Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.429
Filtrar
1.
J Biochem Mol Toxicol ; 38(11): e70011, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39400940

RESUMO

Coronary artery disease (CAD) causes myocardial ischemia, narrowing or occlusion of the lumen. Although great progress has been made in the treatment of CAD, the existing treatment methods do not meet the clinical needs, so it is urgent to find new treatment methods. The aim of this study was to investigate the mechanism of action of miR-148a-3p in alleviating CAD by inhibiting vascular endothelial cell injury and to provide new ideas for the treatment of CAD. A cell model was constructed by lipopolysaccharide (LPS) induction of vascular endothelial cells, and a CAD rat model was established by a high-fat diet and intraperitoneal injection of posterior pituitary hormone. Relevant indices were detected by RT-qPCR, ELISA, Western blot, MTT, and flow cytometry. The results indicate that in LPS-induced vascular endothelial cell assays, miR-148a-3p inhibited the upregulation of PCSK9, thereby suppressing the NF-κB signaling pathway and promoting vascular endothelial cell proliferation. Overexpression of PCSK9 and the addition of NF-κB signaling pathway activator increased vascular endothelial cell apoptosis. In animal experiments, miR-148a-3p alleviated the symptoms of CAD rats, whereas overexpression of PCSK9 promoted apoptosis and increased atheromatous plaque area in CAD rats. In conclusion, miR-148a-3p inhibits the NF-κB signaling pathway through downregulation of PCSK9, thereby protecting vascular endothelial cells and alleviating CAD.


Assuntos
Doença da Artéria Coronariana , MicroRNAs , NF-kappa B , Pró-Proteína Convertase 9 , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , NF-kappa B/metabolismo , Ratos , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Masculino , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Transdução de Sinais , Apoptose , Ratos Sprague-Dawley , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipopolissacarídeos/toxicidade
2.
Mol Biol Rep ; 51(1): 953, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230767

RESUMO

BACKGROUND: Atherosclerosis, serving as the primary pathological mechanism at the core of cardiovascular disease, is now widely acknowledged to be associated with DNA damage and repair, contributing to atherosclerotic plaque formation. Therefore, molecules involved in the DNA repair process may play an important role in the progression of atherosclerosis. Our research endeavors to explore the contributions of specific and interrelated molecules involved in DNA repair (APE1, BRCA1, ERCC2, miR-221-3p, miR-145-5p, and miR-155-5p) to the development of atherosclerotic plaque and their interactions with each other. METHODS & RESULTS: Gene expression study was conducted using the real-time polymerase chain reaction (qRT-PCR) method on samples from carotid artery atherosclerotic plaques and nonatherosclerotic internal mammary arteries obtained from 50 patients diagnosed with coronary artery disease and carotid artery disease. Additionally, 50 healthy controls were included for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Although no difference was observed in mRNA gene expressions, we noted a decrease in miR-155-5p gene expression (p = 0.003) and an increase in miR-221-3p gene expression (p = 0.015) in plaque samples, while miR-145-5p gene expression remained unchanged (p = 0.57). Regarding serum 8-OHdG levels, patients exhibited significantly higher levels (1111.82 ± 28.64) compared to controls (636.23 ± 24.23) (p < 0.0001). CONCLUSIONS: In our study demonstrating the role of miR-155-5p and miR-221-3p in atherosclerosis, we propose that these molecules are potential biomarkers and therapeutic targets for coronary artery diseases and carotid artery disease.


Assuntos
Reparo do DNA , MicroRNAs , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Reparo do DNA/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Idoso , Estudos Transversais , Aterosclerose/genética , Aterosclerose/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Dano ao DNA/genética , Regulação da Expressão Gênica/genética , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/metabolismo , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , 8-Hidroxi-2'-Desoxiguanosina/metabolismo
3.
Kardiologiia ; 64(8): 39-47, 2024 Aug 31.
Artigo em Russo, Inglês | MEDLINE | ID: mdl-39262352

