Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.136
Filtrar
1.
Tissue Cell ; 89: 102422, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39003912

RESUMO

Tumour necrosis factor alpha (TNF-α) is a pleiotropic cytokine synthesised primarily by mononuclear cells; it has a potent pro-inflammatory effect, playing a crucial role in metabolic, immune, and inflammatory diseases. This cytokine has been studied in various biological systems. In bone tissue, TNF-α plays an integral role in skeletal disorders such as osteoporosis, fracture repair and rheumatoid arthritis through its involvement in regulating the balance between osteoblasts and osteoclasts, mediating inflammatory responses, promoting angiogenesis and exacerbating synovial proliferation. The biological effect TNF-α exerts in this context is determined by a combination of the signalling pathway it activates, the type of receptor it binds, and the concentration and duration of exposure. This review summarises the participation and pathophysiological role of TNF-α in osteoporosis, bone damage repair, chronic immunoinflammatory bone disease and spinal cord injury, and discusses its main mechanisms.


Assuntos
Osteoporose , Fator de Necrose Tumoral alfa , Humanos , Osteoporose/metabolismo , Osteoporose/patologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Inflamação/metabolismo , Inflamação/patologia , Osteoblastos/metabolismo , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Transdução de Sinais
2.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062974

RESUMO

RNA-binding proteins (RBPs), which regulate gene expression through post-transcriptional modifications of RNAs, play a role in diverse biological processes that include bone cell development and bone tissue formation. RBP dysregulation may result in aberrant bone homeostasis and contribute to various bone diseases. The function of RBPs in bone physiology and pathophysiology and the underlying molecular mechanisms have been extensively studied in recent years. This article provides a review of such studies, highlighting the potential of RBPs as pivotal targets for therapeutic intervention.


Assuntos
Desenvolvimento Ósseo , Doenças Ósseas , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Doenças Ósseas/metabolismo , Doenças Ósseas/genética , Animais , Desenvolvimento Ósseo/genética , Osteogênese/genética , Osso e Ossos/metabolismo
3.
Bone Res ; 12(1): 39, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987555

RESUMO

Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/ß-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.


Assuntos
Doenças Ósseas , Homeostase , Osteogênese , Via de Sinalização Wnt , Humanos , Animais , Osteogênese/fisiologia , Doenças Ósseas/metabolismo , Doenças Ósseas/terapia , beta Catenina/metabolismo , Proteínas Wnt/metabolismo
4.
Curr Med Chem ; 31(29): 4687-4702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081025

RESUMO

BACKGROUND: Long non-coding RNA (lncRNA) is a class of single-stranded RNA biomolecules involving over 200 nucleotides and does not encode proteins. Research on lncRNA has become a hot spot for the past few years. DNM3OS (Dynamin 3 Opposite Strand), which has been clearly identified as a regulatory lncRNA, exerts an integral role in the pathophysiology of multiple human diseases. OBJECTIVE: The current review study summarizes the pathogenic mechanism of DNM3OS in various pathophysiological processes, aiming to reveal its important value as a therapeutic drug target for related human diseases and provide a new way for targeted therapy. METHODS: Through systematic retrieval and in-depth study of relevant articles in PubMed, this article analyzes and summarizes the pathogenic roles and molecular mechanisms in pathophysiological processes of long non-coding RNA DNM3OS. RESULTS: DNM3OS exerts an important regulatory role in the occurrence and development of bone diseases, neoplastic diseases, fibrotic diseases, inflammatory diseases, and many other diseases. CONCLUSION: DNM3OS is a potential new biomarker and therapeutic target for the treatment of a series of diseases, consisting of bone diseases, neoplastic diseases, fibrotic diseases, and inflammatory diseases.


