Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.026
Filtrar
1.
Cells ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891104

RESUMO

Mutations in the DMD gene cause fatal Duchenne Muscular Dystrophy (DMD). An attractive therapeutic approach is autologous cell transplantation utilizing myogenic progenitors derived from induced pluripotent stem cells (iPSCs). Given that a significant number of DMD mutations occur between exons 45 and 55, we developed a gene knock-in approach to correct any mutations downstream of exon 44. We applied this approach to two DMD patient-specific iPSC lines carrying mutations in exons 45 and 51 and confirmed mini-DYSTROPHIN (mini-DYS) protein expression in corrected myotubes by western blot and immunofluorescence staining. Transplantation of gene-edited DMD iPSC-derived myogenic progenitors into NSG/mdx4Cv mice produced donor-derived myofibers, as shown by the dual expression of human DYSTROPHIN and LAMIN A/C. These findings further provide proof-of-concept for the use of programmable nucleases for the development of autologous iPSC-based therapy for muscular dystrophies.


Assuntos
Sistemas CRISPR-Cas , Distrofina , Éxons , Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Mutação , Células-Tronco Pluripotentes Induzidas/metabolismo , Distrofina/genética , Distrofina/metabolismo , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Sistemas CRISPR-Cas/genética , Éxons/genética , Mutação/genética , Animais , Camundongos , Edição de Genes/métodos , Fibras Musculares Esqueléticas/metabolismo
2.
Nat Commun ; 15(1): 4935, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858388

RESUMO

Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Polaridade Celular , Distrofina , Músculos , Via de Sinalização Wnt , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Distrofina/metabolismo , Distrofina/genética , Músculos/metabolismo , Proteínas Desgrenhadas/metabolismo , Proteínas Desgrenhadas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Membrana Celular/metabolismo , Complexo de Proteínas Associadas Distrofina/metabolismo , Complexo de Proteínas Associadas Distrofina/genética , Proteínas Wnt/metabolismo , Transdução de Sinais
3.
Genes Brain Behav ; 23(3): e12895, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38837620

RESUMO

Duchenne muscular dystrophy is a severe neuromuscular disorder that is caused by mutations in the DMD gene, resulting in a disruption of dystrophin production. Next to dystrophin expression in the muscle, different isoforms of the protein are also expressed in the brain and lack of these isoforms leads to cognitive and behavioral deficits in patients. It remains unclear how the loss of the shorter dystrophin isoform Dp140 affects these processes. Using a variety of behavioral tests, we found that mdx and mdx4cv mice (which lack Dp427 or Dp427 + Dp140, respectively) exhibit similar deficits in working memory, movement patterns and blood-brain barrier integrity. Neither model showed deficits in spatial learning and memory, learning flexibility, anxiety or spontaneous behavior, nor did we observe differences in aquaporin 4 and glial fibrillary acidic protein. These results indicate that in contrast to Dp427, Dp140 does not play a crucial role in processes of learning, memory and spontaneous behavior.


Assuntos
Barreira Hematoencefálica , Distrofina , Distrofia Muscular de Duchenne , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Distrofina/genética , Distrofina/metabolismo , Masculino , Camundongos Endogâmicos mdx , Camundongos Endogâmicos C57BL , Aquaporina 4/genética , Aquaporina 4/metabolismo , Memória de Curto Prazo , Memória
4.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892293

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked progressive disorder associated with muscle wasting and degeneration. The disease is caused by mutations in the gene that encodes dystrophin, a protein that links the cytoskeleton with cell membrane proteins. The current treatment methods aim to relieve the symptoms of the disease or partially rescue muscle functionality. However, they are insufficient to suppress disease progression. In recent years, studies have uncovered an important role for non-coding RNAs (ncRNAs) in regulating the progression of numerous diseases. ncRNAs, such as micro-RNAs (miRNAs), bind to their target messenger RNAs (mRNAs) to suppress translation. Understanding the mechanisms involving dysregulated miRNAs can improve diagnosis and suggest novel treatment methods for patients with DMD. This review presents the available evidence on the role of altered expression of miRNAs in the pathogenesis of DMD. We discuss the involvement of these molecules in the processes associated with muscle physiology and DMD-associated cardiomyopathy.


