Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 649
Filtrar
1.
Exp Dermatol ; 33(7): e15125, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946225

RESUMO

The 16th non-collagenous domain (NC16A) of BP180 is the main antigenic target of autoantibodies in bullous pemphigoid (BP) and mucous membrane pemphigoid (MMP). Commercially available assays detect serum autoantibodies against NC16A in the majority of BP (80%-90%) and in approximately 50% of MMP patients. However, a standardized test system for detecting antibodies against other regions of BP180 is still lacking. Moreover, anti-BP180 autoantibodies have been found in neurological conditions such as multiple sclerosis and Parkinson disease. This study aimed at identifying primary epitopes recognized by BP autoantibodies on the BP180 ectodomain. Serum samples of 51 BP and 30 MMP patients both without anti-NC16A reactivity were included along with 44 multiple sclerosis and 75 Parkinson disease sera. Four overlapping His-tagged proteins covering the entire BP180 ectodomain (BP180(ec)1-4) were cloned, expressed, purified and tested for reactivity by immunoblot. IgG antibodies to BP180(ec)3 were detected in 98% of BP, 77% of MMP and 2% of normal human sera. Only weak reactivity was detected for neurological diseases against BP180(ec)1, BP180(ec)2 and BP180(ec)4, in 3%, 11% and 7% of tested multiple sclerosis sera, respectively. 8% of Parkinson disease sera reacted with BP180(ec)2 and 9% with BP180(ec)4. In conclusion, this study successfully identified epitopes recognized by BP autoantibodies outside the NC16A domain in pemphigoid diseases. These findings contribute to a better understanding of the immune response in BP and MMP with potential implications for a future diagnostic assay for NC16A-negative pemphigoid patients.


Assuntos
Autoanticorpos , Autoantígenos , Colágeno Tipo XVII , Esclerose Múltipla , Colágenos não Fibrilares , Doença de Parkinson , Penfigoide Mucomembranoso Benigno , Penfigoide Bolhoso , Humanos , Doença de Parkinson/imunologia , Doença de Parkinson/sangue , Colágenos não Fibrilares/imunologia , Penfigoide Bolhoso/imunologia , Penfigoide Bolhoso/sangue , Autoantígenos/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/sangue , Autoanticorpos/sangue , Autoanticorpos/imunologia , Penfigoide Mucomembranoso Benigno/imunologia , Penfigoide Mucomembranoso Benigno/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Epitopos/imunologia , Domínios Proteicos , Feminino , Masculino , Idoso
2.
Front Immunol ; 15: 1377409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846945

RESUMO

Introduction: Neutrophil extracellular traps (NETs) constitute a crucial element of the immune system, and dysfunction in immune responses is implicated in the susceptibility and progression of Parkinson's disease (PD). Nevertheless, the mechanism connecting PD and NETs remains unclear. This study aims to uncover potential NETs-related immune biomarkers and elucidate their role in PD pathogenesis. Methods: Through differential gene analysis of PD and NETs in GSE7621 datasets, we identified two PD subtypes and explored potential biological pathways. Subsequently, using ClusterWGCNA, we pinpointed pertinent genes and developed clinical diagnostic models. We then optimized the chosen model and evaluated its association with immune infiltration. Validation was conducted using the GSE20163 dataset. Screening the single-cell dataset GSE132758 revealed cell populations associated with the identified gene. Results: Our findings identified XGB as the optimal diagnostic model, with CAP2 identified as a pivotal gene. The risk model effectively predicted overall diagnosis rates, demonstrating a robust correlation between infiltrating immune cells and genes related to the XGB model. Discussion: In conclusions, we identified PD subtypes and diagnostic genes associated with NETs, highlighting CAP2 as a pivotal gene. These findings have significant implications for understanding potential molecular mechanisms and treatments for PD.