Assuntos
Neoplasias , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Inflamação/metabolismo , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Fibrose , Animais
5.
Front Endocrinol (Lausanne) ; 15: 1414350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076510

RESUMO

Bone homeostasis in physiology depends on the balance between bone formation and resorption, and in pathology, this homeostasis is susceptible to disruption by different influences, especially under ageing condition. Gut microbiota has been recognized as a crucial factor in regulating host health. Numerous studies have demonstrated a significant association between gut microbiota and bone metabolism through host-microbiota crosstalk, and gut microbiota is even an important factor in the pathogenesis of bone metabolism-related diseases that cannot be ignored. This review explores the interplay between gut microbiota and bone metabolism, focusing on the roles of gut microbiota in bone ageing and aging-related bone diseases, including osteoporosis, fragility fracture repair, osteoarthritis, and spinal degeneration from different perspectives. The impact of gut microbiota on bone metabolism during aging through modification of endocrinology system, immune system and gut microbiota metabolites are summarized, facilitating a better grasp of the pathogenesis of aging-related bone metabolic diseases. This review offers innovative insights into targeting the gut microbiota for the treatment of bone ageing-related diseases as a clinical therapeutic strategy.


Assuntos
Envelhecimento , Doenças Ósseas , Osso e Ossos , Microbioma Gastrointestinal , Humanos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Microbioma Gastrointestinal/fisiologia , Osso e Ossos/metabolismo , Osso e Ossos/microbiologia , Doenças Ósseas/microbiologia , Doenças Ósseas/metabolismo , Animais , Osteoporose/metabolismo , Osteoporose/microbiologia
6.
Cells ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38920630

RESUMO

Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression with diverse roles in various biological processes. In recent years, research into circRNAs' involvement in bone biology has gained significant attention, unveiling their potential as novel regulators and biomarkers in bone-related disorders and diseases. CircRNAs, characterized by their closed-loop structure, exhibit stability and resistance to degradation, underscoring their functional significance. In bone tissue, circRNAs are involved in critical processes such as osteogenic differentiation, osteoclastogenesis, and bone remodeling through intricate molecular mechanisms including microRNA regulation. Dysregulated circRNAs are associated with various bone disorders, suggesting their potential as diagnostic and prognostic biomarkers. The therapeutic targeting of these circRNAs holds promise for addressing bone-related conditions, offering new perspectives for precision medicine. Thus, circRNAs constitute integral components of bone regulatory networks, impacting both physiological bone homeostasis and pathological conditions. This review provides a comprehensive overview of circRNAs in bone biology, emphasizing their regulatory mechanisms, functional implications, and therapeutic potential.


Assuntos
Osso e Ossos , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Osso e Ossos/metabolismo , Animais , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Osteogênese/genética , Biomarcadores/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica
7.
FASEB J ; 38(13): e23758, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38923594

RESUMO

Physiological processes within the human body are regulated in approximately 24-h cycles known as circadian rhythms, serving to adapt to environmental changes. Bone rhythms play pivotal roles in bone development, metabolism, mineralization, and remodeling processes. Bone rhythms exhibit cell specificity, and different cells in bone display various expressions of clock genes. Multiple environmental factors, including light, feeding, exercise, and temperature, affect bone diurnal rhythms through the sympathetic nervous system and various hormones. Disruptions in bone diurnal rhythms contribute to the onset of skeletal disorders such as osteoporosis, osteoarthritis and skeletal hypoplasia. Conversely, these bone diseases can be effectively treated when aimed at the circadian clock in bone cells, including the rhythmic expressions of clock genes and drug targets. In this review, we describe the unique circadian rhythms in physiological activities of various bone cells. Then we summarize the factors synchronizing the diurnal rhythms of bone with the underlying mechanisms. Based on the review, we aim to build an overall understanding of the diurnal rhythms in bone and summarize the new preventive and therapeutic strategies for bone disorders.


Assuntos
Osso e Ossos , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiologia , Animais , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Doenças Ósseas/fisiopatologia , Doenças Ósseas/metabolismo , Relógios Circadianos/fisiologia
8.
Cell Commun Signal ; 22(1): 279, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773637

RESUMO

O-linked N-acetylglucosamine (O-GlcNAc) protein modification (O-GlcNAcylation) is a critical post-translational modification (PTM) of cytoplasmic and nuclear proteins. O-GlcNAcylation levels are regulated by the activity of two enzymes, O-GlcNAc transferase (OGT) and O­GlcNAcase (OGA). While OGT attaches O-GlcNAc to proteins, OGA removes O-GlcNAc from proteins. Since its discovery, researchers have demonstrated O-GlcNAcylation on thousands of proteins implicated in numerous different biological processes. Moreover, dysregulation of O-GlcNAcylation has been associated with several pathologies, including cancers, ischemia-reperfusion injury, and neurodegenerative diseases. In this review, we focus on progress in our understanding of the role of O-GlcNAcylation in bone pathophysiology, and we discuss the potential molecular mechanisms of O-GlcNAcylation modulation of bone-related diseases. In addition, we explore significant advances in the identification of O-GlcNAcylation-related regulators as potential therapeutic targets, providing novel therapeutic strategies for the treatment of bone-related disorders.