Assuntos
MicroRNAs , Distrofia Muscular de Duchenne , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Distrofina/genética , Distrofina/metabolismo , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
5.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892308

RESUMO

Sarcospan (SSPN) is a 25-kDa transmembrane protein that is broadly expressed at the cell surface of many tissues, including, but not limited to, the myofibers from skeletal and smooth muscles, cardiomyocytes, adipocytes, kidney epithelial cells, and neurons. SSPN is a core component of the dystrophin-glycoprotein complex (DGC) that links the intracellular actin cytoskeleton with the extracellular matrix. It is also associated with integrin α7ß1, the predominant integrin expressed in skeletal muscle. As a tetraspanin-like protein with four transmembrane spanning domains, SSPN functions as a scaffold to facilitate protein-protein interactions at the cell membrane. Duchenne muscular dystrophy, Becker muscular dystrophy, and X-linked dilated cardiomyopathy are caused by the loss of dystrophin at the muscle cell surface and a concomitant loss of the entire DGC, including SSPN. SSPN overexpression ameliorates Duchenne muscular dystrophy in the mdx murine model, which supports SSPN being a viable therapeutic target. Other rescue studies support SSPN as a biomarker for the proper assembly and membrane expression of the DGC. Highly specific and robust antibodies to SSPN are needed for basic research on the molecular mechanisms of SSPN rescue, pre-clinical studies, and biomarker evaluations in human samples. The development of SSPN antibodies is challenged by the presence of its four transmembrane domains and limited antigenic epitopes. To address the significant barrier presented by limited commercially available antibodies, we aimed to generate a panel of robust SSPN-specific antibodies that can serve as a resource for the research community. We created antibodies to three SSPN protein epitopes, including the intracellular N- and C-termini as well as the large extracellular loop (LEL) between transmembrane domains 3 and 4. We developed a panel of rabbit antibodies (poly- and monoclonal) against an N-terminal peptide fragment of SSPN. We used several assays to show that the rabbit antibodies recognize mouse SSPN with a high functional affinity and specificity. We developed mouse monoclonal antibodies against the C-terminal peptide and the large extracellular loop of human SSPN. These antibodies are superior to commercially available antibodies and outperform them in various applications, including immunoblotting, indirect immunofluorescence analysis, immunoprecipitation, and an ELISA. These newly developed antibodies will significantly improve the quality and ease of SSPN detection for basic and translational research.


Assuntos
Proteínas de Membrana , Pesquisa Translacional Biomédica , Animais , Humanos , Camundongos , Distrofina/metabolismo , Distrofina/imunologia , Distrofina/genética , Integrinas/metabolismo , Integrinas/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/metabolismo
6.
Biomolecules ; 14(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38785982

RESUMO

Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic-intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Distrofina , Músculo Esquelético , Distrofia Muscular de Duchenne , Regeneração , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Humanos , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Distrofina/genética , Distrofina/metabolismo , Mioblastos/metabolismo
8.
Respir Physiol Neurobiol ; 326: 104282, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782084

RESUMO

Duchenne muscular dystrophy (DMD) is the most common X-linked disease. DMD is caused by a lack of dystrophin, a critical structural protein in striated muscle. Dystrophin deficiency leads to inflammation, fibrosis, and muscle atrophy. Boys with DMD have progressive muscle weakness within the diaphragm that results in respiratory failure in the 2nd or 3rd decade of life. The most common DMD mouse model - the mdx mouse - is not sufficient for evaluating genetic medicines that specifically target the human DMD (hDMD) gene sequence. Therefore, a novel transgenic mouse carrying the hDMD gene with an exon 52 deletion was created (hDMDΔ52;mdx). We characterized the respiratory function and pathology in this model using whole body plethysmography, histology, and immunohistochemistry. At 6-months-old, hDMDΔ52;mdx mice have reduced maximal respiration, neuromuscular junction pathology, and fibrosis throughout the diaphragm, which worsens at 12-months-old. In conclusion, the hDMDΔ52;mdx exhibits moderate respiratory pathology, and serves as a relevant animal model to study the impact of novel genetic therapies, including gene editing, on respiratory function.