RESUMO

AIM: To study metabolic molecules (adiponectin, adipsin, resistin, glucagon-like peptide-1 (GLP-1), glucagon, secretin) of adipose tissue in atherosclerotic plaques (AP) and their associations with AP instability in men with coronary atherosclerosis. MATERIAL AND METHODS: Metabolic molecules (adipocytokines and metabolic hormones) of adipose tissue can act as enzymes, hormones or growth factors in modulating insulin resistance and lipid and glucose metabolism and indirectly influence the course of the atherosclerotic process. This study included 48 men from whom 139 coronary artery (CA) samples were collected during coronary artery bypass grafting, after obtaining the informed consent. According to the histological conclusion, 84 (60.4%) CA plaques were stable, 44 (31.7%) were unstable, and 11 histological samples had a conditionally unchanged CA intima (7.9%). The concentrations of adiponectin, adipsin, resistin, GLP-1, glucagon, and secretin were measured in AP homogenates by multiplex analysis using the Human Metabolic Hormone V3 panel (MILLIPLEX, Germany). During the study, demographic and anthropometric characteristics, medical history, and presence of chronic diseases were recorded. RESULTS: The glucagon concentration in the conditionally unchanged intima was 16.7% lower and in the fragments of unstable atherosclerotic plaques 41.2% lower than in fragments of stable APs. However, the glucagon concentration in stable APs was 28% higher than in unstable APs. The secretin concentration in the conditionally unchanged intima was also lower than in stable APs by 41.2%, while in stable APs, the secretin concentration was 20% higher than in unstable APs. The adiponectin concentrations were directly correlated with serum high-density lipoprotein cholesterol (HDL-C) concentrations (r=0.286; p=0.002), while the secretin concentrations were inversely correlated with serum HDL-C concentrations (r= -0.199; p=0.038). The probability of having an unstable AP (in relation to conditionally unchanged intima) increases by 35.8% with an increase in the AP glucagon concentration by 1 pg/mg protein. The probability of having a stable AP (in relation to unchanged intima) increases by 29.4% with an increase in the AP glucagon concentration by 1 pg/mg protein and by 10.1% with an increase in the AP secretin concentration by 1 pg/mg protein. CONCLUSION: The AP adiponectin concentration directly correlates and the AP secretin concentration inversely correlates with the serum concentration of HDL-C. The presence of both stable and unstable APs is directly associated with the AP glucagon concentration in men with coronary atherosclerosis. The AP secretin concentration is directly associated with plaque stability in men with coronary atherosclerosis. Further thorough study of the identified markers in atherosclerotic lesions will allow using them as potential targets for therapy.


Assuntos
Tecido Adiposo , Doença da Artéria Coronariana , Placa Aterosclerótica , Humanos , Masculino , Doença da Artéria Coronariana/metabolismo , Pessoa de Meia-Idade , Placa Aterosclerótica/metabolismo , Tecido Adiposo/metabolismo , Idoso , Adipocinas/metabolismo
4.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273253

RESUMO

Remote ischemic preconditioning (RIPC) reduces ischemia-reperfusion injury in aortocoronary bypass surgery, potentially via extracellular vesicles (EVs) and their micro-RNA content. Clinical data implicate that propofol might inhibit the cardioprotective RIPC effect. This prospective, randomized study investigated the influence of different anesthetic regimes on RIPC efficacy and EV micro-RNA signatures. We also assessed the impact of propofol on cell protection after hypoxic conditioning and EV-mediated RIPC in vitro. H9c2 rat cardiomyoblasts were subjected to hypoxia, with or without propofol, and subsequent simulated ischemia-reperfusion injury. Apoptosis was measured by flow cytometry. Blood samples of 64 patients receiving anesthetic maintenance with propofol or isoflurane, along with RIPC or sham procedures, were analyzed, and EVs were enriched using a polymer-based method. Propofol administration corresponded with increased Troponin T levels (4669 ± 435.6 pg/mL), suggesting an inhibition of the cardioprotective RIPC effect. RIPC leads to a notable rise in miR-21 concentrations in the group receiving propofol anesthesia (fold change 7.22 ± 6.6). In vitro experiments showed that apoptosis reduction was compromised with propofol and only occurred in an EV-enriched preconditioning medium, not in an EV-depleted medium. Our study could clinically and experimentally confirm propofol inhibition of RIPC protection. Increased miR-21 expression could provide evidence for a possible inhibitory mechanism.


Assuntos
Apoptose , Doença da Artéria Coronariana , Vesículas Extracelulares , Propofol , Vesículas Extracelulares/metabolismo , Animais , Propofol/farmacologia , Ratos , Humanos , Doença da Artéria Coronariana/metabolismo , Masculino , Apoptose/efeitos dos fármacos , Precondicionamento Isquêmico/métodos , Feminino , Pessoa de Meia-Idade , MicroRNAs/genética , MicroRNAs/metabolismo , Precondicionamento Isquêmico Miocárdico/métodos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Idoso , Anestésicos/farmacologia , Estudos Prospectivos , Linhagem Celular
5.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(9): 1438-1443, 2024 Sep 06.
Artigo em Chinês | MEDLINE | ID: mdl-39290028

RESUMO

Dyslipidemia stands as an autonomous peril in the realm of atherosclerotic cardiovascular maladies. Prompt identification and timely intervention in the case of dyslipidemia hold promise for substantially curbing the onset and fatality rates associated with coronary heart disease. Traditional lipid surveillance metrics employed in clinical settings, such as low-density lipoprotein cholesterol, exhibit notable limitations. Conversely, lipid-derived parameters emerge as formidable contenders, demonstrating a capacity to amalgamate and quantify disparate risk factors and multifactorial etiologies inherent in a given disease. By encompassing a broader spectrum of information than singular indices, these parameters offer a more profound insight into disease progression by virtue of their grounding in the physiological intricacies of lipid metabolism. Drawing upon extant domestic and international guidelines and research, this discourse delineates and synthesizes four lipid-derived parameters with promising clinical applications: atherogenic index of plasma, non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio, apolipoprotein B/A1 ratio, and lipoprotein combine index, and forwards a perspective grounded in current strides in clinical research.