Assuntos
Acetilglucosamina , N-Acetilglucosaminiltransferases , Humanos , Animais , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo , Osso e Ossos/metabolismo , Processamento de Proteína Pós-Traducional , Doenças Ósseas/metabolismo
9.
Biomed Pharmacother ; 174: 116570, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599063

RESUMO

Copper is an essential trace element in the human body that is extensively distributed throughout various tissues. The appropriate level of copper is crucial to maintaining the life activities of the human body, and the excess and deficiency of copper can lead to various diseases. The copper levels in the human body are regulated by copper homeostasis, which maintains appropriate levels of copper in tissues and cells by controlling its absorption, transport, and storage. Cuproptosis is a distinct form of cell death induced by the excessive accumulation of intracellular copper. Copper homeostasis and cuproptosis has recently elicited increased attention in the realm of human health. Cuproptosis has emerged as a promising avenue for cancer therapy. Studies concerning osteoarticular diseases have elucidated the intricate interplay among copper homeostasis, cuproptosis, and the onset of osteoarticular diseases. Copper dysregulation and cuproptosis cause abnormal bone and cartilage metabolism, affecting related cells. This phenomenon assumes a critical role in the pathophysiological processes underpinning various osteoarticular diseases, with implications for inflammatory and immune responses. While early Cu-modulating agents have shown promise in clinical settings, additional research and advancements are warranted to enhance their efficacy. In this review, we summarize the effects and potential mechanisms of copper homeostasis and cuproptosis on bone and cartilage, as well as their regulatory roles in the pathological mechanism of osteoarticular diseases (e.g., osteosarcoma (OS), osteoarthritis (OA), and rheumatoid arthritis (RA)). We also discuss the clinical-application prospects of copper-targeting strategy, which may provide new ideas for the diagnosis and treatment of osteoarticular diseases.


Assuntos
Cobre , Homeostase , Humanos , Cobre/metabolismo , Homeostase/fisiologia , Animais , Doenças Ósseas/metabolismo , Osso e Ossos/metabolismo
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 256-262, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645858

RESUMO

Runt-related transcription factor (RUNX1) is a transcription factor closely involved in hematopoiesis. RUNX1 gene mutation plays an essential pathogenic role in the initiation and development of hematological tumors, especially in acute myeloid leukemia. Recent studies have shown that RUNX1 is also involved in the regulation of bone development and the pathological progression of bone-related diseases. RUNX1 promotes the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts and modulates the maturation and extracellular matrix formation of chondrocytes. The expression of RUNX1 in mesenchymal stem cells, chondrocytes, and osteoblasts is of great significance for maintaining normal bone development and the mass and quality of bones. RUNX1 also inhibits the differentiation and bone resorptive activities of osteoclasts, which may be influenced by sexual dimorphism. In addition, RUNX1 deficiency contributes to the pathogenesis of osteoarthritis, delayed fracture healing, and osteoporosis, which was revealed by the RUNX1 conditional knockout modeling in mice. However, the roles of RUNX1 in regulating the hypertrophic differentiation of chondrocytes, the sexual dimorphism of activities of osteoclasts, as well as bone loss in diabetes mellitus, senescence, infection, chronic inflammation, etc, are still not fully understood. This review provides a systematic summary of the research progress concerning RUNX1 in the field of bone biology, offering new ideas for using RUNX1 as a potential target for bone related diseases, especially osteoarthritis, delayed fracture healing, and osteoporosis.


