones) was developed with a good linear range (R2 ≥ 0.990), a high sensitivity range (LODs: 0.793-5.37 ng⋅L-1), and good reusability (RSD ≤4.67 % in five consecutive tests). Furthermore, the material exhibited commendable resistance to matrix interference in natural water samples with the recovery rates of target compounds ranging from 74.8 % to 107 %. We envision that the preparation strategy of this functional metal-organic framework (MOF)-based adsorbent for EDCs may provide insights for relevant research in the future.


Assuntos
Disruptores Endócrinos , Estruturas Metalorgânicas , Extração em Fase Sólida , Poluentes Químicos da Água , Extração em Fase Sólida/métodos , Disruptores Endócrinos/análise , Disruptores Endócrinos/isolamento & purificação , Disruptores Endócrinos/química , Estruturas Metalorgânicas/química , Adsorção , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Fenóis/análise , Fenóis/isolamento & purificação , Fenóis/química , Benzofenonas/química , Benzofenonas/isolamento & purificação
17.
Chemosphere ; 362: 142562, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851506

RESUMO

There is global demand for novel ecotoxicity testing tools that are based on alternative to animal models, have high throughput potential, and may be applicable to a wide diversity of taxa. Here we scaled up a microplate-based cell-free neurochemical testing platform to screen 800 putative endocrine disrupting chemicals from the U.S. Environmental Protection Agency's ToxCast e1k library against the glutamate (NMDA), muscarinic acetylcholine (mACh), and dopamine (D2) receptors. Each assay was tested in cellular membranes isolated from brain tissues from a representative bird (zebra finch = Taeniopygia castanotis), mammal (mink = Neogale vison), and fish (rainbow trout = Oncorhynchus mykiss). The primary objective of this short communication was to make the results database accessible, while also summarising key attributes of assay performance and presenting some initial observations. In total, 7200 species-chemical-assay combinations were tested, of which 453 combinations were classified as a hit (radioligand binding changed by at least 3 standard deviations). There were some differences across species, and most hits were found for the D2 and NMDA receptors. The most active chemical was C.I. Solvent Yellow 14 followed by Diphenhydramine hydrochloride, Gentian Violet, SR271425, and Zamifenacin. Nine chemicals were tested across multiple plates with a mean relative standard deviation of the specific radioligand binding data being 24.6%. The results demonstrate that cell-free assays may serve as screening tools for large chemical libraries especially for ecological species not easily studied using traditional methods.


Assuntos
Disruptores Endócrinos , Animais , Disruptores Endócrinos/análise , Peixes/metabolismo , Aves , Mamíferos/metabolismo , Tentilhões , Vison , Testes de Toxicidade/métodos
18.
J Environ Manage ; 359: 121041, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703651

RESUMO

Bisphenol analogues (BPs) have gained increasing attention in recent years due to their ubiquitousness and potential endocrine disrupting properties in environments. However, little information is available on their spatiotemporal distribution, source apportionment and ecological risk in river sediments, especially the case in river basins with a high population density and those typical regions with agricultural-urban gradient, where land use patterns and intensity of human activity are varying. In this study, field investigations of BPs in the sediment of the entire Qinhuai River Basin, a typical agricultural-suburban agricultural-urban gradient area, were conducted before and after the flood period. Thirty-two sites were sampled for six types of BPs, resulted in no significant difference in the concentration of ΣBPs between the two periods, with ΣBPs ranging from 3.92 to 151 ng/g and 2.16-59.0 ng/g, respectively. Bisphenol A (BPA) was the main contributor. Whereas a multivariate analysis of variance (MANOVA) suggested that the composition structure of BPs had been influenced by water periods. The land use patterns had an impact on the distribution of ΣBPs in river sediments, which was more significant in after the flood period, with ΣBPs in urban rivers was 1.85 times, 3.44 times, and 3.08 times higher than the suburban rivers, agricultural rivers, and reservoirs, respectively. Yet land use types did not significantly alter the composition structure of BPs. The correlation analysis between BPs and the physicochemical properties of sediments showed a significant positive correlation between BPA and total organic carbon (TOC). The positive matrix factorization model (PMF) suggested that BPs in sediments of the basin might be influenced by industrial coatings, textiles, electronics and biopharmaceuticals, as well as urban wastewater or solid waste generated from daily life. The ecological risk assessment posed by BPA, based on the risk quotient, indicated that the ecological risk of BPA in sediments was low for three indicator benthic organisms: crustaceans, worms, and mollusks. However, the risk of BPA in river sediments varied among different land use patterns, with the risk ranking as follows: reservoirs < agricultural rivers < suburban rivers < urban rivers.