Assuntos
Dislipidemias , Lipídeos , Humanos , Apolipoproteínas B/sangue , Apolipoproteínas B/metabolismo , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , LDL-Colesterol/sangue , LDL-Colesterol/metabolismo , Lipídeos/sangue , Fatores de Risco , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/prevenção & controle
6.
Proc Natl Acad Sci U S A ; 121(35): e2405845121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39178231

RESUMO

Atherosclerosis is a chronic inflammatory disease of the arterial wall characterized by the accumulation of cholesterol-rich lipoproteins in macrophages. How macrophages commit to proinflammatory polarization under atherosclerosis conditions is not clear. Report here that the level of a circulating protein, leucine-rich alpha-2 glycoprotein 1 (LRG1), is elevated in the atherosclerotic tissue and serum samples from patients with coronary artery disease (CAD). LRG1 stimulated macrophages to proinflammatory M1-like polarization through the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways. The LRG1 knockout mice showed significantly delayed atherogenesis progression and reduced levels of macrophage-related proinflammatory cytokines in a high-fat diet-induced Apoe-/- mouse atherosclerosis model. An anti-LRG1 neutralizing antibody also effectively blocked LRG1-induced macrophage M1-like polarization in vitro and conferred therapeutic benefits to animals with ApoE deficiency-induced atherosclerosis. LRG1 may therefore serve as an additional biomarker for CAD and targeting LRG1 could offer a potential therapeutic strategy for CAD patients by mitigating the proinflammatory response of macrophages.


Assuntos
Aterosclerose , Glicoproteínas , Macrófagos , Animais , Aterosclerose/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos , Humanos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Camundongos Knockout , Masculino , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/imunologia , Feminino , Camundongos Knockout para ApoE , Ativação de Macrófagos
7.
Atherosclerosis ; 396: 118543, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39182474

RESUMO

BACKGROUND AND AIMS: Janus kinase 2 (JAK2) triggers endothelial pyroptosis and is associated with a multitude of pathological cardiovascular manifestations, including atherosclerosis. However, the associated transcriptional regulatory mechanisms remain unclear. In this study, we investigated a novel transcriptional regulator upstream of JAK2. METHODS: We validated the binding and regulation of Forkhead box C1 (FOXC1) and JAK2 using chromatin immunoprecipitation and luciferase reporter assays. Immunofluorescence was used to detect protein localization in cells and tissues. Immunohistochemistry, hematoxylin-eosin (HE), Masson's trichrome, and Oil Red O staining were used to identify tissue lesions. Transcriptional functions were investigated using in vitro and in vivo coronary artery disease (CAD) atherosclerosis models. RESULTS: The mRNA levels of JAK2 were considerably higher in both the cardiac tissues of mice and the peripheral blood of patients with CAD than in equivalent controls. JAK2 expression increased markedly in the coronary arteries of ApoeKO mice, whereas FOXC1 expression exhibited a decreasing trend. In vitro, FOXC1 bound to the JAK2 promoter region and inversely regulated the expression of JAK2. Mechanistic studies have revealed that the FOXC1-JAK2 pathway regulates pyroptosis and participates in the pathogenesis of human coronary artery endothelial cells (HCAECs). In vivo, the suppression of FOXC1 was confirmed to stimulate the levels of JAK2 and pyroptosis, contributing to the pathological progression of aortic and coronary artery damage. CONCLUSIONS: We established the FOXC1-JAK2 regulatory pathway and verified its reverse-regulatory function in CAD pyroptosis. Our data emphasizes that FOXC1 is critical for the treatment of pyroptosis-induced injury in patients with CAD.


Assuntos
Doença da Artéria Coronariana , Vasos Coronários , Fatores de Transcrição Forkhead , Janus Quinase 2 , Piroptose , Animais , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Humanos , Vasos Coronários/patologia , Vasos Coronários/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/genética , Camundongos , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Masculino , Transdução de Sinais , Modelos Animais de Doenças , Camundongos Knockout para ApoE , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas
8.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201292

