RESUMO
Acetylcholinesterase inhibitors from Evodia rutaecarpa were screened, prepared, and evaluated. To screen the lipophilic alkaloid active constituents in E. rutaecarpa, we improved and optimized an ultrafiltration system. Three acetylcholinesterase (AChE) inhibitors, dehydroevodiamine, evodiamine, and rutecarpine, were screened. Addressing the limitations of the traditional response surface methodology (RSM) for multiobjective screening, we integrated RSM with the Non-dominated Sorting Genetic Algorithm III to achieve the optimal extraction of these active ingredients. High-speed countercurrent chromatography was used to isolate the active components using a two-phase solvent system: n-hexane/ethyl acetate/methanol/water (3.0:2.5:3.5:2.0, v/v/v/v) and ethyl acetate/methanol/water (3.0:1.0:4.0, v/v/v). The nuclear magnetic resonance spectroscopy confirmed the structures of the compounds, and molecular docking and dynamics simulations assessed the inhibitory effects of the chemical components on AChE, which were consistent with the findings of the ultrafiltration experiments. We also confirmed the neuroprotective properties of these compounds against glutamate-induced apoptosis in PC12 cells. Overall, we achieved the systematic optimization of multitarget compound extraction and lipophilic alkaloid ultrafiltration screening, as well as preparation and activity validation, laying the groundwork for the development of AChE inhibitors from lipophilic alkaloids.
Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Distribuição Contracorrente , Evodia , Ultrafiltração , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Evodia/química , Animais , Células PC12 , Ratos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/isolamento & purificação , Simulação de Acoplamento Molecular , Estrutura Molecular , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/química , Alcaloides , QuinazolinonasRESUMO
Oligonucleotides (ONs) are acquiring clinical relevance and their demand is expected to grow. However, the ON production capacity is currently limited by high manufacturing costs. Since the purification of the target ON sequence from molecularly similar variants represents a major bottleneck, this work presents a resource-effective strategy for the optimization of their preparative reversed-phase chromatographic purification. First, a model based on the equilibrium-dispersive theory was introduced to describe the chromatographic operation. Considering a deoxyribose nucleic acid with 20 nucleobases as case study, a genetic algorithm was developed to efficiently determine the adsorption isotherm and mass transfer parameters for the target ON and impurities. After the estimation of these parameters, a strategy for the in-silico optimization of the operation was established. The product collection window, gradient duration, and resin loading were considered as process variables and their influence on yield and productivity was investigated after setting a purity specification of 99.0%. The optimal process parameters identified through this analysis were experimentally verified, confirming the reliability of the model, calibrated with only 5 experimental runs. In addition, this optimal setpoint was exploited to design the multicolumn countercurrent solvent gradient purification (MCSGP) of this ON mixture, which allowed to boost the yield of the process and to work at cyclic steady state, while respecting the purity constraint. This study confirmed the potential of this in-silico optimization strategy in both improving the performance of the traditional single-column operations and in the rapid development of multicolumn processes.
Assuntos
Cromatografia de Fase Reversa , Oligonucleotídeos , Oligonucleotídeos/isolamento & purificação , Oligonucleotídeos/química , Cromatografia de Fase Reversa/métodos , Adsorção , Algoritmos , Distribuição Contracorrente/métodos , Modelos Químicos , Simulação por Computador , Reprodutibilidade dos Testes , Desoxirribose/químicaRESUMO
Solvent system selection based on polarity is a common strategy in a countercurrent chromatography (CCC) analysis. However, the solvent selectivity of solvent system is often ignored, despite its significant impact on the separation efficiency of CCC. In this study, the role of solvent in the overall properties of solvent system and the selective classification of solvent system were discussed to improve the solvent system selection based on polarity. Firstly, the mathematical relationship between logarithm of the partition coefficient (log K) of the template molecule and solvent composition of n-hexane/ethyl acetate/alcohol solvents (methanol, ethanol, and isopropanol)/water (HEAwat) system was analyzed and the optimal solvent system (K = 1) of the template molecules was determined. Then, the actual methanol concentration at the column inlet when the analyte peak in a HPLC analysis (B%) and the clustering results of the average polarity (P') of the optimal CCC solvent system were analyzed. Finally, the classification of HEAWat system in terms of its overall solvent properties by deducing equations of selectivity parameters (χe, χd, and χn) to explain the P' values clustering results. The results showed that HEAWat system was suitable for the separation of analytes with 55 % < B% < 100 %. However, the n-hexane/ethyl acetate/isopropanol/water (HEIWat) system proved more suitable for the separation of large polar compounds to other HEAWat system when the P' value decreased due to the change of alcohol solvents. The selected solvent systems were classified into group III and IV by Snyder's method. The solvent systems in group III were suitable for the separation of analytes with 85 % < B% < 100 %, and the distribution behavior of analytes was mainly influenced by the ratio of each solvent. The solvent systems in group IV were suitable for the separation of analytes with 55 % < B% < 85 %, and the distribution behavior of analytes was mainly influenced by the type of alcohol solvents.