Assuntos
Armadilhas Extracelulares , Doença de Parkinson , Humanos , Doença de Parkinson/imunologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Biomarcadores , Perfilação da Expressão Gênica
3.
Eur J Pharmacol ; 976: 176690, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38815784

RESUMO

Parkinson's Disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons and the presence of Lewy bodies. While the traditional focus has been on neuronal and glial cell dysfunction, recent research has shifted towards understanding the role of the immune system, particularly dendritic cells (DCs), in PD pathogenesis. As pivotal antigen-presenting cells, DCs are traditionally recognized for initiating and regulating immune responses. In PD, DCs contribute to disease progression through the presentation of α-synuclein to T cells, leading to an adaptive immune response against neuronal elements. This review explores the emerging role of DCs in PD, highlighting their potential involvement in antigen presentation and T cell immune response modulation. Understanding the multifaceted functions of DCs could reveal novel insights into PD pathogenesis and open new avenues for therapeutic strategies, potentially altering the course of this devastating disease.


Assuntos
Células Dendríticas , Doença de Parkinson , Humanos , Doença de Parkinson/imunologia , Doença de Parkinson/terapia , Células Dendríticas/imunologia , Animais , alfa-Sinucleína/metabolismo , Linfócitos T/imunologia , Apresentação de Antígeno/imunologia
4.
J Parkinsons Dis ; 14(4): 693-711, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728204

RESUMO

Background: Parkinson's disease (PD) is characterized by alpha-synuclein (α-Syn) pathology, neurodegeneration and neuroinflammation. Human leukocyte antigen (HLA) variants associated with PD and α-Syn specific CD4+ T lymphocytes in PD patients highlight the importance of antigen presentation in PD etiology. The class II transactivator (CIITA) regulates major histocompatibility complex class II (MHCII) expression. Reduced Ciita levels significantly increase α-Syn pathology, nigrostriatal neurodegeneration and behavioral deficits in α-Syn-induced rat PD models. Objective: Characterize immune profiles associated with enhanced PD-like pathology observed in rats expressing lower Ciita levels (DA.VRA4) compared to the background strain (DA). Methods: To model PD, we combined rAAV-mediated α-Syn overexpression in the substantia nigra with striatal injection of α-Syn preformed fibrils. Immune profiles in brain and blood were analyzed by flow cytometry and multiplexed ELISA in naïve rats, 4- and 8 weeks post rAAV injection. Results: Flow cytometry showed Ciita-dependent regulation of MHCII on microglia, brain macrophages and circulating myeloid cells. The MHCII-dependent microglial response was highest at 4 weeks post rAAV injection, whereas the MHCII levels in circulating myeloid cells was highest at 8 weeks. There was no major infiltration of macrophages or T lymphocytes into the CNS in response to α-Syn and only subtle Ciita- and/or α-Syn-dependent changes in the T lymphocyte compartment. Lower Ciita levels were consistently associated with higher TNF levels in serum. Conclusions: Ciita regulates susceptibility to PD-like pathology through minor but detectable changes in resident and peripheral immune cells and TNF levels, indicating that mild immunomodulatory therapies could have therapeutic effects in PD.


Parkinson's disease is characterized by loss of nerve cells. There is also abnormal aggregation of a protein called alpha-synuclein and an ongoing inflammatory response. Findings that immune cells in the blood of individuals with Parkinson's disease react against the alpha-synuclein protein and that genes important for the immune system affect the risk of developing Parkinson's disease indicate that immune responses are important in Parkinson's disease. We have previously found that a low expression of certain immune molecules worsens disease progression in a rat model of Parkinson's disease. The aim of this study was to identify changes in the immune system in rats that are associated with disease severity, to identify mechanisms that could be targeted to treat Parkinson's disease. To model Parkinson's disease, we injected a modified virus to produce large amounts of alpha-synuclein combined with an injection of aggregated alpha-synuclein proteins in the rat brain. The model mimics several features of Parkinson's disease including nerve cell death, problems with movement, accumulation of alpha-synuclein in the brain, and an immune response. We observed that the immune system in the brain and blood responded to the model but that differences were small compared to controls. Our results suggest that small changes in the immune system can have a large effect on disease progression and that therapies targeting the immune system are worth exploring to find better treatment for Parkinson's disease.