RESUMO

MicroRNAs (miRs) are small non-coding RNAs that regulate gene expression post-transcriptionally and are crucial in lipid metabolism. ATP-binding cassette transporter A1 (ABCA1) is essential for cholesterol efflux from cells to high-density lipoprotein (HDL). Dysregulation of miRs targeting ABCA1 can affect cholesterol homeostasis and contribute to coronary artery disease (CAD). This study aimed to investigate the expression of miRs targeting ABCA1 in human monocytes, their role in cholesterol efflux, and their relationship with CAD. We included 50 control and 50 CAD patients. RT-qPCR examined the expression of miR-33a-5p, miR-26a-5p, and miR-144-3p in monocytes. Logistic regression analysis explored the association between these miRs and CAD. HDL's cholesterol acceptance was analyzed using the J774A.1 cell line. Results showed that miR-26a-5p (p = 0.027) and ABCA1 (p = 0.003) expression levels were higher in CAD patients, while miR-33a-5p (p < 0.001) levels were lower. Downregulation of miR-33a-5p and upregulation of ABCA1 were linked to a lower CAD risk. Atorvastatin upregulated ABCA1 mRNA, and metformin downregulated miR-26a-5p in CAD patients. Decreased cholesterol efflux correlated with higher CAD risk and inversely with miRs in controls. Reduced miR-33a-5p expression and increased ABCA1 expression are associated with decreased CAD risk. miR deregulation in monocytes may influence atherosclerotic plaque formation by regulating cholesterol efflux. Atorvastatin and metformin could offer protective effects by modulating miR-33a-5p, miR-26a-5p, and ABCA1, suggesting potential therapeutic strategies for CAD prognosis and treatment.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Doença da Artéria Coronariana , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Leucócitos Mononucleares/metabolismo , Regulação da Expressão Gênica , Idoso , Linhagem Celular , Colesterol/metabolismo , Colesterol/sangue , Monócitos/metabolismo
9.
Epigenetics ; 19(1): 2392400, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39167728

RESUMO

Even though N6-methyladenosine (m6A) RNA modifications are increasingly being implicated in human disease, their mechanisms are not fully understood in smokers with coronary artery disease (CAD). Thirty m6A-related regulators' expression (MRRE) in CAD individuals (smokers and non-smokers) were analyzed from GEO. Support Vector Machine, random forest, and nomogram models were constructed to assess its clinical value. Consensus clustering, principal component analysis, and ssGSEA were used to construct a full picture of m6A-related regulators in smokers with CAD. Oxygen-glucose deprivation (OGD) and qRT-PCR were used to validate hypoxia's effect on MRRE. A comparison between smokers with CAD and controls revealed lower expression levels of RBM15B, YTHDC2, and ZC3H13. Based on three key MRREs, all models showed good clinical value, and smokers with CAD were divided into two distinct molecular subgroups. The correlations were found between key MRRE and the degree of immune infiltration. Three key MRREs in HUVECs and FMC84 mouse cardiomyocytes were reduced in the OGD group. Through hypoxia, smoking might reduce the expression levels of RBM15B, YTHDC2, and ZC3H13 in smokers with CAD. Our findings provide an important theoretical basis for the treatment of smokers with CAD.


Assuntos
Adenosina , Doença da Artéria Coronariana , Proteínas de Ligação a RNA , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Camundongos , Animais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fumar/efeitos adversos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Masculino , Metilação de RNA , RNA Helicases
10.
Sci Rep ; 14(1): 19034, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152174

RESUMO

The development of coronary artery disease (CAD) is significantly affected by impaired endocrine and metabolic status. Under this circumstance, improved prevention and treatment of CAD may result from knowing the connection between metabolites and CAD. This study aims to delve into the causal relationship between human metabolic biomarkers and CAD by using two-sample Mendelian randomization (MR). Utilizing two-sample bidirectional MR analysis, we assessed the correlation between 1400 blood metabolites and CAD, and the metabolites data from the CLSA, encompassing 8299 participants. Metabolite analysis identified 1091 plasma metabolites and 309 ratios as instrumental variables. To evaluate the causal link between metabolites and CAD, we analyzed three datasets: ebi-a-GCST005195 (547,261 European & East Asian samples), bbj-a-159 (29,319 East Asian CAD cases & 183,134 East Asian controls), and ebi-a-GCST005194 (296,525 European & East Asian samples). To estimate causal links, we utilized the IVW method. To conduct sensitivity analysis, we used MR-Egger, Weighted Median, and MR-PRESSO. Additionally, we employed MR-Egger interception and Cochran's Q statistic to assess potential heterogeneity and pleiotropy. What's more, replication and reverse analyses were performed to verify the reliability of the results and the causal order between metabolites and disease. Furthermore, we conducted a pathway analysis to identify potential metabolic pathways. 59 blood metabolites and 27 metabolite ratios nominally associated with CAD (P < 0.05) were identified by IVW analysis method. A total of four known blood metabolites, namely beta-hydroxyisovaleroylcarnitine (OR 1.06, 95% CI 1.027-1.094, FDR 0.07), 1-palmitoyl-2-arachidonoyl (OR 1.07, 95% CI 1.029-1.110, FDR 0.09), 1-stearoyl-2- docosahexaenoyl (OR 1.07, 95% CI 1.034-1.113, FDR 0.07) and Linoleoyl-arachidonoyl-glycerol, (OR 1.07, 95% CI 1.036-1.105, FDR 0.05), and two metabolite ratios, namely spermidine to N-acetylputrescine ratio (OR 0.94, 95% CI 0.903-0.972, FDR 0.09) and benzoate to linoleoyl-arachidonoyl-glycerol ratio (OR 0.87, 95% CI 0.879-0.962, FDR 0.07), were confirmed as having a significant causal relationship with CAD, after correcting for the FDR method (p < 0. 1). A causal relationship was found to be established between beta -hydroxyisovalerylcarnitine and CAD with the validation in other two datasets. Moreover, multiple metabolic pathways were discovered to be associated with CAD. Our study supports the hypothesis that metabolites have an impact on CAD by demonstrating a causal relationship between human metabolites and CAD. This study is important for new strategies for the prevention and treatment of CAD.