Assuntos
Acetatos , Distribuição Contracorrente , Hexanos , Solventes , Água , Distribuição Contracorrente/métodos , Hexanos/química , Solventes/química , Acetatos/química , Água/química , Cromatografia Líquida de Alta Pressão/métodos , Metanol/química , Álcoois/química , Álcoois/análiseRESUMO
Five types of sulfobutylether-ß-cyclodextrin (SBE-ß-CD) and carboxymethyl-ß-cyclodextrin (CM-ß-CD) with different degrees of substitution were synthesized, and six and five racemates were respectively chosen to study the influence of the degree of substitution on the enantioseparation factor. The synthesized SBE-ß-CD and CM-ß-CD were characterized using 1H NMR spectroscopy and mass spectrometry. The results indicated that the influence of the degree of substitution on enantioseparation for distinct racemates exhibited significant variability. Increasing the degree of substitution of CM-ß-CD led to an increasing enantioseparation factor, while SBE-ß-CD with a specific degree of substitution provided the optimum enantioseparation factor for some racemates. The optimum enantioseparation factors of N-methyl duloxetine and duloxetine were obtained when a relatively low degree of substitution (DS = 3.5) was selected. And the optimum enantioseparation factor was obtained with a relatively high degree of substitution (DS = 7.5). SBE-ß-CD with a low substitution degree of 3.5 was chosen to optimize the countercurrent chromatographic enantioseparation of N-methyl-duloxetine, which resulted in a significant improvement in peak resolution from 0.51 to 0.83. Molecular docking was used to construct three SBE-ß-CDs with different degrees and distributions of substitution, and a good agreement was found between the docking results and the experimental results.
Assuntos
Distribuição Contracorrente , Extração Líquido-Líquido , Simulação de Acoplamento Molecular , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Estereoisomerismo , Distribuição Contracorrente/métodos , Extração Líquido-Líquido/métodos , Cloridrato de Duloxetina/química , Ânions/químicaRESUMO
Propolis is a natural resinous mixture produced by honeybees with numerous biological activities. Considering the recently reported potential of propolis as an adjuvant in COVID-19 treatment, a methodology for the fractionation of the hexane extract of Brazilian green propolis (HEGP) was developed for the obtention of prenylated biomarkers by countercurrent chromatography. The inhibition of the interaction between the receptor binding domain (RBD) of spike and ACE2 receptor was evaluated by the Lumitáµá´¹ immunoassay. Fractionation of HEGP was performed by both normal (CCC1 and CCC2, with extended elution) and reversed (CCC3) phase elution-extrusion modes with the solvent system hexane-ethanol-water 4:3:1. The normal elution mode of CCC1 (471 mg HEGP in a 80 mL column volume, 1.6 mm id) was scaled-up (CCC5, 1211 mg HEGP in a 112 mL column volume, 2.1 mm id), leading to the isolation of 89.9 mg of artepillin C, 1; 52.7 mg of baccharin, 2; and 26.6 mg of chromene, with purities of 93 %, 83 % and 88 %, respectively, by HPLC-PDA. Among the isolated compounds, artepillin C, 1, and baccharin, 2, presented the best results in the Lumitáµá´¹ immunoassay, showing 67% and 51% inhibition, respectively, at the concentration of 10 µM. This technique proved to be of low operational cost and excellent reproducibility.