Assuntos
Modelos Animais de Doenças , Camundongos Transgênicos , Distrofia Muscular de Duchenne , Animais , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Camundongos , Humanos , Masculino , Distrofina/genética , Distrofina/deficiência , Camundongos Endogâmicos mdx , Diafragma/fisiopatologia , Diafragma/patologia , Insuficiência Respiratória/etiologia , Junção Neuromuscular/patologia , Junção Neuromuscular/metabolismo , Camundongos Endogâmicos C57BL
9.
JCI Insight ; 9(11)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713520

RESUMO

Clinical trials delivering high doses of adeno-associated viruses (AAVs) expressing truncated dystrophin molecules (microdystrophins) are underway for Duchenne muscular dystrophy (DMD). We examined the efficiency and efficacy of this strategy with 4 microdystrophin constructs (3 in clinical trials and a variant of the largest clinical construct), in a severe mouse model of DMD, using AAV doses comparable with those in clinical trials. We achieved high levels of microdystrophin expression in striated muscles with cardiac expression approximately 10-fold higher than that observed in skeletal muscle. Significant, albeit incomplete, correction of skeletal muscle disease was observed. Surprisingly, a lethal acceleration of cardiac disease occurred with 2 of the microdystrophins. The detrimental cardiac effect appears to be caused by variable competition (dependent on microdystrophin design and expression level) between microdystrophin and utrophin at the cardiomyocyte membrane. There may also be a contribution from an overloading of protein degradation. The significance of these observations for patients currently being treated with AAV-microdystrophin therapies is unclear since the levels of expression being achieved in the DMD hearts are unknown. However, these findings suggest that microdystrophin treatments need to avoid excessively high levels of expression in the heart and that cardiac function should be carefully monitored in these patients.


Assuntos
Dependovirus , Modelos Animais de Doenças , Distrofina , Terapia Genética , Músculo Esquelético , Distrofia Muscular de Duchenne , Utrofina , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Animais , Terapia Genética/métodos , Distrofina/genética , Camundongos , Dependovirus/genética , Músculo Esquelético/metabolismo , Utrofina/genética , Utrofina/metabolismo , Humanos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Masculino , Camundongos Endogâmicos mdx , Miócitos Cardíacos/metabolismo
10.
Ann Clin Transl Neurol ; 11(6): 1456-1464, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693632

RESUMO

OBJECTIVE: Duchenne and Becker muscular dystrophies (DMD and BMD) are dystrophinopathies caused by variants in DMD gene, resulting in reduced or absent dystrophin. These conditions, characterized by muscle weakness, also manifest central nervous system (CNS) comorbidities due to dystrophin expression in the CNS. Prior studies have indicated a higher prevalence of epilepsy in individuals with dystrophinopathy compared to the general population. Our research aimed to investigate epilepsy prevalence in dystrophinopathies and characterize associated electroencephalograms (EEGs) and seizures. METHODS: We reviewed 416 individuals with dystrophinopathy, followed up at three centers between 2010 and 2023, to investigate the lifetime epilepsy prevalence and characterize EEGs and seizures in those individuals diagnosed with epilepsy. Associations between epilepsy and type of dystrophinopathy, genotype, and cognitive involvement were studied. RESULTS: Our study revealed a higher epilepsy prevalence than the general population (1.4%; 95% confidence interval: 0.7-3.2%), but notably lower than previously reported in smaller dystrophinopathy cohorts. No significant differences were found in epilepsy prevalence between DMD and BMD or based on underlying genotypes. Cognitive impairment was not found to be linked to higher epilepsy rates. The most prevalent epilepsy types in dystrophinopathies resembled those observed in the broader pediatric population, with most individuals effectively controlled through monotherapy. INTERPRETATION: The actual epilepsy prevalence in dystrophinopathies may be markedly lower than previously estimated, possibly half or even less. Our study provides valuable insights into the epilepsy landscape in individuals with dystrophinopathy, impacting medical care, especially for those with concurrent epilepsy.