Assuntos
Modelos Animais de Doenças , Doença de Parkinson , Transativadores , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Ratos , Transativadores/genética , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Proteínas Nucleares/metabolismo , Substância Negra/patologia , Substância Negra/metabolismo , Substância Negra/imunologia , Masculino , Dependovirus , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 207-219, 2024 Feb 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38755717

RESUMO

OBJECTIVES: Abnormal immune system activation and inflammation are crucial in causing Parkinson's disease. However, we still don't fully understand how certain immune-related genes contribute to the disease's development and progression. This study aims to screen key immune-related gene in Parkinson's disease based on weighted gene co-expression network analysis (WGCNA) and machine learning. METHODS: This study downloaded the gene chip data from the Gene Expression Omnibus (GEO) database, and used WGCNA to screen out important gene modules related to Parkinson's disease. Genes from important modules were exported and a Venn diagram of important Parkinson's disease-related genes and immune-related genes was drawn to screen out immune related genes of Parkinson's disease. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the the functions of immune-related genes and signaling pathways involved. Immune cell infiltration analysis was performed using the CIBERSORT package of R language. Using bioinformatics method and 3 machine learning methods [least absolute shrinkage and selection operator (LASSO) regression, random forest (RF), and support vector machine (SVM)], the immune-related genes of Parkinson's disease were further screened. A Venn diagram of differentially expressed genes screened using the 4 methods was drawn with the intersection gene being hub nodes (hub) gene. The downstream proteins of the Parkinson's disease hub gene was identified through the STRING database and a protein-protein interaction network diagram was drawn. RESULTS: A total of 218 immune genes related to Parkinson's disease were identified, including 45 upregulated genes and 50 downregulated genes. Enrichment analysis showed that the 218 genes were mainly enriched in immune system response to foreign substances and viral infection pathways. The results of immune infiltration analysis showed that the infiltration percentages of CD4+ T cells, NK cells, CD8+ T cells, and B cells were higher in the samples of Parkinson's disease patients, while resting NK cells and resting CD4+ T cells were significantly infiltrated in the samples of Parkinson's disease patients. ANK1 was screened out as the hub gene. The analysis of the protein-protein interaction network showed that the ANK1 translated and expressed 11 proteins which mainly participated in functions such as signal transduction, iron homeostasis regulation, and immune system activation. CONCLUSIONS: This study identifies the Parkinson's disease immune-related key gene ANK1 via WGCNA and machine learning methods, suggesting its potential as a candidate therapeutic target for Parkinson's disease.


Assuntos
Redes Reguladoras de Genes , Aprendizado de Máquina , Doença de Parkinson , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Humanos , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Ontologia Genética , Bases de Dados Genéticas , Transdução de Sinais/genética , Análise de Sequência com Séries de Oligonucleotídeos
6.
J Neurophysiol ; 131(6): 1115-1125, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690999