Assuntos
Enzima de Conversão de Angiotensina 2 , Distribuição Contracorrente , Própole , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Própole/química , Distribuição Contracorrente/métodos , SARS-CoV-2/efeitos dos fármacos , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Biomarcadores/metabolismo , COVID-19 , Ligação Proteica , Tratamento Farmacológico da COVID-19 , Fenilpropionatos/química , Fenilpropionatos/isolamento & purificaçãoRESUMO
Owing to its ability to separate substances with a broad scope of polarities, exploring the three-phase solvent systems (TPSSs) with high-speed countercurrent chromatography is a topic of interest in separation science, and their retention volumes should be more concerned. This study primarily investigates the behavior of retention volumes while examining the isolation abilities of the TPSS in the technique above. We took standard compounds, including sophoricoside, Sudan red 7B, and rotenone, which have a broad range of polarity, for investigation in this study and separated them using different four-liquid TPSSs made up of water, acetonitrile, methyl acetate, and n-hexane (WAMH). Our findings show that the retention volumes gradually alter in response to changes in phase polarity within the proposed solvent systems. With TPSSs, we preliminarily studied compound isolation and the promising formula of their retention volumes. The proposed solvent systems WAMH in different ratios showed high correlations and adjusted correlation coefficients above 0.9978 and 0.9913 for the actual and calculated retention volumes. This study will be particularly beneficial for researchers focusing on countercurrent chromatography with TPSSs, as it offers valuable time-saving insights.
Assuntos
Distribuição Contracorrente , Solventes , Solventes/química , Hexanos/química , Acetonitrilas/química , Compostos Azo/química , Água/químicaRESUMO
Therapeutic oligonucleotides (ONs) have great potential to treat many diseases due to their ability to regulate gene expression. However, the inefficiency of standard purification techniques to separate the target sequence from molecularly similar variants is hindering development of large scale ON manufacturing at a reasonable cost. Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) is a valuable process able to bypass the purity-yield tradeoff typical of single-column operations, and hence to make the ON production more sustainable from both an economic and environmental point of view. However, operating close to the optimum of MCSGP can be challenging, resulting in unstable process performance and in a drift in product quality, especially when running a continuous process for extended periods where process parameters such as temperature are prone to variation. In this work, we demonstrate how greater process robustness is introduced in the design and execution of MCSGP for the purification of a 20mer single-stranded DNA sequence through the implementation of UV-based dynamic control. With this novel approach, the cyclic steady state was reached already in the third cycle and disturbances coming from fluctuations in the feed quality, loading amount and temperature were effectively compensated allowing a stable operation close to the optimum. In response to the perturbations, the controlled process kept the standard deviation on product recovery below 3.4%, while for the non-controlled process it increased up to 27.5%.
Assuntos
Oligonucleotídeos , Solventes , Oligonucleotídeos/química , Oligonucleotídeos/isolamento & purificação , Solventes/química , Distribuição Contracorrente/métodos , Raios Ultravioleta , Temperatura , DNA de Cadeia Simples/química , DNA de Cadeia Simples/isolamento & purificaçãoRESUMO
In this study, we employed a combination approach for the preparative separation of constituents from Ginkgo biloba L. leaves. It involved multi-stage solvent extractions utilizing two-phase multi-solvent systems and countercurrent chromatography (CCC) separations using three different solvent systems. The n-heptane/ethyl acetate/water (1:1:2, v/v) and n-heptane/ethyl acetate/methanol/water (HepEMWat, 7:3:7:3, v/v) solvent systems were screened out as extraction systems. The polarities of the upper and lower phases in the multi-solvent systems were adjustable, enabling the effectively segmented separation of complex constituents in G. biloba L. The segmented products were subsequently directly utilized as samples and separated using CCC with the solvent systems acetate/n-butanol/water (4:1:5, v/v), HepEMWat (5:5:5:5, v/v), and HepEMWat (9:1:9:1, v/v), respectively. As a result, a total of 11 compounds were successfully isolated and identified from a 2 g methanol extract of G. biloba L through two-stage extraction and three CCC separation processes; among them, nine compounds exhibited high-performance liquid chromatography purity exceeding 85%.