Assuntos
Epilepsia , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/epidemiologia , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/genética , Masculino , Epilepsia/epidemiologia , Epilepsia/etiologia , Adolescente , Feminino , Adulto , Adulto Jovem , Criança , Prevalência , Pessoa de Meia-Idade , Pré-Escolar , Eletroencefalografia , Comorbidade , Distrofina/genética
11.
Neuromuscul Disord ; 39: 24-29, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714145

RESUMO

Structural variants (SVs) are infrequently observed in Duchenne muscular dystrophy (DMD), a condition mainly marked by deletions and point mutations in the DMD gene. SVs in DMD remain difficult to reliably detect due to the limited SV-detection capacity of conventionally used short-read sequencing technology. Herein, we present a family, a boy and his mother, with clinical signs of muscular dystrophy, elevated creatinine kinase levels, and intellectual disability. A muscle biopsy from the boy showed dystrophin deficiency. Routine molecular techniques failed to detect abnormalities in the DMD gene, however, dystrophin mRNA transcripts analysis revealed an absence of exons 59 to 79. Subsequent long-read whole-genome sequencing identified a rare complex structural variant, a 77 kb novel intragenic inversion, and a balanced translocation t(X;1)(p21.2;p13.3) rearrangement within the DMD gene, expanding the genetic spectrum of dystrophinopathy. Our findings suggested that SVs should be considered in cases where conventional molecular techniques fail to identify pathogenic variants.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Translocação Genética , Distrofia Muscular de Duchenne/genética , Humanos , Masculino , Distrofina/genética , Feminino , Inversão Cromossômica/genética , Adulto , Criança
12.
JAMA ; 331(20): 1705-1706, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38691382

RESUMO

This Viewpoint examines the appropriateness of FDA accelerated approval of novel gene therapies to treat boys with Duchenne muscular dystrophy following clinical trials with surrogate outcomes that did not demonstrate net benefits.


Assuntos
Terapia Genética , Distrofia Muscular de Duchenne , United States Food and Drug Administration , Humanos , Aprovação de Drogas , Distrofina/genética , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Estados Unidos , Masculino , Pré-Escolar , Criança , Ensaios Clínicos como Assunto
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 651-660, 2024 Jun 10.
Artigo em Chinês | MEDLINE | ID: mdl-38818548

RESUMO

Dystrophinopathies caused by variants of DMD gene are a group of muscular diseases including Duchenne muscular dystrophy, Becker muscular dystrophy, and DMD-associated dilated cardiomyopathy. With the advancement of genetic testing techniques and wider implementation of genetic screening, especially the expanded carrier screening, more and more individuals carrying DMD gene variants have been identified, whereas the genetic counseling capacity is relatively insufficient. Currently there is still a lack of professional norms for genetic counseling on dystrophinopathies. In this consensus, the main points to be covered in the pre- and post-test consultation have been discussed, with an aim to provide genetic counseling guidance for the disease diagnosis, treatment, and family reproduction.


Assuntos
Distrofina , Aconselhamento Genético , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Testes Genéticos/métodos , Consenso
14.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38721692

RESUMO

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.