Assuntos
Compostos Benzidrílicos , Monitoramento Ambiental , Sedimentos Geológicos , Fenóis , Rios , Poluentes Químicos da Água , Rios/química , Fenóis/análise , Compostos Benzidrílicos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Disruptores Endócrinos/análise
19.
Chemosphere ; 358: 142239, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705414

RESUMO

So far, about 130 disinfection by-products (DBPs) and several DBPs-groups have had their potential endocrine-disrupting effects tested on some endocrine endpoints. However, it is still not clear which specific DBPs, DBPs-groups/subgroups may be the most toxic substances or groups/subgroups for any given endocrine endpoint. In this study, we attempt to address this issue. First, a list of relevant DBPs was updated, and 1187 DBPs belonging to 4 main-groups (aliphatic, aromatic, alicyclic, heterocyclic) and 84 subgroups were described. Then, the high-priority endocrine endpoints, DBPs-groups/subgroups, and specific DBPs were determined from 18 endpoints, 4 main-groups, 84 subgroups, and 1187 specific DBPs by a virtual-screening method. The results demonstrate that most of DBPs could not disturb the endocrine endpoints in question because the proportion of active compounds associated with the endocrine endpoints ranged from 0 (human thyroid receptor beta) to 32% (human transthyretin (hTTR)). All the endpoints with a proportion of active compounds greater than 10% belonged to the thyroid system, highlighting that the potential disrupting effects of DBPs on the thyroid system should be given more attention. The aromatic and alicyclic DBPs may have higher priority than that of aliphatic and heterocyclic DBPs by considering the activity rate and potential for disrupting effects. There were 2 (halophenols and estrogen DBPs), 12, and 24 subgroups that belonged to high, moderate, and low priority classes, respectively. For individual DBPs, there were 23 (2%), 193 (16%), and 971 (82%) DBPs belonging to the high, moderate, and low priority groups, respectively. Lastly, the hTTR binding affinity of 4 DBPs was determined by an in vitro assay and all the tested DBPs exhibited dose-dependent binding potency with hTTR, which was consistent with the predicted result. Thus, more efforts should be performed to reveal the potential endocrine disruption of those high research-priority main-groups, subgroups, and individual DBPs.


Assuntos
Desinfetantes , Desinfecção , Disruptores Endócrinos , Poluentes Químicos da Água , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Humanos , Desinfetantes/análise , Desinfetantes/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
20.
Chemosphere ; 359: 142366, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768782

RESUMO

A multi-target aptamer assay was developed as a phthalic acid ester (PAE) panel to screen selected PAEs in plastic leachate samples. The panel comprises 13 PAEs (PAE-13), namely dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, di-n-hexyl phthalate, diisobutyl phthalate, diisononyl phthalate, diisodecyl phthalate, mono-2-ethylhexyl phthalate, di-2-ethylhexyl phthalate, diphenyl phthalate, butyl benzyl phthalate, dicyclohexyl phthalate, and phthalic acid. Herein, we proposed an aptamer assay using a newly truncated aptamer (20-mer) and the 7-aminoactinomycin D fluorophore, which selectively binds to guanine in single-stranded DNA, resulting in increased fluorescence intensity. The assay is highly selective for PAE-13 clusters. The selectivity of the assay was evaluated using 13 different PAEs and mixtures depending on the side chain structure. The quantitative detection of PAEs was demonstrated by adopting mixed PAE-13 simulants and achieved a limit of detection of ∼1.4 pg/mL. The repeatability and reproducibility of the assay were also evaluated by presenting acceptable coefficients of variation (%CV less than 10% and 15%, respectively). The performance of the assay was demonstrated by analyzing the plastic leachate samples, and the positive correlation (correlation coefficient, r = 0.985) was confirmed by comparing them with the total sum of individual PAE peak areas obtained by gas chromatography mass spectrometry analysis.


Assuntos
Aptâmeros de Nucleotídeos , Disruptores Endócrinos , Ésteres , Ácidos Ftálicos , Poluentes Químicos da Água , Ácidos Ftálicos/análise , Disruptores Endócrinos/análise , Poluentes Químicos da Água/análise , Ésteres/análise , Aptâmeros de Nucleotídeos/química , Plásticos/análise , Plásticos/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...