Assuntos
Distribuição Contracorrente , Ginkgo biloba , Extratos Vegetais , Folhas de Planta , Solventes , Ginkgo biloba/química , Solventes/química , Folhas de Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Água/química , Metanol/química , Acetatos/química , Extrato de GinkgoRESUMO
Considering comprehensive utilization of natural products, isolation and activity determination processes of bioactive compounds are essential. In this study, a combined high-speed countercurrent chromatography (HSCCC) with preparative HPLC method was developed to isolate the five antioxidant polyphenols from 75% ethanol extract of Malus pumila Mill. leaves. The HSCCC conditions were optimized by response surface methodology (RSM) considering two response indexes including retention of stationary phase and analysis time. The optimal HSCCC conditions were flow rate of 2.11 mL/min, revolution speed of 717 rpm, and temperature of 25â, with a solvent system of ethyl acetate/methanol/water (10:1:10, v/v/v). The unseparated fractions obtained from HSCCC were subjected to preparative HPLC for further isolation. As a result, phloridzin (15.3 mg), isoquercitrin (2.1 mg), quercetin 3-O-xyloside (1.9 mg), quercetin-3-O-arabinoside (4.0 mg), and quercitrin (2.0 mg) were isolated from 200.0 mg extracts. The purities of these compounds were all above 92%. Their chemical structures were identified by mass spectrometer and nuclear magnetic resonance. The five isolated compounds were further investigated for their rat hippocampal neuroprotective effects against hydrogen peroxide-induced oxidative stress. No cytotoxicity was observed in all tested concentrations. While all five compounds except phloridzin showed significantly neurogenic activities and neuroprotective effects, especially at the concentration of 0.5 mg/L. These results demonstrate that RSM is a suitable technique for optimisation of HSCCC and the isolated polyphenols can be used as antioxidants in pharmaceutical and food products.
Assuntos
Distribuição Contracorrente , Malus , Extratos Vegetais , Folhas de Planta , Polifenóis , Distribuição Contracorrente/métodos , Polifenóis/isolamento & purificação , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/análise , Folhas de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Animais , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Malus/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificaçãoRESUMO
In addition to their pigment properties, the potential health benefits of anthocyanins have made them a subject of interest in recent years. This study aimed to obtain purified anthocyanin fractions from native Mexican black bean cultivars using Amberlite XAD-7 resin column and HPCCC and evaluate their anti-inflammatory properties using RAW 264.7 cells. The major anthocyanins in the purified anthocyanin fractions were delphinidin 3-glucoside (61.8%), petunidin 3-glucoside (25.2%), and malvidin 3-glucoside (12.2%). Purified anthocyanin fractions at 12.5 µg/mL effectively prevented LPS-induced ERK1/ERK2 phosphorylation and reduced the protein expression of COX-2 and mRNA expression of iNOS. Results showed that purified anthocyanin fractions have the potential to modulate the inflammatory response by inhibiting the production of pro-inflammatory mediators through the ERK1/ERK2 and NF-κB pathways. This study suggests that anthocyanins from black beans could be used as a natural strategy to help modulate inflammation-associated diseases.
Assuntos
Antocianinas , Anti-Inflamatórios , NF-kappa B , Extratos Vegetais , Antocianinas/farmacologia , Antocianinas/química , Antocianinas/isolamento & purificação , Camundongos , Células RAW 264.7 , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/imunologia , Distribuição Contracorrente , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/imunologia , Cromatografia Líquida de Alta Pressão , México , Phaseolus/química , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismoRESUMO
Tubers of Gymnadenia conopsea (L.) R. Br. (Orchidaceae), a traditional medicine and food homologous plant, has a broad application and development prospect in the food and drug industries. Benzylester glucosides, the main effective active components in this plant, are difficult to separate due to their similar structures and high polarity. In this study, linear gradient counter-current chromatography was used to separate benzylester glucosides and derivatives, combined with elution-extrusion mode. The main separation parameters were optimized, including the ratio of mobile phase and sample loading. Finally, seven compounds were successfully separated, including 4-hydroxybenzyl alcohol (1), 4-hydroxybenzaldehyde (2), dactylorhin B (3), loroglossin (4), dactylorhin A (5), 4-(ethoxymethyl) phenol (6), and militarine (7). The structures were analyzed by mass spectrometry and nuclear magnetic resonance spectrometry. According to our findings, the established method was an efficient approach to separate benzylester glucosides and derivatives from tubers of G. conopsea. The established strategy could be applied to purify other similar high-polarity compounds from complex natural products.
