Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.803
Filtrar
1.
PLoS Negl Trop Dis ; 18(9): e0012407, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39236037

RESUMO

BACKGROUND: Maternal-foetal transmission of Chagas disease (CD) affects newborns worldwide. Although Benznidazole and Nifurtimox therapies are the standard treatments, their use during pregnancy is contra-indicated. The effectiveness of trypanocidal medications in preventing congenital Chagas Disease (cCD) in the offsprings of women diagnosed with CD was highly suggested by other studies. METHODS: We performed a systematic review and meta-analysis of studies evaluating the effectiveness of treatment for CD in women of childbearing age and reporting frequencies of cCD in their children. PubMed, Scopus, Web of Science, Cochrane Library, and LILACS databases were systematically searched. Statistical analysis was performed using Rstudio 4.2 using DerSimonian and Laird random-effects models. Heterogeneity was examined with the Cochran Q test and I2 statistics. A p-value of <0.05 was considered statistically significant. RESULTS: Six studies were included, comprising 744 children, of whom 286 (38.4%) were born from women previously treated with Benznidazole or Nifurtimox, trypanocidal agents. The primary outcome of the proportion of children who were seropositive for cCD, confirmed by serology, was signigicantly lower among women who were previously treated with no congenital transmission registered (OR 0.05; 95% Cl 0.01-0.27; p = 0.000432; I2 = 0%). In women previously treated with trypanocidal drugs, the pooled prevalence of cCD was 0.0% (95% Cl 0-0.91%; I2 = 0%), our meta-analysis confirms the excellent effectiveness of this treatment. The prevalence of adverse events in women previously treated with antitrypanocidal therapies was 14.01% (95% CI 1.87-26.14%; I2 = 80%), Benznidazole had a higher incidence of side effects than Nifurtimox (76% vs 24%). CONCLUSION: The use of trypanocidal therapy in women at reproductive age with CD is an effective strategy for the prevention of cCD, with a complete elimination of congenital transmission of Trypanosoma cruzi in treated vs untreated infected women.


Assuntos
Doença de Chagas , Transmissão Vertical de Doenças Infecciosas , Nifurtimox , Nitroimidazóis , Tripanossomicidas , Humanos , Feminino , Tripanossomicidas/uso terapêutico , Tripanossomicidas/efeitos adversos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/prevenção & controle , Doença de Chagas/congênito , Doença de Chagas/transmissão , Gravidez , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Nifurtimox/uso terapêutico , Nifurtimox/efeitos adversos , Nitroimidazóis/uso terapêutico , Nitroimidazóis/efeitos adversos , Estudos Observacionais como Assunto , Recém-Nascido , Adulto , Trypanosoma cruzi/efeitos dos fármacos , Complicações Parasitárias na Gravidez/prevenção & controle , Complicações Parasitárias na Gravidez/tratamento farmacológico
3.
Acta Trop ; 259: 107368, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39173727

RESUMO

Chagas disease is a key vector-borne disease. This illness is caused by Trypanosoma cruzi Chagas, which is transmitted by triatomine bugs. Largely, the control of this disease relies on reducing such contact. We optimized the performance of a box trap in laboratory conditions to capture four triatomine species: Triatoma pallidipennis (Stål), Triatoma infestans Klug, Triatoma phyllosoma (Burmeister), and Rhodnius prolixus Stål. We varied four components for a box trap: material, color, height, and bait attractants. All species were captured more in corrugated cardboard traps than in other trap material. Moreover, T. infestans and R. prolixus were also captured in plywood traps. T. pallidipennis preferred traps of 15 × 15 × 4 cm and 20 × 20 × 4 cm, while T. phyllosoma and T. infestans were more captured in traps of 10 × 10 × 4 cm, and 15 × 15 × 4 cm. Rhodnius prolixus was more captured to 10 × 10 × 4 cm traps. T. pallidipennis was trapped with traps of any color tested, T. phyllosoma and T. infestans were captured more in red and yellow traps, and R. prolixus was mostly captured in blue, violet, and yellow traps. Triatoma pallidipennis was captured at any height above the ground, while T. phyllosoma, T. infestans, and R. prolixus were mostly captured 50, 100, and 150 cm above the ground. Regarding the lure, T. pallidipennis was trapped with four aldehydes + lactic acid + ammonia; T. infestans and R. prolixus were trapped with a blend of four aldehydes + lactic acid, a blend of the four aldehydes + ammonia, and a blend of four aldehydes + lactic acid + ammonia. Triatoma phyllosoma was trapped with any lure tested. These results showed that the trap boxes offer an alternative method for controlling Chagas disease.