RESUMO

The exact etiology of Parkinson's disease (PD), a degenerative disease of the central nervous system, is unclear. It is currently believed that its main pathological basis is a decrease in dopamine concentration in the striatum of the brain. Although many researchers have previously focused on the critical role of the immune response in PD, there has been a lack of valid genetic evidence for a causal association between specific immune cell traits and phenotypes and PD. We employed Mendelian randomization (MR) as an analytical method to effectively assess genetic associations between exposure and outcome. Based on the largest Genome-Wide Association Study (GWAS) dataset to date, causal associations between multiple immune cell phenotypes and PD were validly assessed, controlling for confounding factors by using single-nucleotide polymorphisms (SNPs), which are genetic instrumental variables that are randomly assigned and not subject to any causality. By testing 731 immune cell phenotypes and their association with PD, the results of inverse variance weighting (IVW) analysis suggested that after Bonferroni correction multiple immune cell phenotypes had no statistically significant effect on PD. It is worth mentioning that some phenotypes with unadjusted P values (P < 0.05), including 40 immune phenotypes, that were located on the cDC panel, the Treg panel, the Maturation stages of T cell panel, the TBNK panel, the B cell panel, the Myeloid cell panel, and the Monocyte panel were considered to have nominal associations with PD. In addition, PD could have an effect on certain immunophenotypes located on the Myeloid cell panel and the Monocyte panel; the specific immunophenotypic results and statistical analysis values are shown in the text. The results of sensitivity analyses suggested that none of these observed the presence of horizontal pleiotropy. Our study identified a close link between immune cells and PD, and the results of this study provide ideas for the study of the immune mechanism of PD and the exploration of effective therapeutic means.NEW & NOTEWORTHY In this study, based on the GWAS Immunophenotyping Database, a Mendelian randomization approach was used to assess the genetic causal associations between 731 immunophenotypes and traits and Parkinson's disease (PD), which not only provides a reference for the immune response mechanism of PD but also provides ideas for exploring the effective diagnosis and treatment of PD.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença de Parkinson , Fenótipo , Polimorfismo de Nucleotídeo Único , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Humanos
7.
Pharmacol Res ; 203: 107168, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583689

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.


Assuntos
Complexo Principal de Histocompatibilidade , Doença de Parkinson , Animais , Humanos , alfa-Sinucleína/imunologia , alfa-Sinucleína/metabolismo , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Complexo Principal de Histocompatibilidade/imunologia , Microglia/imunologia , Microglia/metabolismo , Doença de Parkinson/imunologia , Doença de Parkinson/genética
8.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673915

RESUMO

Parkinson's disease (PD) is a chronic, age-related, progressive multisystem disease associated with neuroinflammation and immune dysfunction. This review discusses the methodological approaches used to study the changes in central and peripheral immunity in PD, the advantages and limitations of the techniques, and their applicability to humans. Although a single animal model cannot replicate all pathological features of the human disease, neuroinflammation is present in most animal models of PD and plays a critical role in understanding the involvement of the immune system (IS) in the pathogenesis of PD. The IS and its interactions with different cell types in the central nervous system (CNS) play an important role in the pathogenesis of PD. Even though culture models do not fully reflect the complexity of disease progression, they are limited in their ability to mimic long-term effects and need validation through in vivo studies. They are an indispensable tool for understanding the interplay between the IS and the pathogenesis of this disease. Understanding the immune-mediated mechanisms may lead to potential therapeutic targets for the treatment of PD. We believe that the development of methodological guidelines for experiments with animal models and PD patients is crucial to ensure the validity and consistency of the results.


Assuntos
Modelos Animais de Doenças , Doença de Parkinson , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Doença de Parkinson/etiologia , Animais , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia
9.
Int Immunopharmacol ; 133: 112062, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652967

RESUMO

Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.


Assuntos
Células Dendríticas , Indolamina-Pirrol 2,3,-Dioxigenase , Monócitos , Doença de Parkinson , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Humanos , Células Dendríticas/imunologia , Doença de Parkinson/imunologia , Monócitos/imunologia , Animais , Cinurenina/metabolismo , Triptofano/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
10.
Comput Biol Med ; 175: 108511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677173