Assuntos
Desenvolvimento Ósseo , Diferenciação Celular , Condrócitos , Subunidade alfa 2 de Fator de Ligação ao Core , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Animais , Desenvolvimento Ósseo/fisiologia , Desenvolvimento Ósseo/genética , Condrócitos/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteoclastos/metabolismo , Osteoclastos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/etiologia
11.
Life Sci ; 346: 122630, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614296

RESUMO

Bone remodeling is the balance between osteoblasts and osteoclasts. Bone diseases such as osteoporosis and osteoarthritis are associated with imbalanced bone remodeling. Skeletal injury leads to limited motor function and pain. Neurophilin was initially identified in axons, and its various ligands and roles in bone remodeling, angiogenesis, neuropathic pain and immune regulation were later discovered. Neurophilin promotes osteoblast mineralization and inhibits osteoclast differentiation and its function. Neuropolin-1 provides channels for immune cell chemotaxis and cytokine diffusion and leads to pain. Neuropolin-1 regulates the proportion of T helper type 17 (Th17) and regulatory T cells (Treg cells), and affects bone immunity. Vascular endothelial growth factors (VEGF) combine with neuropilin and promote angiogenesis. Class 3 semaphorins (Sema3a) compete with VEGF to bind neuropilin, which reduces angiogenesis and rejects sympathetic nerves. This review elaborates on the structure and general physiological functions of neuropilin and summarizes the role of neuropilin and its ligands in bone and cartilage diseases. Finally, treatment strategies and future research directions based on neuropilin are proposed.


Assuntos
Doenças Ósseas , Neuropilinas , Humanos , Animais , Doenças Ósseas/metabolismo , Doenças Ósseas/fisiopatologia , Neuropilinas/metabolismo , Neuropilinas/fisiologia , Doenças das Cartilagens/metabolismo , Doenças das Cartilagens/fisiopatologia , Remodelação Óssea/fisiologia
12.
J Bone Miner Res ; 39(3): 326-340, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477820

RESUMO

Proteasome activator subunit 3 (PA28γ) is a member of the proteasome activator family, which mainly regulates the degradation and stability of proteins. Studies have shown that it plays crucial roles in lipid formation, stemness maintenance, and blood vessel formation. However, few studies have clarified the association between PA28γ and bone diseases. Herein, we identified PA28γ as a previously unknown regulator of bone homeostasis that coordinates bone formation and lipid accumulation. PA28γ-knockout mice presented with the characteristics of low bone mass and accumulation of lipids. Suppressed expression of PA28γ restrained the osteogenic differentiation and enhanced the adipogenic differentiation of bone marrow stromal cells (BMSCs). Overexpression of PA28γ promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Mechanistically, PA28γ interacted with Wnt5α, and the two interactors appeared to be positively correlated. PA28γ mainly activated the downstream Wnt/ß-catenin signaling pathway, which affects BMSCs differentiation homeostasis. Deletion of Wnt5α significantly delayed the promotion of osteogenic differentiation and partially alleviated the inhibitory effect of adipogenic differentiation of BMSCs in the PA28γ-overexpressing group. Furthermore, we demonstrated that PA28γ-knockout mice had an inhibited rate of bone healing in a drill-hole femoral bone defect model in vivo. Therefore, our results confirm the effects of PA28γ on bone formation and bone defect repair, indicating that PA28γ mainly interacts with Wnt5α to activate the Wnt/ß-catenin signaling pathway regulating BMSCs differentiation homeostasis. Our results reveal the function of PA28γ in bone diseases and provide a new theoretical basis for expanding the treatment of bone diseases.


Assuntos
Autoantígenos , Doenças Ósseas , Células-Tronco Mesenquimais , Camundongos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Osteogênese , beta Catenina/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt/fisiologia , Doenças Ósseas/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas , Camundongos Knockout , Lipídeos
13.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542453

RESUMO

Promoting the efficiency of bone regeneration in bone loss diseases is a significant clinical challenge. Traditional therapies often fail to achieve better therapeutic outcomes and shorter treatment times. However, in recent years, extracellular vesicles (EVs) have gained significant attention due to their exceptional osteogenic function in bone regeneration and superior therapeutic effects compared to traditional cell therapy. EVs have emerged as a promising therapy for tissue defect regeneration due to their various physiological functions, such as regulating the immune response and promoting tissue repair and regeneration. Moreover, EVs have good biocompatibility, low immunogenicity, and long-term stability, and can be improved through pretreatment and other methods. Studies investigating the mechanisms by which extracellular vesicles promote bone regeneration and applying EVs from different sources using various methods to animal models of bone defects have increased. Therefore, this paper reviews the types of EVs used for bone regeneration, their sources, roles, delivery pathways, scaffold biomaterials, and applications.