Assuntos
Distribuição Contracorrente , Glucosídeos , Orchidaceae , Tubérculos , Tubérculos/química , Orchidaceae/química , Glucosídeos/isolamento & purificação , Glucosídeos/química , Estrutura Molecular , Ésteres/química , Ésteres/isolamento & purificaçãoRESUMO
Rare earth elements with unique magnetic properties and optical properties, known as the 'industrial vitamin', has a very high commercial value. As a secondary resource of rare earth elements, low-concentration solution includes mixed rare earth ions, which need to realize efficient separation and recovery urgently. High speed countercurrent chromatography is suitable for the separation and purification of rare earth element ions due to its advantages of large loading, good tolerance to samples, and simple pretreatment. In this study, a carbon dots assisted high speed countercurrent chromatography method was designed and established, the carbon dots were applied to the mobile phase of high speed countercurrent chromatography for the first time. The low concentration of REEs solution was enriched, and the effective separation of La (III), Ce (III), Gd (III) and Er (III) was successfully achieved. The complete separation of La (III), Ce (III), Gd (III) and Er (III) was achieved with a solvent system of 0.05 mol L-1 P507 (PE), 0.05 mol L-1 HNO3, and 0.1 mol L-1 CDs2 carbon dots (1:1:0.01, v/v/v), the upper phase as stationary phase, the lower phase as mobile phase. Density functional theory result showed that the binding energy of REEs (III)-CDs2 was larger than that of REEs (III)-P507, so the affinity of CDs2 to REEs (III) was stronger than that of P507. Therefore, with the addition of CDs2, the ability of mobile phase to elute REEs from the stationary phase was enhanced, and the separation effect was improved.
Assuntos
Carbono , Distribuição Contracorrente , Metais Terras Raras , Metais Terras Raras/isolamento & purificação , Metais Terras Raras/química , Carbono/química , Distribuição Contracorrente/métodos , Pontos Quânticos/químicaRESUMO
An efficient method for the continuous separation of Voriconazole enantiomers was developed using sulfobutyl ether-ß-cyclodextrin (SBE-ß-CD) as a chiral selector in high-speed countercurrent chromatography (HSCCC) with different types. The separation was performed using a two-phase solvent system consisting of n-hexane/ethyl acetate/100 mmol/L phosphate buffer solution (pH = 3.0, containing 50 mmol/L SBE-ß-CD) (1.5:0.5:2, v/v/v). A fast and predictable scale-up process was achieved using an analytical DE HSCCC instrument. The optimized parameters were subsequently applied to a preparative Tauto HSCCC instrument, resulting in consistent separation time and enantiomeric purity, with throughput boosted by a remarkable 11-fold. Preparative HSCCC successfully separated 506 mg of the racemate, delivering enantiomers exceeding 99% purity as confirmed by high-performance liquid chromatography analysis. This investigation presents an effective methodology for forecasting the HSCCC scale-up process and attaining continuous separation of chiral drugs.
Assuntos
Distribuição Contracorrente , Voriconazol , Distribuição Contracorrente/métodos , Estereoisomerismo , Voriconazol/química , Voriconazol/isolamento & purificação , Cromatografia Líquida de Alta Pressão , beta-Ciclodextrinas/químicaRESUMO
Arsenosugars are the predominant species of arsenic in most seaweed. The analysis of these compounds is hampered by the lack of calibration standards needed in their unambiguous identification and quantification. This affects the availability of reliable information on their potential toxicity, which is scarce and controversial. Knowing the potential of centrifugal partition chromatography (CPC) as a preparative separation technique applied to a number of natural compounds, the aim of this work is to investigate the feasibility of CPC in the case of isolation and purification of arsenosugars from algae extracts. Several biphasic solvents systems have been studied to evaluate the distribution of the As species. Given the physical characteristics of these compounds, the presence of strong acids, the formation of ionic pairs or the presence of salts at high ionic strength have been considered. System 1-BuOH/EtOH/sat.(NH4)2SO4/water at a volume ratio 0.2:1:1:1 originates adequate distribution constants of analytes that allows the required separation. The total arsenic content and the arsenic speciation of the eluted solutions from CPC were analyzed by ICP-MS and IC-ICP-MS, respectively. The developed CPC procedure allows us to obtain of the three arsenosugars with a purity of 98.7 % in PO4-Sug, 90.4 % in SO3-Sug and 96.1 % in SO4-Sug.