RESUMO

BACKGROUND: Mitochondria are the metabolic hubs of cells, regulating energy production and antigen presentation, which are essential for activation, proliferation, and function of immune cells. Recent evidence indicates that mitochondrial antigen presentation may have an impact on diseases such as Parkinson's disease (PD) and autoimmune diseases. However, there is limited knowledge about the mechanisms that regulate the presentation of mitochondrial antigens in these diseases. METHODS: In the current study, RNA sequencing was performed on labial minor salivary gland (LSG) from 25 patients with primary Sjögren's syndrome (pSS) and 14 non-pSS aged controls. Additionally, we obtained gene expression omnibus datasets associated with PD patients from NCBI Gene Expression Omnibus (GEO) databases. Single-sample Gene Set Enrichment Analysis (ssGSEA), ESTIMATE and Spearman correlations were conducted to explore the association between mitochondrial related genes and the immune system. Furthermore, we applied weighted Gene Co-expression Network Analysis (WGCNA) to identify hub mitochondria-related genes and investigate the correlated networks in both diseases. Single cell transcriptome analysis, immunohistochemical (IHC) staining and quantitative real-time PCR (qRT-PCR) were used to verify the activation of the hub mitochondria-related pathway. Pearson correlations and the CIBERSORT algorithms were employed to further reveal the correlation between hub mitochondria-related pathways and immune infiltration. RESULTS: The transcriptome analysis revealed the presence of overlapping mitochondria-related genes and mitochondrial DNA damage in patients with pSS and PD. Reactive oxygen species (ROS), the senescence marker p53, and the inflammatory markers CD45 and Bcl-2 were found to be regionally distributed in LSGs of pSS patients. WGCNA analysis identified the STING pathway as the central mitochondria-related pathway closely associated with the immune system. Single cell analysis, IHC staining, and qRT-PCR confirmed the activation of the STING pathway. Subsequent, bioinformatic analysis revealed the proportion of infiltrating immune cells in the STING-high and STING-low groups of pSS and PD. Furthermore, the study demonstrated the association of the STING pathway with innate and adaptive immune cells, as well as functional cells, in the immune microenvironment of PD and pSS. CONCLUSION: Our study uncovered a central pathway that connects mitochondrial dysfunction and the immune microenvironment in PD and pSS, potentially offering valuable insights into therapeutic targets for these conditions.


Assuntos
Biologia Computacional , Doença de Parkinson , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Feminino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Masculino , Pessoa de Meia-Idade , Idoso , Transcriptoma/genética , Redes Reguladoras de Genes , Genes Mitocondriais/genética
11.
Drug Discov Today ; 29(5): 103974, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555032

RESUMO

Accumulation of misfolded proteins and protein aggregates leading to degeneration of neurons is a hallmark of several neurodegenerative diseases. Therapy mostly relies on symptomatic relief. Immunotherapy offers a promising approach for the development of disease-modifying routes. Such strategies have shown remarkable results in oncology, and this promise is increasingly being realized for neurodegenerative diseases in advanced preclinical and clinical studies. This review highlights cases of passive and active immunotherapies in Parkinson's and Alzheimer's diseases. The reasons for success and failure, wherever available, and strategies to cross the blood-brain barrier, are discussed. The need for conditional modulation of the immune response is also reflected on.


Assuntos
Imunoterapia , Doenças Neurodegenerativas , Humanos , Animais , Imunoterapia/métodos , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/imunologia , Doença de Alzheimer/terapia , Doença de Alzheimer/imunologia , Doença de Parkinson/terapia , Doença de Parkinson/imunologia , Barreira Hematoencefálica/metabolismo
12.
Parkinsonism Relat Disord ; 122: 106080, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508903

RESUMO

The hypothesis that neurodegenerative diseases are proteinopathies due to toxic effect of different underlying proteins, such as amyloid-beta and 3+4R-tau in Alzheimer's disease (AD) and alpha-synuclein in Parkinson's disease (PD), while still controversial is supported by several studies in the literature. This has led to conduct clinical trials attempting to reduce the load of these allegedly toxic proteins by immunotherapy, mostly but not solely based on antibodies against these proteins. Already completed clinical trials have ranged from initially negative results to recently partial positive outcomes, specifically for anti-amyloid antibodies in AD but also albeit to lesser degree for anti-synuclein antibodies in PD. Currently, there are several ongoing clinical trials in degenerative parkinsonisms with anti-synuclein approaches in PD and multiple system atrophy (MSA), as well as with anti-tau antibodies in 4R-tauopathies such as progressive supranuclear palsy (PSP). While it can be argued that expectations that part of these clinical trials will be positive can be hope or hype, it is reasonable to consider the future possibility of "cocktail" combination of different antibodies after the available experimental evidence of cross-talk between these proteins and neuropathological evidence of coexistence of these proteinopathies more frequently than expected by chance. Moreover, such "cocktail" approaches are widespread and accepted common practice in other fields such as oncology, and the complexity of neurodegenerative parkinsonisms makes reasonable the option for testing and eventually applying such combined approaches, should these prove useful separately, in the setting of patients with evidence of underlying concomitant proteinopathies, for example through biomarkers.