Assuntos
Rhodnius , Triatoma , Animais , Rhodnius/parasitologia , Doença de Chagas/transmissão , Doença de Chagas/prevenção & controle , Controle de Insetos/métodos , Controle de Insetos/instrumentação , Trypanosoma cruzi , Insetos Vetores/fisiologia
5.
Front Immunol ; 15: 1413893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915396

RESUMO

Introduction: Trypanosoma cruzi is a protozoan parasite that causes the tropical ailment known as Chagas disease, which has its origins in South America. Globally, it has a major impact on health and is transported by insect vector that serves as a parasite. Given the scarcity of vaccines and the limited treatment choices, we conducted a comprehensive investigation of core proteomics to explore a potential reverse vaccine candidate with high antigenicity. Methods: To identify the immunodominant epitopes, T. cruzi core proteomics was initially explored. Consequently, the vaccine sequence was engineered to possess characteristics of non-allergenicity, antigenicity, immunogenicity, and enhanced solubility. After modeling the tertiary structure of the human TLR4 receptor, the binding affinities were assessed employing molecular docking and molecular dynamics simulations (MDS). Results: Docking of the final vaccine design with TLR4 receptors revealed substantial hydrogen bond interactions. A server-based methodology for immunological simulation was developed to forecast the effectiveness against antibodies (IgM + IgG) and interferons (IFN-g). The MDS analysis revealed notable levels of structural compactness and binding stability with average RMSD of 5.03 Aring;, beta-factor 1.09e+5 Å, Rg is 44.7 Aring; and RMSF of 49.50 Aring;. This is followed by binding free energies calculation. The system stability was compromised by the complexes, as evidenced by their corresponding Gibbs free energies of -54.6 kcal/mol. Discussion: Subtractive proteomics approach was applied to determine the antigenic regions of the T cruzi. Our study utilized computational techniques to identify B- and T-cell epitopes in the T. cruzi core proteome. In current study the developed vaccine candidate exhibits immunodominant features. Our findings suggest that formulating a vaccine targeting the causative agent of Chagas disease should be the initial step in its development.


Assuntos
Doença de Chagas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteoma , Vacinas Protozoárias , Receptor 4 Toll-Like , Trypanosoma cruzi , Trypanosoma cruzi/imunologia , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Humanos , Proteoma/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/química , Vacinas Protozoárias/imunologia , Animais , Epitopos Imunodominantes/imunologia , Proteômica/métodos , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/química , Anticorpos Antiprotozoários/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/química , Desenvolvimento de Vacinas , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química
6.
J Biomed Sci ; 31(1): 58, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824576

RESUMO

BACKGROUND: A vaccine against Trypanosoma cruzi, the agent of Chagas disease, would be an excellent additional tool for disease control. A recombinant vaccine based on Tc24 and TSA1 parasite antigens was found to be safe and immunogenic in naïve macaques. METHODS: We used RNA-sequencing and performed a transcriptomic analysis of PBMC responses to vaccination of naïve macaques after each vaccine dose, to shed light on the immunogenicity of this vaccine and guide the optimization of doses and formulation. We identified differentially expressed genes and pathways and characterized immunoglobulin and T cell receptor repertoires. RESULTS: RNA-sequencing analysis indicated a clear transcriptomic response of PBMCs after three vaccine doses, with the up-regulation of several immune cell activation pathways and a broad non-polarized immune profile. Analysis of the IgG repertoire showed that it had a rapid turnover with novel IgGs produced following each vaccine dose, while the TCR repertoire presented several persisting clones that were expanded after each vaccine dose. CONCLUSIONS: These data suggest that three vaccine doses may be needed for optimum immunogenicity and support the further evaluation of the protective efficacy of this vaccine.