Assuntos
Biomarcadores , Doença da Artéria Coronariana , Análise da Randomização Mendeliana , Feminino , Humanos , Masculino , Biomarcadores/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Metabolômica/métodos , População do Leste Asiático , População Europeia
11.
BMC Cardiovasc Disord ; 24(1): 394, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080547

RESUMO

OBJECTIVE: To examine the influences and mechanisms of MicroRNA-19a-3p (miR-19a-3p) on endothelial dysfunction in atherosclerosis. METHODS: An analysis of miR-19a expression was carried out using the Gene Expression Omnibus (GEO) database. The effect of miR-19a-3p on endothelial function in HUVECs was evaluated by miR-19a-3p overexpression under TNF-α treatment. Luciferase assays were performed to explore the potential target genes. Overexpression of junctional protein associated with coronary artery disease (JCAD) was used to examine the effects of miR-19a-3p on cell adhesion, and proliferation. RESULTS: MiR-19a-3p expression in endothelial cells decreased after exposure to TNF-α and/or oscillatory flow, consistent with the expression change of miR-19a-3p found in atherosclerotic plaques. Additionally, endothelial cell dysfunction and inflammation were significantly diminished by miR-19a-3p overexpression but markedly exacerbated by miR-19a-3p inhibition. MiR-19a-3p transfection significantly decreased the expression of JCAD by binding to the 3'-UTR of JCAD mRNA. Furthermore, the protective effect of miR-19a-3p against endothelial cell dysfunction and inflammation was achieved by regulating JCAD and was closely linked to the Hippo/YAP signaling pathway. CONCLUSION: MiR-19a-3p expression is a crucial molecular switch in the onset of atherosclerosis and miR-19a-3p overexpression is a possible pharmacological therapeutic strategy for reversing the development of atherosclerosis.


Assuntos
Aterosclerose , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , MicroRNAs , Transdução de Sinais , Proteínas de Sinalização YAP , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Adesão Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Cultivadas , Bases de Dados Genéticas , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Regiões 3' não Traduzidas , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Via de Sinalização Hippo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sítios de Ligação
12.
Cell Biol Int ; 48(11): 1664-1679, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39004874

RESUMO

N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals. However, limited research has been conducted on the role of m6A in coronary artery disease (CAD). We conducted methylated RNA immunoprecipitation sequencing and RNA sequencing to obtain a genome-wide profile of m6A-modified long noncoding RNAs (lncRNAs) in human coronary artery smooth muscle cells either exposed to oxidized low-density lipoprotein treatment or not, and the characteristics of the expression profiles were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The predictive effects of seven selected lncRNAs on CAD were evaluated in peripheral blood mononuclear cells (PBMCs). The differentially m6A-modified and expressed lncRNAs related genes were predominantly enriched in small GTPase-mediated signal transduction, ErbB signaling, and Rap1 signaling. Additionally, the expression levels of uc003pes.1, ENST00000422847, and NR_110155 were significantly associated with CAD, with uc003pes.1 identified as an independent risk factor and NR_110155 as an independent protective factor for CAD. NR_110155 and uc003pes.1 in PBMCs have the potential to serve as biomarkers for predicting CAD.


Assuntos
Adenosina , Biomarcadores , Doença da Artéria Coronariana , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Biomarcadores/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Feminino , Miócitos de Músculo Liso/metabolismo , Pessoa de Meia-Idade , Vasos Coronários/metabolismo , Lipoproteínas LDL/metabolismo
13.
Aging (Albany NY) ; 16(18): 12510-12524, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968577