Assuntos
Imunoterapia , alfa-Sinucleína , Proteínas tau , Humanos , alfa-Sinucleína/imunologia , Imunoterapia/métodos , Proteínas tau/imunologia , Animais , Doença de Parkinson/terapia , Doença de Parkinson/imunologia , Doença de Parkinson/tratamento farmacológico
13.
Brain ; 147(5): 1644-1652, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38428032

RESUMO

The pathological misfolding and aggregation of soluble α-synuclein into toxic oligomers and insoluble amyloid fibrils causes Parkinson's disease, a progressive age-related neurodegenerative disease for which there is no cure. HET-s is a soluble fungal protein that can form assembled amyloid fibrils in its prion state. We engineered HET-s(218-298) to form four different fibrillar vaccine candidates, each displaying a specific conformational epitope present on the surface of α-synuclein fibrils. Vaccination with these four vaccine candidates prolonged the survival of immunized TgM83+/- mice challenged with α-synuclein fibrils by 8% when injected into the brain to model brain-first Parkinson's disease or by 21% and 22% when injected into the peritoneum or gut wall, respectively, to model body-first Parkinson's disease. Antibodies from fully immunized mice recognized α-synuclein fibrils and brain homogenates from patients with Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Conformation-specific vaccines that mimic epitopes present only on the surface of pathological fibrils but not on soluble monomers, hold great promise for protection against Parkinson's disease, related synucleinopathies and other amyloidogenic protein misfolding disorders.


Assuntos
Camundongos Transgênicos , Doença de Parkinson , alfa-Sinucleína , Animais , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Camundongos , alfa-Sinucleína/imunologia , alfa-Sinucleína/metabolismo , Humanos , Amiloide/imunologia , Amiloide/metabolismo , Vacinação , Proteínas Fúngicas/imunologia , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/imunologia , Feminino , Camundongos Endogâmicos C57BL
14.
J Neuroimmunol ; 388: 578290, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301596

RESUMO

BACKGROUND: Recent studies have revealed the link between immune activation and neurodegenerative diseases. METHODS: By employing meta-analysis, we estimated the standardized mean difference (SMD) and their corresponding 95% confidence intervals (CIs) between the groups. RESULTS: According to the pre-set criteria, a total of 21 published articles including 2377 ALS patients and 1244 HCs, as well as 60 articles including 5111 PD patients and 4237 HCs, were identified. This study provided evidence of peripheral immune activation in the pathogenesis of ALS and PD. CONCLUSION: Our results suggested monitoring changes in peripheral blood immune cell populations, particularly lymphocyte subsets, will benefit understanding the developments and exploring reliable and specific biomarkers of these two diseases.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Esclerose Lateral Amiotrófica/imunologia , Biomarcadores , Doenças Neurodegenerativas/imunologia , Doença de Parkinson/imunologia
15.
Neurol Sci ; 45(6): 2681-2696, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38265536