Assuntos
Doença de Chagas , Macaca mulatta , Vacinas Protozoárias , Receptores de Antígenos de Linfócitos T , Animais , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Receptores de Antígenos de Linfócitos T/imunologia , Vacinas Protozoárias/imunologia , Trypanosoma cruzi/imunologia , Imunoglobulinas/imunologia
7.
Acta Trop ; 256: 107262, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801912

RESUMO

Chagas disease is a zoonosis caused by the protozoan Trypanosoma cruzi and transmitted through the feces of triatomines, mainly in Latin America. Since the 1950s, chemical insecticides have been the primary method for controlling these triatomines, yet resistance has emerged, prompting the exploration of alternative approaches. The objective of this research was to test the capacity of the entomopathogenic nematodes Heterorhabditis indica and its symbiotic bacteria Photorhabdus luminescens, to produce mortality of Triatoma dimidiata a key vector of T. cruzi in Mexico under laboratory conditions. Two bioassays were conducted. In the first bioassay, the experimental unit was a 250 ml plastic jar with 100 g of sterile soil and three adult T. dimidiata. Three nematode quantities were tested: 2250, 4500, and 9000 nematodes per 100 g of sterile soil (n/100 g) per jar, with 3 replicates for each concentration and 1 control per concentration (1 jar with 100 g of sterile soil and 3 T. dimidiata without nematodes). The experimental unit of the second bioassay was a 500 ml plastic jar with 100 g of sterile soil and 4 adult T. dimidiata. This bioassay included 5, 50, 500, and 5000 n/100 g of sterile soil per jar, with 3 replicates of each quantity and 1 control per quantity. Data were analyzed using Kaplan-Meyer survival analysis. Electron microscopy was used to assess the presence of nematodes and tissue damage in T. dimidiata. The results of the first bioassay demonstrated that the nematode induced an accumulated average mortality ranging from 55.5 % (2250 n/100 g) to 100 % (4500 and 9000 n/100 g) within 144 h. In the second bioassay, the 5000 n/100 g concentration yielded 87.5 % mortality at 86 h, but a concentration as small as 500 n/100 g caused 75 % mortality from 84 h onwards. Survival analysis indicated higher T. dimidiata mortality with increased nematode quantities, with significant differences between the 4500, 5000, and 9000 n/100 g and controls. Electron microscopy revealed the presence of nematodes and its presumably symbiotic bacteria in the digestive system of T. dimidiata. Based on these analyses, we assert that the H. indica and P. luminescens complex causes mortality in adult T. dimidiata under laboratory conditions.


Assuntos
Doença de Chagas , Photorhabdus , Triatoma , Animais , Doença de Chagas/parasitologia , Doença de Chagas/prevenção & controle , Triatoma/parasitologia , México , Análise de Sobrevida , Rabditídios/fisiologia , Agentes de Controle Biológico , Controle Biológico de Vetores/métodos , Rhabditoidea/fisiologia , Vetores de Doenças , Trypanosoma cruzi/fisiologia
8.
Recurso na Internet em Português | LIS | ID: lis-49600

RESUMO

O declínio dos títulos de anticorpos específicos para o Trypanosoma cruzi, em pacientes com diagnóstico de doença de Chagas crônica após o tratamento, foi avaliado em estudo, utilizando proteínas quiméricas. A pesquisa, de coorte transversal prospectiva envolveu participantes com diagnóstico positivo para T. cruzi, da região de Añatuya, na Argentina, e que foram tratados com benznidazol.


Assuntos
Doença de Chagas/prevenção & controle , Proteínas Recombinantes de Fusão
9.
Clin Infect Dis ; 78(Supplement_2): S175-S182, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662705