Assuntos
Doenças Ósseas , Vesículas Extracelulares , Animais , Regeneração Óssea/fisiologia , Osteogênese , Vesículas Extracelulares/metabolismo , Materiais Biocompatíveis/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Doenças Ósseas/terapia , Doenças Ósseas/metabolismo
14.
Int Immunopharmacol ; 128: 111453, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38241841

RESUMO

BACKGROUND: Tumor necrosis factor-α (TNF-α) is involved in inflammatory responses and promotes cell death and the inhibition of osteogenic differentiation. MicroRNA (miRNA) plays a crucial role in the infected bone diseases, however, the biological role of miRNAs in inflammation-induced impaired osteogenic differentiation remains unclear. This study aimed to explore the role of miRNA-18a-5p (miR-18a) in regulating PANoptosis and osteogenic differentiation in an inflammatory environment via hypoxia-inducible factor-1α (HIF1-α). METHODS: The expression of miR-18a in MC3T3-E1 cells was analyzed using quantitative reverse transcription-polymerase chain reaction in an inflammatory environment induced by TNF-α. The expression of HIF1-α and NLRP3 in LV-miR-18a or sh-miR-18a cells was analyzed using western blotting. Fluorescence imaging for cell death, flow cytometry, and alkaline phosphatase activity analysis were used to analyze the role of miR-18a in TNF-α-induced PANoptosis and the inhibition of osteogenic differentiation. An animal model of infectious bone defect was established to validate the regulatory role of miR-18a in an inflammatory environment. RESULTS: The expression of miRNA-18a in the MC3T3-E1 cell line was significantly lower under TNF-α stimulation than in the normal environment. miR-18a significantly inhibited the expression of HIF1-α and NLRP3, and inhibition of HIF1-α expression further inhibited NLRP3 expression. Furthermore, inhibition of miR-18a expression promoted the TNF-α-induced PANoptosis and inhibition of osteogenic differentiation, whereas miR-18a overexpression and the inhibition of both HIF1-α and NLRP3 reduced the effects of TNF-α. These findings are consistent with those of the animal experiments. CONCLUSION: miRNA-18a negatively affects HIF1-α/NLRP3 expression, inhibits inflammation-induced PANoptosis, and impairs osteogenic differentiation. Thus, it is a potential therapeutic candidate for developing anti-inflammatory strategies for infected bone diseases.


Assuntos
Doenças Ósseas , MicroRNAs , Animais , Apoptose , Doenças Ósseas/metabolismo , Diferenciação Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , Necroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoblastos/metabolismo , Osteogênese , Piroptose , Fator de Necrose Tumoral alfa/metabolismo , Camundongos
15.
Bioessays ; 46(3): e2300173, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38161246

RESUMO

Endosteal stem cells are a subclass of bone marrow skeletal stem cell populations that are particularly important for rapid bone formation occurring in growth and regeneration. These stem cells are strategically located near the bone surface in a specialized microenvironment of the endosteal niche. These stem cells are abundant in young stages but eventually depleted and replaced by other stem cell types residing in a non-endosteal perisinusoidal niche. Single-cell molecular profiling and in vivo cell lineage analyses play key roles in discovering endosteal stem cells. Importantly, endosteal stem cells can transform into bone tumor-making cells when deleterious mutations occur in tumor suppressor genes. The emerging hypothesis is that osteoblast-chondrocyte transitional identities confer a special subset of endosteal stromal cells with stem cell-like properties, which may make them susceptible for tumorigenic transformation. Endosteal stem cells are likely to represent an important therapeutic target of bone diseases caused by aberrant bone formation.