RESUMO

BACKGROUND: Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder globally, and its incidence is rapidly rising. The diagnosis of PD relies on clinical characteristics. Although current treatments aim to alleviate symptoms, they do not effectively halt the disease's progression. Early detection and intervention hold immense importance. This study aimed to establish a new PD diagnostic model. METHODS: Data from a public database were adopted for the construction and validation of a PD diagnostic model with random forest and artificial neural network models. The CIBERSORT platform was applied for the evaluation of immune cell infiltration in PD. Quantitative real-time PCR was performed to verify the accuracy and reliability of the bioinformatics analysis results. RESULTS: Leveraging existing gene expression data from the Gene Expression Omnibus (GEO) database, we sifted through differentially expressed genes (DEGs) in PD and identified 30 crucial genes through a random forest classifier. Furthermore, we successfully designed a novel PD diagnostic model using an artificial neural network and verified its diagnostic efficacy using publicly available datasets. Our research also suggests that mast cells may play a significant role in the onset and progression of PD. CONCLUSION: This work developed a new PD diagnostic model with machine learning techniques and suggested the immune cells as a potential target for PD therapy.


Assuntos
Redes Neurais de Computação , Doença de Parkinson , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Doença de Parkinson/diagnóstico , Humanos , Aprendizado de Máquina , Transcriptoma , Biologia Computacional , Perfilação da Expressão Gênica , Mastócitos/imunologia , Algoritmo Florestas Aleatórias
16.
J Neuroinflammation ; 19(1): 98, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459141

RESUMO

Neurodegenerative diseases are a group of disorders characterized by progressive loss of certain populations of neurons, which eventually lead to dysfunction. These diseases include Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Immune pathway dysregulation is one of the common features of neurodegeneration. Recently, there is growing interest in the specific role of T helper Th 17 cells and Interleukin-17A (IL-17A), the most important cytokine of Th 17 cells, in the pathogenesis of the central nervous system (CNS) of neurodegenerative diseases. In the present study, we summarized current knowledge about the function of Th17/IL-17A, the physiology of Th17/IL-17A in diseases, and the contribution of Th17/IL-17A in AD, PD, and ALS. We also update the findings on IL-17A-targeting drugs as potentially immunomodulatory therapeutic agents for neurodegenerative diseases. Although the specific mechanism of Th17/IL-17A in this group of diseases is still controversial, uncovering the molecular pathways of Th17/IL-17A in neurodegeneration allows the identification of suitable targets to modulate these cellular processes. Therapeutics targeting IL-17A might represent potentially novel anti-neurodegeneration drugs.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Interleucina-17 , Doença de Parkinson , Células Th17 , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Humanos , Interleucina-17/imunologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Doença de Parkinson/imunologia , Células Th17/imunologia
17.
Mol Neurobiol ; 59(7): 3980-3995, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460053

RESUMO

Spreading of alpha-synuclein (αSyn) may play an important role in Parkinson's disease and related synucleinopathies. Passive immunization with anti-αSyn antibodies is a promising method to slow down the spreading process and thereby the progression of synucleinopathies. Currently, it remains elusive which specific characteristics are essential to render therapeutic antibodies efficacious. Here, we established a neuronal co-culture model, in which αSyn species are being released from αSyn-overexpressing cells and induce toxicity in a priori healthy GFP-expressing cells. In this model, we investigated the protective efficacy of three anti-αSyn antibodies. Only two of these antibodies, one C-terminal and one N-terminal, protected from αSyn-induced toxicity by inhibiting the uptake of spreading-competent αSyn from the cell culture medium. Neither the binding epitope nor the affinity of the antibodies towards recombinant αSyn could explain differences in biological efficacy. However, both protective antibodies formed more stable antibody-αSyn complexes than the non-protective antibody. These findings indicate that the stability of antibody-αSyn complexes may be more important to confer protection than the binding epitope or affinity to recombinant αSyn.