RESUMO

BACKGROUND: Neglected tropical diseases are responsible for considerable morbidity and mortality in low-income populations. International efforts have reduced their global burden, but transmission is persistent and case-finding-based interventions rarely target asymptomatic individuals. METHODS: We develop a generic mathematical modeling framework for analyzing the dynamics of visceral leishmaniasis in the Indian sub-continent (VL), gambiense sleeping sickness (gHAT), and Chagas disease and use it to assess the possible contribution of asymptomatics who later develop disease (pre-symptomatics) and those who do not (non-symptomatics) to the maintenance of infection. Plausible interventions, including active screening, vector control, and reduced time to detection, are simulated for the three diseases. RESULTS: We found that the high asymptomatic contribution to transmission for Chagas and gHAT and the apparently high basic reproductive number of VL may undermine long-term control. However, the ability to treat some asymptomatics for Chagas and gHAT should make them more controllable, albeit over relatively long time periods due to the slow dynamics of these diseases. For VL, the toxicity of available therapeutics means the asymptomatic population cannot currently be treated, but combining treatment of symptomatics and vector control could yield a quick reduction in transmission. CONCLUSIONS: Despite the uncertainty in natural history, it appears there is already a relatively good toolbox of interventions to eliminate gHAT, and it is likely that Chagas will need improvements to diagnostics and their use to better target pre-symptomatics. The situation for VL is less clear, and model predictions could be improved by additional empirical data. However, interventions may have to improve to successfully eliminate this disease.


Assuntos
Infecções Assintomáticas , Doença de Chagas , Leishmaniose Visceral , Modelos Teóricos , Doenças Negligenciadas , Humanos , Doenças Negligenciadas/prevenção & controle , Doenças Negligenciadas/epidemiologia , Doença de Chagas/transmissão , Doença de Chagas/prevenção & controle , Doença de Chagas/epidemiologia , Doença de Chagas/tratamento farmacológico , Infecções Assintomáticas/epidemiologia , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/transmissão , Leishmaniose Visceral/tratamento farmacológico , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/transmissão , Tripanossomíase Africana/tratamento farmacológico , Índia/epidemiologia , Animais
10.
Acta Parasitol ; 69(2): 1148-1156, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38592371

RESUMO

PURPOSE: Chagas disease (CD) a Neglected Tropical Diseases is an important public health issue in countries where is still endemic, included in the Sustainable Development Goals (SDG). Traditionally restricted to rural areas with diverse routes of transmissions from vectorial to oral with acute manifestations but being more common diagnosed in chronic stages. The aim of this investigation was to characterize the Knowledge, Attitudes and Practices (KAP) related to Chagas disease (CD) in two rural settlements of the Colombian Caribbean with previous records of the disease and/or the parasite. METHODS: A cross-sectional descriptive study was made in two rural settlements in Colombia and surveillance instrument was developed to measure Knowledge, Attitudes and Practices (KAP) related to Chagas disease (CD). RESULTS: In a population with > 60% women and access to social security around 66.5%; 81,6% were homeowners with access to water and electricity > 90% but only 9% of sewerage. The level of knowledge about CD was around 62% but lack of specificity about comprehension of transmission routes (74,6%), and symptoms (85,3%) were found; concluding that 86% of the surveyed sample had very poor level of knowledge about the disease despite preventive campaigns carried out in the two communities studied. CONCLUSIONS: Despite of a low frequency of CD in this Caribbean areas, the presence of vector, risk factors plus poor level of knowledge about the disease justify that public health intervention strategies should be implemented and monitored over time to maintain uninterrupted surveillance of Chagas Disease.


Assuntos
Doença de Chagas , Conhecimentos, Atitudes e Prática em Saúde , Doenças Negligenciadas , População Rural , Doença de Chagas/prevenção & controle , Doença de Chagas/epidemiologia , Humanos , Colômbia/epidemiologia , Estudos Transversais , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Doenças Negligenciadas/prevenção & controle , Doenças Negligenciadas/epidemiologia , Adulto Jovem , Adolescente , Idoso , Inquéritos e Questionários , Região do Caribe/epidemiologia
11.
Travel Med Infect Dis ; 59: 102708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467231

RESUMO

INTRODUCTION: Detecting imported diseases by migrants and individuals visiting friends and relatives (VFR) is key in the prevention and management of emergent infectious diseases acquired abroad. METHODS: Retrospective descriptive study on migrants and VFR from Central and South America between 2017 and 2022 attended at a National Referral Centre for Tropical Diseases in Madrid, Spain. Demographic characteristics, syndromes and confirmed travel-related diagnoses were obtained from hospital patient medical records. RESULTS: 1654 cases were registered, median age of 42 years, 69.1% were female, and 55.2% were migrants. Most cases came from Bolivia (49.6%), followed by Ecuador (12.9%). Health screening while asymptomatic (31.6%) was the main reason for consultation, followed by Chagas disease follow-up (31%). Of those asymptomatic at screening, 47,2% were finally diagnosed of any disease, mainly Chagas disease (19,7%) and strongyloidiasis (10,2%) CONCLUSION: Our study emphasizes the importance of proactive health screening to detect asymptomatic conditions in migrants and VFR, enabling timely intervention and improved health outcomes. By understanding the unique health profiles of immigrant populations, targeted public health interventions can be devised to safeguard the well-being of these vulnerable groups.