RESUMO

The progression of atherosclerosis (AS), the pathological foundation of coronary artery disease (CAD), is featured by massive lipid deposition in the vessel wall. LncRNAs are implicated in lipid disorder and AS, whereas the specific role of lncRNA DANCR in atherogenesis remains unknown. Here, we demonstrated that DANCR promotes macrophage lipid accumulation by regulating the expression of membrane cholesterol transport proteins. qPCR showed that compared to control groups, CAD patients and atherosclerotic mice had higher DANCR levels. Treating human THP-1 macrophages and mouse RAW264.7 macrophages with ox-LDL significantly upregulated the expression levels of DANCR. Oil Red O staining showed that the silence of DANCR robustly reduced, while overexpression of DANCR significantly increased the numbers and size of lipid droplets in ox-LDL-treated THP-1 macrophages. In contrast, the opposite phenomena were observed in DANCR overexpressing cells. The expression of ABCA1, ABCG1, SR-BI, and NBD-cholesterol efflux was increased obviously by DANCR inhibition and decreased by DANCR overexpression, respectively. Furthermore, transfection with DANCR siRNA induced a robust decrease in the levels of CD36, SR-A, and Dil-ox-LDL uptake, while DANCR overexpression amplified the expression of CD36, SR-A and the uptake of Dil-ox-LDL in lipid-laden macrophages. Lastly, we found that the effects of DANCR on macrophage lipid accumulation and the expression of membrane cholesterol transport proteins were not likely related to miR-33a. The present study unraveled the adverse role of DANCR in foam cell formation and its relationship with cholesterol transport proteins. However, the competing endogenous RNA network underlying these phenomena warrants further exploration.


Assuntos
Colesterol , Macrófagos , RNA Longo não Codificante , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Humanos , Animais , Camundongos , Macrófagos/metabolismo , Colesterol/metabolismo , Células RAW 264.7 , Células THP-1 , Metabolismo dos Lipídeos/genética , Aterosclerose/metabolismo , Aterosclerose/genética , Masculino , MicroRNAs/metabolismo , MicroRNAs/genética , Lipoproteínas LDL/metabolismo , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Feminino
14.
Sci Rep ; 14(1): 15847, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982274

RESUMO

Atherosclerosis is rare in internal thoracic arteries (ITA) even in patients with severe atherosclerotic coronary artery (ACA) disease. To explore cellular differences, ITA SMC from 3 distinct donors and ACA SMC from 3 distinct donors were grown to sub-confluence and growth arrested for 48 h. Proliferation and thrombospondin-1 (TSP1) production were determined using standard techniques. ITA SMC were larger, grew more slowly and survived more passages than ACA SMC. ACA SMC had a more pronounced proliferative response to 10% serum than ITA SMC. Both ACA SMC and ITA SMC proliferated in response to exogenous TSP1 (12.5 µg/ml and 25 µg/ml) and platelet derived growth factor-BB (PDGF-BB; 20 ng/ml) but TSP1- and PDGF-BB-induced proliferation were partially inhibited by anti-TSP1 antibody A4.1, microRNA-21(miR-21)-3p inhibitors and miR-21-5p inhibitors in each of the 3 ACA SMC lines, but not in any of the ITA SMC lines. PDGF-BB stimulated TSP1 production in ACA SMC but not in ITA SMC but there was no increase in TSP1 levels in conditioned media in either SMC type. In summary, there are significant differences in morphology, proliferative capacity and in responses to TSP1 and PDGF-BB in SMC derived from ITA compared to SMC derived from ACA.


Assuntos
Becaplermina , Proliferação de Células , Vasos Coronários , Miócitos de Músculo Liso , Trombospondina 1 , Becaplermina/metabolismo , Trombospondina 1/metabolismo , Trombospondina 1/genética , Humanos , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Vasos Coronários/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Artéria Torácica Interna/metabolismo , Artéria Torácica Interna/efeitos dos fármacos , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Masculino
15.
FASEB J ; 38(13): e23806, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38970404

RESUMO

Atherosclerosis refers to a disease characterized by the formation of lipid plaque deposits within arterial walls, leading to reduced blood flow or blockage of blood outflow. The process of endothelial injury induced by oxidized low-density lipoprotein (ox-LDL) is considered the initial stage of atherosclerosis. Ferroptosis is a form of iron-dependent, non-apoptotic cell death, and current research suggests its association with coronary artery disease (CAD). In this study, we observed a correlation between reduced expression of SREBP-1 and the occurrence of stable CAD. Additionally, during the process of endothelial injury induced by ox-LDL, we also noted decreased expression of the SREBP-1/SCD1/FADS2 and involvement in the ferroptosis process. Mechanistically, ox-LDL induced endothelial injury by inhibiting the lipid biosynthesis process mediated by the SREBP-1/SCD1/FADS2, thereby inducing lipid peroxidation and ferroptosis. On the contrary, overexpression of SREBP-1 or supplementation with monounsaturated fatty acids counteracted iron accumulation, mitochondrial damage, and lipid peroxidation-induced ferroptosis, thereby improving endothelial injury. Our study indicated that the decreased expression of peripheral blood SREBP-1 mRNA is an independent risk factor for stable CAD. Furthermore, in endothelial cells, the lipid biosynthesis process mediated by SREBP-1 could ameliorate endothelial injury by resisting ferroptosis. The study has been registered with the Chinese Clinical Trial Registry, which serves as a primary registry in the World Health Organization International Clinical Trials Registry Platform (ChiCTR2300074315, August 3rd, 2023).