Assuntos
Distribuição Contracorrente , Distribuição Contracorrente/métodos , Arseniatos/isolamento & purificação , Arseniatos/análise , Arseniatos/química , Alga Marinha/química , MonossacarídeosRESUMO
Propolis is a resinous bee product with a very complex composition, which is dependent upon the plant sources that bees visit. Due to the promising antimicrobial activities of red Brazilian propolis, it is paramount to identify the compounds responsible for it, which, in most of the cases, are not commercially available. The aim of this study was to develop a quick and clean preparative-scale methodology for preparing fractions of red propolis directly from a complex crude ethanol extract by combining the extractive capacity of counter-current chromatography (CCC) with preparative HPLC. The CCC method development included step gradient elution for the removal of waxes (which can bind to and block HPLC columns), sample injection in a single solvent to improve stationary phase stability, and a change in the mobile phase flow pattern, resulting in the loading of 2.5 g of the Brazilian red propolis crude extract on a 912.5 mL Midi CCC column. Three compounds were subsequently isolated from the concentrated fractions by preparative HPLC and identified by NMR and high-resolution MS: red pigment, retusapurpurin A; the isoflavan 3(R)-7-O-methylvestitol; and the prenylated benzophenone isomers xanthochymol/isoxanthochymol. These compounds are markers of red propolis that contribute to its therapeutic properties, and the amount isolated allows for further biological activities testing and for their use as chromatographic standards.
Assuntos
Distribuição Contracorrente , Própole , Própole/química , Distribuição Contracorrente/métodos , Cromatografia Líquida de Alta Pressão , Brasil , Animais , Fracionamento Químico/métodos , Abelhas/químicaRESUMO
Maximizing product quality attributes by optimizing process parameters and performance attributes is a crucial aspect of bioprocess chromatography process design. Process parameters include but are not limited to bed height, eluate cut points, and elution pH. An under-characterized chromatography process parameter for protein A chromatography is process temperature. Here, we present a mechanistic understanding of the effects of temperature on the protein A purification of a monoclonal antibody (mAb) using a commercial chromatography resin for batch and continuous counter-current systems. A self-designed 3D-printed heating jacket controlled the 1 mL chromatography process temperature during the loading, wash, elution, and cleaning-in-place (CIP) steps. Batch loading experiments at 10, 20, and 30 °C demonstrated increased dynamic binding capacity (DBC) with temperature. The experimental data were fit to mechanistic and correlation-based models that predicted the optimal operating conditions over a range of temperatures. These model-based predictions optimized the development of a 3-column temperature-controlled periodic counter-current chromatography (TCPCC) and were validated experimentally. Operating a 3-column TCPCC at 30 °C led to a 47% increase in DBC relative to 20 °C batch chromatography. The DBC increase resulted in a two-fold increase in productivity relative to 20 °C batch. Increasing the number of columns to the TCPCC to optimize for increasing feed concentration resulted in further improvements to productivity. The feed-optimized TCPCC showed a respective two, three, and four-fold increase in productivity at feed concentrations of 1, 5, and 15 mg/mL mAb, respectively. The derived and experimentally validated temperature-dependent models offer a valuable tool for optimizing both batch and continuous chromatography systems under various operating conditions.
Assuntos
Anticorpos Monoclonais , Distribuição Contracorrente , Proteína Estafilocócica A , Temperatura , Proteína Estafilocócica A/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Distribuição Contracorrente/métodos , Cromatografia de Afinidade/métodos , Cricetulus , Células CHO , AnimaisRESUMO
Efficient rare earth element (REE) separations are becoming increasingly important to technologies ranging from renewable energy and high-performance magnets to applied radioisotope separations. These separations are made challenging by the extremely similar chemical and physical characteristics of the individual elements, which almost always occupy the 3+ oxidation state under ambient conditions. Herein, we discuss the development of a novel REE separation aimed at obtaining purified samples of neodymium (Nd) on a multi-milligram scale using high-speed counter-current chromatography (HSCCC). The method takes advantage of the subtle differences in ionic radii between neighboring REEs to tune elution rates in dilute acid through implementation of the di-(2-ethylhexyl)phosphoric acid (HDEHP)-infused stationary phase (SP) of the column. A La/Ce/Nd/Sm separation was demonstrated at a significantly higher metal loading than previously accomplished by HSCCC (15 mg, RNd/REE > 0.85), while the Pr/Nd separation was achieved at lower metal loadings (0.3 mg, RNd/Pr = 0.75 - 0.83). The challenges associated with scaling REE separations via HSCCC are presented and discussed within.