Assuntos
Doenças Transmissíveis Importadas , Migrantes , Humanos , Estudos Retrospectivos , Feminino , Masculino , Adulto , Doenças Transmissíveis Importadas/epidemiologia , Doenças Transmissíveis Importadas/prevenção & controle , Doenças Transmissíveis Importadas/diagnóstico , Espanha/epidemiologia , Migrantes/estatística & dados numéricos , Pessoa de Meia-Idade , Viagem/estatística & dados numéricos , Adolescente , América Latina/epidemiologia , América Latina/etnologia , Adulto Jovem , Doença de Chagas/diagnóstico , Doença de Chagas/epidemiologia , Doença de Chagas/prevenção & controle , Criança , Idoso , Medicina Tropical , Encaminhamento e Consulta/estatística & dados numéricos , Emigrantes e Imigrantes/estatística & dados numéricos
12.
ACS Appl Mater Interfaces ; 16(13): 15832-15846, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518375

RESUMO

Chagas disease (CD) (American trypanosomiasis caused by Trypanosoma cruzi) is a parasitic disease endemic in 21 countries in South America, with increasing global spread. When administered late in the infection, the current antiparasitic drugs do not prevent the onset of cardiac illness leading to chronic Chagasic cardiomyopathy. Therefore, new therapeutic vaccines or immunotherapies are under development using multiple platforms. In this study, we assessed the feasibility of developing an mRNA-based therapeutic CD vaccine targeting two known T. cruzi vaccine antigens (Tc24─a flagellar antigen and ASP-2─an amastigote antigen). We present the mRNA engineering steps, preparation, and stability of the lipid nanoparticles and evaluation of their uptake by dendritic cells, as well as their biodistribution in c57BL/J mice. Furthermore, we assessed the immunogenicity and efficacy of two mRNA-based candidates as monovalent and bivalent vaccine strategies using an in vivo chronic mouse model of CD. Our results show several therapeutic benefits, including reductions in parasite burdens and cardiac inflammation, with each mRNA antigen, especially with the mRNA encoding Tc24, and Tc24 in combination with ASP-2. Therefore, our findings demonstrate the potential of mRNA-based vaccines as a therapeutic option for CD and highlight the opportunities for developing multivalent vaccines using this approach.


Assuntos
Doença de Chagas , Vacinas Protozoárias , Camundongos , Animais , RNA , Distribuição Tecidual , Doença de Chagas/prevenção & controle , Antígenos de Protozoários/genética , RNA Mensageiro , Tecnologia
13.
Front Immunol ; 15: 1152000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361922

RESUMO

Chagas disease, a chronic disabling disease caused by the protozoan Trypanosoma cruzi, has no standardized treatment or preventative vaccine. The infective trypomastigote form of T. cruzi is highly resistant to killing by the complement immune system. Factor H (FH), a negative regulator of the alternative pathway (AP) of complement on cell surfaces and in blood, contains 20 short consensus repeat domains. The four N-terminal domains of FH inactivate the AP, while the other domains interact with C3b/d and glycan markers on cell surfaces. Various pathogens bind FH to inactivate the AP. T. cruzi uses its trans-sialidase enzyme to transfer host sialic acids to its own surface, which could be one of the approaches it uses to bind FH. Previous studies have shown that FH binds to complement-opsonized T. cruzi and parasite desialylation increases complement-mediated lysis of trypomastigotes. However, the molecular basis of FH binding to T. cruzi remain unknown. Only trypomastigotes, but not epimastigotes (non-infective, complement susceptible) bound FH directly, independent of C3 deposition, in a dose-dependent manner. Domain mapping experiments using 3-5 FH domain fragments showed that domains 5-8 competitively inhibited FH binding to the trypomastigotes by ~35% but did not decrease survival in complement. FH-Fc or mutant FH-Fc fusion proteins (3-11 contiguous FH domains fused to the IgG Fc) also did not kill trypomastigotes. FH-related protein-5, whose domains bear significant sequence identity to all known polyanion-binding FH domains (6-7, 10-14, 19-20), fully inhibited FH binding to trypomastigotes and reduced trypomastigote survival to < 24% in the presence of serum. In conclusion, we have elucidated the role of FH in complement resistance of trypomastigotes.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Fator H do Complemento , Doença de Chagas/prevenção & controle
14.
Multimedia | MULTIMEDIA, MULTIMEDIA-SMS-SP | ID: multimedia-12759