Assuntos
Ferroptose , Lipogênese , Lipoproteínas LDL , Proteína de Ligação a Elemento Regulador de Esterol 1 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aterosclerose/metabolismo , Aterosclerose/patologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peroxidação de Lipídeos , Lipoproteínas LDL/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
16.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000032

RESUMO

Methylation is a biochemical process involving the addition of a methyl group (-CH3) to various chemical compounds. It plays a crucial role in maintaining the homeostasis of the endothelium, which lines the interior surface of blood vessels, and has been linked, among other conditions, to coronary artery disease (CAD). Despite significant progress in CAD diagnosis and treatment, intensive research continues into genotypic and phenotypic CAD biomarkers. This review explores the significance of the methylation pathway and folate metabolism in CAD pathogenesis, with a focus on endothelial dysfunction resulting from deficiency in the active form of folate (5-MTHF). We discuss emerging areas of research into CAD biomarkers and factors influencing the methylation process. By highlighting genetically determined methylation disorders, particularly the MTHFR polymorphism, we propose the potential use of the active form of folate (5-MTHF) as a novel CAD biomarker and personalized pharmaceutical for selected patient groups. Our aim is to improve the identification of individuals at high risk of CAD and enhance their prognosis.


Assuntos
Doença da Artéria Coronariana , Ácido Fólico , Metilenotetra-Hidrofolato Redutase (NADPH2) , Humanos , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/etiologia , Ácido Fólico/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Metilação de DNA , Biomarcadores , Metilação , Animais , Polimorfismo Genético
17.
Cell Biochem Biophys ; 82(3): 2237-2248, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38849695

RESUMO

LncRNAs involvement in heart disease, however, the effect of lncRNA prostate cancer-associated transcript 19 (PCAT19) in coronary artery disease (CAD) remains unclear. In the current study, we aimed to verify the role of PCAT19 in CAD. We first investigated the differentially expressed lncRNAs in different Genes Expression Omnibus (GEO) database. We then detected lncRNAs expression in healthy volunteers and acute myocardial infarction (AMI) patients by qRT­PCR. The correlation of PCAT19 and Glucosaminyl (N-Acetyl) Transferase 2 (GCNT2) was analyzed. Human coronary artery endothelial cells (HCAECs) was used to conduct cell hypoxia-reoxygenation (H/R) injury model to imitate AMI injury. CCK8, BrdU, tube formation assay were used to detect cell viability, proliferation, and angiogenesis. Immunofluorescence, western blotting were used to detect ki67, VEGFA, PCNA, CD31, and GCNT2 expression, respectively. We obtained six different lncRNAs from GEO database and identified PCAT19 high expression in AMI patients. PCAT19 was positive correlation to GCNT2. Further experiments presented that PCAT19 knockdown promoted cell viability, proliferation and angiogenesis, GCNT2 knockdown also promoted cell viability, proliferation, and angiogenesis. These results confirmed by the inhibition of Ki67 and VEGFA. Importantly, PCAT19 overexpression suppressed cell proliferation and angiogenesis, these results also confirmed by the inhibition of PCNA and CD31. However, the inhibitory effect of PCAT19 overexpression was reversed by GCNT2 knockdown. Our study indicated that PCAT19 plays an important role in the CAD disease, its effects was related to GCNT2. Our research provides a novel sight for the effect of PCAT19 on CAD.


Assuntos
Proliferação de Células , Doença da Artéria Coronariana , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Sobrevivência Celular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Masculino , Células Cultivadas , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Interferência de RNA , Neovascularização Patológica/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Angiogênese
18.
J Clin Lipidol ; 18(4): e579-e587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38906750

RESUMO

BACKGROUND: Phospholipid transfer protein (PLTP) transfers surface phospholipids between lipoproteins and as such plays a role in lipoprotein metabolism, but with unclear effects on coronary artery disease (CAD) risk. We aimed to investigate the associations of genetically-influenced PLTP activity with 1-H nuclear magnetic resonance (1H-NMR) metabolomic measures and with CAD. Furthermore, using factorial Mendelian randomization (MR), we examined the potential additional effect of genetically-influenced PLTP activity on CAD risk on top of genetically-influenced low-density lipoprotein-cholesterol (LDL-C) lowering. METHODS: Using data from UK Biobank, genetic scores for PLTP activity and LDL-C were calculated and dichotomised based on the median, generating four groups with combinations of high/low PLTP activity and high/low LDL-C levels for the factorial MR. Linear and logistic regressions were performed on 168 metabolomic measures (N = 58,514) and CAD (N = 318,734, N-cases=37,552), respectively, with results expressed as ß coefficients (in standard deviation units) or odds ratios (ORs) and 95% confidence interval (CI). RESULTS: Irrespective of the genetically-influenced LDL-C, genetically-influenced low PLTP activity was associated with a higher high-density lipoprotein (HDL) particle concentration (ß [95% CI]: 0.03 [0.01, 0.05]), smaller HDL size (-0.14 [-0.15, -0.12]) and higher triglyceride (TG) concentration (0.04 [0.02, 0.05]), but not with CAD (OR 0.99 [0.97, 1.02]). In factorial MR analyses, genetically-influenced low PLTP activity and genetically-influenced low LDL-C had independent associations with metabolomic measures, and genetically-influenced low PLTP activity did not show an additional effect on CAD risk. CONCLUSIONS: Low PLTP activity associates with higher HDL particle concentration, smaller HDL particle size and higher TG concentration, but no association with CAD risk was observed.