Assuntos
Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne , Bainha de Mielina , Oligodendroglia , Animais , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Proliferação de Células , Distrofina/metabolismo , Distrofina/deficiência , Distrofina/genética , Corpo Caloso/patologia , Corpo Caloso/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Ventrículos Laterais/patologia , Ventrículos Laterais/metabolismo , Modelos Animais de Doenças , Diferenciação Celular , Masculino
15.
Commun Biol ; 7(1): 523, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702481

RESUMO

Duchenne muscular dystrophy (DMD) is an intractable X-linked muscular dystrophy caused by mutations in the DMD gene. While many animal models have been used to study the disease, translating findings to humans has been challenging. Microminipigs, with their pronounced physiological similarity to humans and notably compact size amongst pig models, could offer a more representative model for human diseases. Here, we accomplished precise DMD modification in microminipigs by co-injecting embryos with Cas9 protein and a single-guide RNA targeting exon 23 of DMD. The DMD-edited microminipigs exhibited pronounced clinical phenotypes, including perturbed locomotion and body-wide skeletal muscle weakness and atrophy, alongside augmented serum creatine kinase levels. Muscle weakness was observed as of one month of age, respiratory and cardiac dysfunctions emerged by the sixth month, and the maximum lifespan was 29.9 months. Histopathological evaluations confirmed dystrophin deficiency and pronounced dystrophic pathology in the skeletal and myocardial tissues, demonstrating that these animals are an unprecedented model for studying human DMD. The model stands as a distinct and crucial tool in biomedical research, offering deep understanding of disease progression and enhancing therapeutic assessments, with potential to influence forthcoming treatment approaches.


Assuntos
Modelos Animais de Doenças , Distrofina , Músculo Esquelético , Distrofia Muscular de Duchenne , Porco Miniatura , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Animais , Suínos , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Distrofina/genética , Distrofina/metabolismo , Edição de Genes , Humanos , Masculino , Fenótipo
16.
Dis Model Mech ; 17(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38770680

RESUMO

Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.


Assuntos
Distrofina , Camundongos Endogâmicos mdx , Camundongos Knockout , Receptores de Glucocorticoides , Animais , Receptores de Glucocorticoides/metabolismo , Distrofina/metabolismo , Distrofina/genética , Distrofina/deficiência , Miocárdio/patologia , Miocárdio/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Camundongos , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Camundongos Endogâmicos C57BL , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/metabolismo , Fenótipo , Sístole/efeitos dos fármacos
17.
Neuromuscul Disord ; 39: 5-9, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653179

RESUMO

Duchenne muscular dystrophy is a neuromuscular disease caused by DMD gene mutations that result in an absence of functional dystrophin protein. Patients with Duchenne experience progressive muscle weakness, are typically wheelchair dependent by their early teens, and develop respiratory and cardiac complications that lead to death in their twenties or thirties. Becker muscular dystrophy is also caused by DMD gene mutations, but symptoms are less severe and progression is slower compared with Duchenne. We describe a case study of a patient with Becker muscular dystrophy who was still ambulant at age 61 years and had a milder phenotype than Duchenne, despite 46% of his DMD gene being missing. His affected relatives had similarly mild phenotypes and clinical courses. These data guided the understanding of the criticality of various regions of dystrophin and informed the development of micro-dystrophin constructs to compensate for the absence of functional dystrophin in Duchenne.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/complicações , Distrofina/genética , Masculino , Pessoa de Meia-Idade , Fenótipo , Seguimentos , Linhagem
18.
Acta Myol ; 43(1): 8-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586166

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating X-linked neuromuscular disorder caused by dystrophin gene deletions (75%), duplications (15-20%) and point mutations (5-10%), a small portion of which are nonsense mutations. Women carrying dystrophin gene mutations are commonly unaffected because the wild X allele may produce a sufficient amount of the dystrophin protein. However, approximately 8-10% of them may experience muscle symptoms and 50% of those over 40 years develop cardiomyopathy. The presence of symptoms defines the individual as an affected "symptomatic or manifesting carrier". Though there is no effective cure for DMD, therapies are available to slow the decline of muscle strength and delay the onset and progression of cardiac and respiratory impairment. These include ataluren for patients with nonsense mutations, and antisense oligonucleotides therapies, for patients with specific deletions. Symptomatic DMD female carriers are not included in these indications and little data documenting their management, often entrusted to the discretion of individual doctors, is present in the literature. In this article, we report the clinical and instrumental outcomes of four symptomatic DMD carriers, aged between 26 and 45 years, who were treated with ataluren for 21 to 73 months (average 47.3), and annually evaluated for muscle strength, respiratory and cardiological function. Two patients retain independent ambulation at ages 33 and 45, respectively. None of them developed respiratory involvement or cardiomyopathy. No clinical adverse effects or relevant abnormalities in routine laboratory values, were observed.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Oxidiazóis , Humanos , Feminino , Pré-Escolar , Distrofina/genética , Projetos Piloto , Códon sem Sentido , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
19.
J Control Release ; 370: 239-255, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663751