RESUMO

Folheto educativo referente ao barbeiro: biologia, medidas preventivas, importância para a saúde e doença de chagas


Assuntos
Educação em Saúde , Triatominae , Doença de Chagas/prevenção & controle , Zoonoses , Folhetos
15.
PLoS Negl Trop Dis ; 18(1): e0011895, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252673

RESUMO

BACKGROUND: In regions with controlled vector transmission of T. cruzi, congenital transmission is the most frequent route of infection. Treatment with benznidazole (BZ) or nifurtimox (NF) for 60 days in girls and women of childbearing age showed to be effective in preventing mother to child transmission of this disease. Reports on short-course treatment (≤30 days) are scarce. METHODS: Retrospective cohort study. Offspring of women with Chagas disease who received short-course treatment (≤30 days) with BZ or NF, attended between 2003 and 2022, were evaluated. Parasitemia (microhaematocrit and/or PCR) was performed at <8 months of age, and serology (ELISA and IHA) at ≥8 months to rule out congenital infection. RESULTS: A total of 27 women receiving ≤30 days of treatment and their children were included in this study. NF was prescribed in 17/27 (63%) women, and BZ in 10/27 (37%). The mean duration of treatment was 29.2 days. None of the women experienced serious adverse events during treatment, and no laboratory abnormalities were observed. Forty infants born to these 27 treated women were included. All newborns were full term, with appropriate weight for their gestational age. No perinatal infectious diseases or complications were observed. DISCUSSION: Several studies have shown that treatment of infected girls and women of childbearing age for 60 days is an effective practice to prevent transplacental transmission of T. cruzi. Our study demonstrated that short-duration treatment (≤30 days) is effective and beneficial in preventing transplacental transmission of Chagas disease.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Lactente , Criança , Recém-Nascido , Humanos , Feminino , Masculino , Estudos Retrospectivos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Doença de Chagas/tratamento farmacológico , Doença de Chagas/prevenção & controle , Nifurtimox/uso terapêutico , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico
16.
J Immunol ; 212(4): 617-631, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38197653

RESUMO

Chagas disease by Trypanosoma cruzi infection is a major public health issue. The available therapeutic agents have limited efficacy and significant side effects. A reliable vaccine would reduce the threat of T. cruzi infections and prevent Chagas disease. Understanding the immune response to this infection would improve vaccine design. We previously demonstrated that adoptively transferred NK cells from mice immunized with highly attenuated T. cruzi, GFP-DDDHA strain, provided potent protection in naive recipients against secondary lethal challenge with various wild-type (WT) strains. To understand the importance of NK cells in protecting mice against T. cruzi infection, we performed an in-depth characterization of NK cell phenotype, responses, and memory-like traits during acute infections due to GFP-DDDHA and WT strains and in immunized mice during a recall response to a WT lethal challenge. NK cells robustly expanded and became more mature and cytolytic during the GFP-DDDHA strain immunization. NK cells in immunized mice responded more robustly after WT lethal challenge than during an acute primary WT infection. In addition, protection by immunization with the GFP-DDDHA strain is significantly weakened in NK cell-deficient mice and did not prevent parasitemia from WT lethal challenge, indicating that NK cells with memory-like traits were a critical component for early control of WT lethal challenge. Prior T. cruzi vaccine development studies have not included studies of this rapid NK response. These findings provide insights into overcoming existing challenges in developing a safe and effective vaccine to prevent this infection.