Assuntos
Anticorpos , Doença de Parkinson , Sinucleinopatias , alfa-Sinucleína , Anticorpos/imunologia , Anticorpos/farmacologia , Epitopos/imunologia , Humanos , Neurônios , Doença de Parkinson/imunologia , Doença de Parkinson/terapia , Sinucleinopatias/imunologia , Sinucleinopatias/terapia , alfa-Sinucleína/imunologia
18.
Neurobiol Dis ; 169: 105724, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35427743

RESUMO

Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are associated with familial and sporadic cases of Parkinson's disease (PD) but are also found in patients with immune- related disorders, such as inflammatory bowel disease (IBD) and leprosy, linking LRRK2 to the immune system. Supporting this genetic evidence, in the last decade LRRK2 was robustly shown to modulate inflammatory responses at both systemic and central nervous system level. In this review, we recapitulate the role of LRRK2 in central and peripheral inflammation in PD and inflammatory disease models. Moreover, we discuss how LRRK2 inhibitors and anti- inflammatory drugs may be beneficial at reducing disease risk/progression in LRRK2-mutation carriers and manifesting PD patients, thus supporting LRRK2 as a promising disease-modifying PD strategy.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Animais , Humanos , Sistema Imunitário , Inflamação/genética , Inflamação/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/imunologia , Mutação , Doença de Parkinson/genética , Doença de Parkinson/imunologia
19.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163013

RESUMO

Parkinson's disease (PD) is the second-most common neurodegenerative disease in the world, affecting up to 10 million people. This disease mainly happens due to the loss of dopaminergic neurons accountable for memory and motor function. Partial glucocerebrosidase enzyme deficiency and the resultant excess accumulation of glycosphingolipids and alpha-synuclein (α-syn) aggregation have been linked to predominant risk factors that lead to neurodegeneration and memory and motor defects in PD, with known and unknown causes. An increasing body of evidence uncovers the role of several other lipids and their association with α-syn aggregation, which activates the innate and adaptive immune system and sparks brain inflammation in PD. Here, we review the emerging role of a number of lipids, i.e., triglyceride (TG), diglycerides (DG), glycerophosphoethanolamines (GPE), polyunsaturated fatty acids (PUFA), sphingolipids, gangliosides, glycerophospholipids (GPL), and cholesterols, and their connection with α-syn aggregation as well as the induction of innate and adaptive immune reactions that trigger neuroinflammation in PD.


Assuntos
Metabolismo dos Lipídeos , Doenças Neuroinflamatórias/metabolismo , Doença de Parkinson/imunologia , alfa-Sinucleína/química , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata , Doenças Neuroinflamatórias/etiologia , Doença de Parkinson/complicações , Doença de Parkinson/metabolismo , Agregados Proteicos
20.
Neuropharmacology ; 207: 108964, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065083

RESUMO

The lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene, is a membrane-associated protein catalyzing the cleavage of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Homologous GBA1 mutations cause Gaucher disease (GD) and heterologous mutations cause Parkinson's disease (PD). Importantly, heterologous GBA1 mutations are recognized as the second risk factor of PD. The pathological features of PD are Lewy neurites (LNs) and Lewy bodies (LBs) composed of pathological α-synuclein. Oxidative stress, inflammatory response, autophagic impairment, and α-synuclein accumulation play critical roles in PD pathogenic cascades, but the pathogenesis of PD has not yet been fully elucidated. What's more, PD treatment drugs can only relieve symptoms to a certain extent, but cannot alleviate neurodegenerative progression. Therefore, it's urgent to explore new targets that can alleviate the neurodegenerative process. Deficient GCase can cause lysosomal dysfunction, obstructing the metabolism of α-synuclein. Meanwhile, GCase dysfunction causes accumulation of its substrates, leading to lipid metabolism disorders. Subsequently, astrocytes and microglia are activated, releasing amounts of pro-inflammatory mediators and causing extensive neuroinflammation. All these cascades can induce neuron damage and death, eventually promoting PD pathology. This review aims to summarize these points and the potential of GCase as an original target to provide some ideas for elucidating the pathogenesis of PD.


Assuntos
Glucosilceramidase/metabolismo , Doenças Neuroinflamatórias , Doença de Parkinson , Animais , Humanos , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Doença de Parkinson/imunologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...