Assuntos
Distribuição Contracorrente , Neodímio , Distribuição Contracorrente/métodos , Neodímio/química , Neodímio/isolamento & purificação , OrganofosfatosRESUMO
This study presents a comprehensive strategy for the selection and optimization of solvent systems in countercurrent chromatography (CCC) for the effective separation of compounds. With a focus on traditional organic solvent systems, the research introduces a "sweet space" strategy that merges intuitive understanding with mathematical accuracy, addressing the significant challenges in solvent system selection, a critical bottleneck in the widespread application of CCC. By employing a combination of volume ratios and graphical representations, including both regular and trirectangular tetrahedron models, the proposed approach facilitates a more inclusive and user-friendly strategy for solvent system selection. This study demonstrates the potential of the proposed strategy through the successful separation of gamma-linolenic acid, oleic acid, and linoleic acid from borage oil, highlighting the strategy's effectiveness and practical applicability in CCC separations.
Assuntos
Distribuição Contracorrente , Óleos de Plantas , Solventes , Solventes/química , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/isolamento & purificação , Ácido gama-LinolênicoRESUMO
In this study, a combination approach involving macroporous resin (MR) column chromatography and gradient countercurrent chromatography (CCC) was employed to enrich and purify bufadienolides from the roots and rhizomes of Helleborus thibetanus Franch. Initially, a D101 MR-packed column chromatography was utilized for fractionation and enrichment of the bufadienolides, which were effectively eluted from the column using a 60% ethanol solution. CCC was subsequently introduced to separate the enriched product using the ethyl acetate/n-butanol/water (EBuWat, 4:1:5, v/v) and EBuWat (5:0:5, v/v) solvent systems in a gradient elution mode. As results, five bufadienolides, including 6.1 mg of hellebrigenin-3-O-ß-D-glucoside (1), 2.2 mg of tigencaoside A (2), 8.3 mg of deglucohellebrin (3), 3.5 mg of 14 ß-hydroxy-3ß-[ß-D-glucopyranosyl-(1â6)-(ß-D-glucopyranosyl)oxy]-5α-bufa-20,22-dienolide (4), and 3.0 mg of 14ß-hydroxy-3ß-[(ß-D-glucopyranosyl)oxy]-5α-bufa-20,22-dienolide (5), were effectively separated from 300 mg of the enriched product. The respective high-performance liquid chromatography purities were as follows: 95.2%, 75.8%, 85.7%, 82.3%, and 92.8%. This study provides valuable insights for the efficient enrichment and separation of bufadienolides from Helleborus thibetanus Franch.
Assuntos
Bufanolídeos , Distribuição Contracorrente , Helleborus , Distribuição Contracorrente/métodos , Bufanolídeos/química , Bufanolídeos/isolamento & purificação , Helleborus/química , Porosidade , Resinas Sintéticas/química , Cromatografia Líquida de Alta Pressão , Raízes de Plantas/químicaRESUMO
In counter-current chromatography (CCC), linear scale-up is an ideal amplification strategy. However, when transferring from analytical to predictable preparative processes with high throughput, linear scale-up would be challenging due to limitations imposed by differences in instrument parameters, such as gravitational forces, tubing cross-section area, tubing length, column volume and flow rate. Some effective scale-up strategies have been studied for different instrument parameters, but so far, these scale-up works have only been tested on standard circular (SC) tubing. The previous research of our group found that rectangular horizontal (RH) tubing can double the separation efficiency compared with conventional SC tubing, and has industrial production potential. This paper used the separation of tilianin from Dracocephalum moldavica L. as an example to demonstrate how to scale up the optimized process from analytical SC tubing to preparative RH tubing. After systematic optimization of solvent systems, sample concentration and flow rate on the analytical CCC, the optimized parameters obtained were successfully transferred to the preparative CCC. The results showed that a crude sample of 2.07 g was successfully separated using a solvent system of n-hexane - ethyl acetate - ethanol - water (1:4:1:5, v/v/v/v) in reversed phase mode, and the three consecutive separations produced a total of 380 mg tilianin in 75 min with high purities of 98.3%, as analyzed by HPLC. The total throughput achieved from the analytical to semi-preparative scale was improved by 138 times (from 12 mg/h to 1.66 g/h), while the column volume was increased by only 46.5 times (from 15.5 mL to 720 mL). This is the successful application of CCC for the separation and purification of tilianin. Given that SC tubing is the traditional configuration for CCC columns, this study is a necessary step to prove the applicability of RH tubing columns for routine use and potential large-scale industrial applications.