Assuntos
Doença de Chagas , Vacinas Protozoárias , Trypanosoma cruzi , Animais , Camundongos , Doença de Chagas/prevenção & controle , Imunização , Células Matadoras Naturais
17.
Int J Gynaecol Obstet ; 164(3): 835-842, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37493222

RESUMO

Chagas disease (CD) is caused by the parasite Trypanosoma cruzi. Although it is endemic in many Latin American (LA) countries, mother-to-child transmission has caused it to expand to other countries and continents. In places where vector transmission is controlled or absent, the epidemiological importance of T. cruzi transmission of the infected mother to her child during pregnancy or childbirth (i.e., perinatal CD) increases. In countries where CD is not endemic, CD screening should be performed in pregnant or fertile women who are native to LA countries or whose mothers are native to LA countries. Diagnosis is established by detecting anti-T. cruzi IgG antibodies in a serum or plasma sample. Antiparasitic treatment cannot be offered during pregnancy, and since the majority of infected newborns are asymptomatic at birth, a diagnosis is made by direct observation or concentration (microhematocrit) or by using molecular testing techniques. Once the infected child receives a diagnosis, it is essential to offer treatment (benznidazole/nifurtimox) as soon as possible, with good tolerance and effectiveness in the first year of life. Even if the diagnosis is negative at birth, the newborn must be followed up for at least the first 9 months of life.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Gravidez , Recém-Nascido , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Mães , Doença de Chagas/diagnóstico , Doença de Chagas/prevenção & controle , Doença de Chagas/epidemiologia
18.
PLoS Negl Trop Dis ; 17(11): e0011519, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37988389

RESUMO

BACKGROUND: Chagas disease, chronic infection with Trypanosoma cruzi, mainly manifests as cardiac disease. However, the liver is important for both controlling parasite burdens and metabolizing drugs. Notably, high doses of anti-parasitic drug benznidazole (BNZ) causes liver damage. We previously showed that combining low dose BNZ with a prototype therapeutic vaccine is a dose sparing strategy that effectively reduced T. cruzi induced cardiac damage. However, the impact of this treatment on liver health is unknown. Therefore, we evaluated several markers of liver health after treatment with low dose BNZ plus the vaccine therapy in comparison to a curative dose of BNZ. METHODOLOGY: Female BALB/c mice were infected with a bioluminescent T. cruzi H1 clone for approximately 70 days, then randomly divided into groups of 15 mice each. Mice were treated with a 25mg/kg BNZ, 25µg Tc24-C4 protein/ 5µg E6020-SE (Vaccine), 25mg/kg BNZ followed by vaccine, or 100mg/kg BNZ (curative dose). At study endpoints we evaluated hepatomegaly, parasite burden by quantitative PCR, cellular infiltration by histology, and expression of B-cell translocation gene 2(BTG2) and Peroxisome proliferator-activated receptor alpha (PPARα) by RT-PCR. Levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were quantified from serum. RESULTS: Curative BNZ treatment significantly reduced hepatomegaly, liver parasite burdens, and the quantity of cellular infiltrate, but significantly elevated serum levels of ALT, AST, and LDH. Low BNZ plus vaccine did not significantly affect hepatomegaly, parasite burdens or the quantity of cellular infiltrate, but only elevated ALT and AST. Low dose BNZ significantly decreased expression of both BTG2 and PPARα, and curative BNZ reduced expression of BTG2 while low BNZ plus vaccine had no impact. CONCLUSIONS: These data confirm toxicity associated with curative doses of BNZ and suggest that while dose sparing low BNZ plus vaccine treatment does not reduce parasite burdens, it better preserves liver health.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Vacinas , Feminino , Animais , Camundongos , Hepatomegalia/tratamento farmacológico , Infecção Persistente , PPAR alfa/farmacologia , PPAR alfa/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/prevenção & controle , Doença de Chagas/parasitologia , Tripanossomicidas/farmacologia
19.
PLoS Negl Trop Dis ; 17(10): e0011694, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37844066