Assuntos
Doença da Artéria Coronariana , Proteínas de Transferência de Fosfolipídeos , Humanos , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/sangue , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Masculino , Feminino , LDL-Colesterol/sangue , LDL-Colesterol/metabolismo , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Lipoproteínas/metabolismo , Lipoproteínas/sangue
19.
Exp Cell Res ; 440(2): 114147, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38944174

RESUMO

Coronary artery calcification (CAC) is a hallmark event in the pathogenesis of cardiovascular disease, involving the phenotypic transformation of vascular smooth muscle cells (VSMC) towards an osteogenic state. Despite this understanding, the molecular mechanisms governing the VSMC osteogenic switch remain incompletely elucidated. Here, we sought to examine the potential role of circular RNA (circRNA) in the context of CAC. Through transcriptome analysis of circRNA-seq, we identified circTOP1 as a potential candidate circRNA in individuals with CAC. Furthermore, we observed that overexpression of circTOP1 exacerbated vascular calcification in a CAC model. Subsequent pull-down assays revealed an interaction between circTOP1 and PTBP1, a putative target gene of circTOP1 in the context of CAC. In both in vivo and in vitro experiments, we observed heightened expression of circTOP1 and PTBP1 in the CAC model, and noted that reducing circTOP1 expression effectively reduced calcium salt deposits and mineralized nodules in model mice. Additionally, in vitro experiments demonstrated that overexpression of PTBP1 reversed the weakening of signaling caused by silencing circTOP1, thereby exacerbating the osteogenic transition and calcification of VSMC. Collectively, our findings suggested that circTOP1 promotes CAC by modulating PTBP1 expression to mediate VSMC transdifferentiation.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , Músculo Liso Vascular , Miócitos de Músculo Liso , Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA Circular , Calcificação Vascular , Animais , Humanos , Masculino , Camundongos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/metabolismo , Vasos Coronários/patologia , Vasos Coronários/metabolismo , Progressão da Doença , Regulação da Expressão Gênica/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Osteogênese/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/patologia , Calcificação Vascular/metabolismo
20.
Hum Genet ; 143(7): 907-919, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833008

RESUMO

The long noncoding RNA CDKN2B-AS1 harbors a major coronary artery disease risk haplotype, which is also associated with progressive forms of the oral inflammatory disease periodontitis as well as myocardial infarction (MI). Despite extensive research, there is currently no broad consensus on the function of CDKN2B-AS1 that would explain a common molecular role of this lncRNA in these diseases. Our aim was to investigate the role of CDKN2B-AS1 in gingival cells to better understand the molecular mechanisms underlying the increased risk of progressive periodontitis. We downregulated CDKN2B-AS1 transcript levels in primary gingival fibroblasts with LNA GapmeRs. Following RNA-sequencing, we performed differential expression, gene set enrichment analyses and Western Blotting. Putative causal alleles were searched by analyzing associated DNA sequence variants for changes of predicted transcription factor binding sites. We functionally characterized putative functional alleles using luciferase-reporter and antibody electrophoretic mobility shift assays in gingival fibroblasts and HeLa cells. Of all gene sets analysed, collagen biosynthesis was most significantly upregulated (Padj=9.7 × 10- 5 (AUC > 0.65) with the CAD and MI risk gene COL4A1 showing strongest upregulation of the enriched gene sets (Fold change = 12.13, Padj = 4.9 × 10- 25). The inflammatory "TNFA signaling via NFKB" gene set was downregulated the most (Padj=1 × 10- 5 (AUC = 0.60). On the single gene level, CAPNS2, involved in extracellular matrix organization, was the top upregulated protein coding gene (Fold change = 48.5, P < 9 × 10- 24). The risk variant rs10757278 altered a binding site of the pathogen responsive transcription factor STAT1 (P = 5.8 × 10- 6). rs10757278-G allele reduced STAT1 binding 14.4% and rs10757278-A decreased luciferase activity in gingival fibroblasts 41.2% (P = 0.0056), corresponding with GTEx data. CDKN2B-AS1 represses collagen gene expression in gingival fibroblasts. Dysregulated collagen biosynthesis through allele-specific CDKN2B-AS1 expression in response to inflammatory factors may affect collagen synthesis, and in consequence tissue barrier and atherosclerotic plaque stability.


Assuntos
Colágeno , Fibroblastos , Gengiva , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Gengiva/metabolismo , Gengiva/patologia , Fibroblastos/metabolismo , Colágeno/metabolismo , Colágeno/genética , Periodontite/genética , Periodontite/metabolismo , Regulação da Expressão Gênica , Células HeLa , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...