RESUMO

Double pH-responsive xenopeptide carriers containing succinoyl tetraethylene pentamine (Stp) and lipo amino fatty acids (LAFs) were evaluated for CRISPR/Cas9 based genome editing. Different carrier topologies, variation of LAF/Stp ratios and LAF types as Cas9 mRNA/sgRNA polyplexes were screened in three different reporter cell lines using three different genomic targets (Pcsk9, eGFP, mdx exon 23). One U-shaped and three bundle (B2)-shaped lipo-xenopeptides exhibiting remarkable efficiencies were identified. Genome editing potency of top carriers were observed at sub-nanomolar EC50 concentrations of 0.4 nM sgRNA and 0.1 nM sgRNA for the top U-shape and top B2 carriers, respectively, even after incubation in full (≥ 90%) serum. Polyplexes co-delivering Cas9 mRNA/sgRNA with a single stranded DNA template for homology directed gene editing resulted in up to 38% conversion of eGFP to BFP in reporter cells. Top carriers were formulated as polyplexes or lipid nanoparticles (LNPs) for subsequent in vivo administration. Formulations displayed long-term physicochemical and functional stability upon storage at 4 °C. Importantly, intravenous administration of polyplexes or LNPs mediated in vivo editing of the dystrophin gene, triggering mRNA exon 23 splicing modulation in dystrophin-expressing cardiac muscle, skeletal muscle and brain tissue.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Animais , Humanos , Nanopartículas/química , Lipídeos/química , Camundongos Endogâmicos mdx , Linhagem Celular , Camundongos Endogâmicos C57BL , Masculino , Distrofina/genética , Camundongos
20.
J Vet Intern Med ; 38(3): 1418-1424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38613437

RESUMO

BACKGROUND: X-linked dystrophin-deficient muscular dystrophy (MD) is a form of MD caused by variants in the DMD gene. It is a fatal disease characterized by progressive weakness and degeneration of skeletal muscles. HYPOTHESIS/OBJECTIVES: Identify deleterious genetic variants in DMD by whole-genome sequencing (WGS) using a next-generation sequencer. ANIMALS: One MD-affected cat, its parents, and 354 cats from a breeding colony. METHODS: We compared the WGS data of the affected cat with data available in the National Center for Biotechnology Information database and searched for candidate high-impact variants by in silico analyses. Next, we confirmed the candidate variants by Sanger sequencing using samples from the parents and cats from the breeding colony. We used 2 genome assemblies, the standard felCat9 (from an Abyssinian cat) and the novel AnAms1.0 (from an American Shorthair cat), to evaluate genome assembly differences. RESULTS: We found 2 novel high-impact variants: a 1-bp deletion in felCat9 and an identical nonsense variant in felCat9 and AnAms1.0. Whole genome and Sanger sequencing validation showed that the deletion in felCat9 was a false positive because of misassembly. Among the 357 cats, the nonsense variant was only found in the affected cat, which indicated it was a de novo variant. CONCLUSION AND CLINICAL IMPORTANCE: We identified a de novo variant in the affected cat and next-generation sequencing-based genotyping of the whole DMD gene was determined to be necessary for affected cats because the parents of the affected cat did not have the risk variant.


Assuntos
Doenças do Gato , Códon sem Sentido , Distrofina , Gatos , Animais , Doenças do Gato/genética , Distrofina/genética , Masculino , Distrofia Muscular de Duchenne/genética , Sequenciamento Completo do Genoma/veterinária , Feminino , Distrofia Muscular Animal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...