RESUMO

Vector-borne diseases remain a significant public health threat in many regions of the world. Traditional vector surveillance and control methods have relied on active and passive surveillance programs, which are often costly and time-consuming. New internet-based vector surveillance systems have shown promise in removing some of the cost and labor burden from health authorities. We developed and evaluated the effectiveness of a new internet-based surveillance system, "AlertaChirimacha", for detecting Triatoma infestans (known locally by its Quechua name, Chirimacha), the Chagas disease vector, in the city of Arequipa, Peru. In the first 26 months post-implementation, AlertaChirimacha received 206 reports of residents suspecting or fearing triatomines in their homes or neighborhoods, of which we confirmed, through pictures or inspections, 11 (5.3%) to be Triatoma infestans. After microscopic examination, none of the specimens collected were infected with Trypanosoma cruzi. AlertaChirimacha received 57% more confirmed reports than the traditional surveillance system and detected 10% more infested houses than active and passive surveillance approaches combined. Through in-depth interviews we evaluate the reach, bilateral engagement, and response promptness and efficiency of AlertaChirimacha. Our study highlights the potential of internet-based vector surveillance systems, such as AlertaChirimacha, to improve vector surveillance and control efforts in resource-limited settings. This approach could decrease the cost and time horizon for the elimination of vector-mediated Chagas disease in the region.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Humanos , Doença de Chagas/epidemiologia , Doença de Chagas/prevenção & controle , Triatoma/fisiologia , Insetos Vetores/fisiologia , Peru/epidemiologia
20.
Parasit Vectors ; 16(1): 258, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37528423

RESUMO

BACKGROUND: The Gran Chaco region is a major hotspot of Chagas disease. We implemented a 9-year program aimed at suppressing house infestation with Triatoma infestans and stopping vector-borne transmission to creole and indigenous (Qom) residents across Pampa del Indio municipality (Argentine Chaco). The aim of the present study was to assess the intervention effects on parasite-based transmission indices and the spatial distribution of the parasite, and test whether house-level variations in triatomine infection with Trypanosoma cruzi declined postintervention and were influenced by household ethnicity, persistent infestation linked to pyrethroid resistance and other determinants of bug infection. METHODS: This longitudinal study assessed house infestation and bug infection with T. cruzi before and after spraying houses with pyrethroids and implemented systematic surveillance-and-response measures across four operational areas over the period 2007-2016. Live triatomines were individually examined for infection by optical microscopy or kinetoplast DNA (kDNA)-PCR and declared to be infected with T. cruzi when assessed positive by either method. RESULTS: The prevalence of infection with T. cruzi was 19.4% among 6397 T. infestans examined. Infection ranged widely among the study areas (12.5-26.0%), household ethnicity (15.3-26.9%), bug ecotopes (1.8-27.2%) and developmental stages (5.9-27.6%), and decreased from 24.1% (baseline) to 0.9% (endpoint). Using random-intercept multiple logistic regression, the relative odds of bug infection strongly decreased as the intervention period progressed, and increased with baseline domestic infestation and bug stage and in Qom households. The abundance of infected bugs and the proportion of houses with ≥ 1 infected bug remained depressed postintervention and were more informative of area-wide risk status than the prevalence of bug infection. Global spatial analysis revealed sharp changes in the aggregation of bug infection after the attack phase. Baseline domestic infestation and baseline bug infection strongly predicted the future occurrence of bug infection, as did persistent domestic infestation in the area with multiple pyrethroid-resistant foci. Only 19% of houses had a baseline domestic infestation and 56% had ever had ≥ 1 infected bug. CONCLUSIONS: Persistent bug infection postintervention was closely associated with persistent foci generated by pyrethroid resistance. Postintervention parasite-based indices closely agreed with human serosurveys at the study endpoint, suggesting transmission blockage. The program identified households and population subgroups for targeted interventions and opened new opportunities for risk prioritization and sustainable vector control and disease prevention.


Assuntos
Doença de Chagas , Piretrinas , Triatoma , Trypanosoma cruzi , Animais , Humanos , Triatoma/parasitologia , Prevalência , Estudos Longitudinais , Insetos Vetores/parasitologia , Doença de Chagas/epidemiologia , Doença de Chagas/prevenção & controle , Piretrinas/farmacologia , DNA de Cinetoplasto , Argentina/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...