Assuntos
Doenças Ósseas , Medula Óssea , Humanos , Medula Óssea/metabolismo , Osteogênese , Osteoblastos/metabolismo , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Células-Tronco , Células da Medula Óssea/metabolismo
16.
Cells ; 12(23)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067111

RESUMO

Sex-related differences are a current topic in contemporary science. In addition to hormonal regulation, cell-autonomous mechanisms are important in bone homeostasis and regeneration. In this study, human skeletal stem cells (SSCs) from female and male adults were cultured and analyzed with immunological assays and osteogenic differentiation assessments. Female SSCs exhibited a mean doubling time of 100.6 h, whereas male SSCs displayed a mean doubling time of 168.0 h. Immunophenotyping revealed the expression of the stem cell markers Nestin, CD133, and CD164, accompanied by the neural-crest marker SOX9. Furthermore, multiparameter flow cytometric analyses revealed a substantial population of multipotent SSCs, comprising up to 80% in both sexes. An analysis of the osteogenic differentiation potential demonstrated a strong mineralization in both male and female SSCs under physiological conditions. Recognizing the prevailing association of bone diseases with inflammatory processes, we also analyzed the osteogenic potential of SSCs from both sexes under pro-inflammatory conditions. Upon TNF-α and IL-1ß treatment, we observed no sexual dimorphism on osteogenesis. In summary, we demonstrated the successful isolation and characterization of SSCs capable of rapid osteogenic differentiation. Taken together, in vitro cultured SSCs might be a suitable model to study sexual dimorphisms and develop drugs for degenerative bone diseases.


Assuntos
Doenças Ósseas , Células-Tronco Mesenquimais , Humanos , Masculino , Feminino , Osteogênese , Caracteres Sexuais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco , Doenças Ósseas/metabolismo
17.
J Orthop Surg Res ; 18(1): 975, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114998

RESUMO

BACKGROUND: The traditional Chinese kidney-tonifying granules, known as Bushen Zhongyao Keli (BSZYKL), have been found to stimulate calcium salt deposition, enhance bone formation, and foster bone growth within the bone matrix at sites of bone defects. On the other hand, platelet-rich plasma (PRP) is enriched with various growth factors capable of facilitating the repair of bone defects and enhancing bone strength following fractures. This study is dedicated to investigating the combined efficacy of BSZYKL and PRP gel (PRP-G) in the treatment of bone defects. METHODS: We established a femur defect model in male Sprague-Dawley (SD) rats and filled the defect areas with autologous coccygeal bone and PRP-G. For 8 consecutive weeks, those rats were given with intragastric administration of BSZYKL. Biomechanical characteristics of the femur were assessed 28 days after intramuscular administration. On day 56, bone formation was examined using X-ray, micro-CT, and transmission electron microscopy. Additionally, we analyzed the expression of bone formation markers, Runx2 and Osterix, in femur tissues through qPCR, Western blotting, and immunohistochemistry. RESULTS: Rats receiving the combined treatment of BSZYKL and PRP-G exhibited drastically enhanced femoral peak torsion, failure angle, energy absorption capacity, and torsional stiffness as compared to control group. This combination therapy also led to marked improvements in bone volume, mass, and microarchitecture, accompanied by elevated expressions of Runx2 and Osterix when compared to control group. Notably, the synergistic effects of BSZYKL and PRP-G in treating bone defects surpassed the effects of either treatment alone. CONCLUSIONS: These findings revealed the potential of BSZYKL in combination with PRP-G in improving bone defects.


Assuntos
Doenças Ósseas , Plasma Rico em Plaquetas , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fêmur , Doenças Ósseas/metabolismo , Géis , Plasma Rico em Plaquetas/metabolismo , Rim , China , Regeneração Óssea
18.
Curr Osteoporos Rep ; 21(6): 787-805, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897675

RESUMO

PURPOSE OF REVIEW: Metabolic and genetic bone disorders affect not only bone mass but often also the bone material, including degree of mineralization, matrix organization, and lacunar porosity. The quality of juvenile bone is moreover highly influenced by skeletal growth. This review aims to provide a compact summary of the present knowledge on the complex interplay between bone modeling and remodeling during skeletal growth and to alert the reader to the complexity of bone tissue characteristics in children with bone disorders. RECENT FINDINGS: We describe cellular events together with the characteristics of the different tissues and organic matrix organization (cartilage, woven and lamellar bone) occurring during linear growth. Subsequently, we present typical alterations thereof in disorders leading to over-mineralized bone matrix compared to those associated with low or normal mineral content based on bone biopsy studies. Growth spurts or growth retardation might amplify or mask disease-related alterations in bone material, which makes the interpretation of bone tissue findings in children complex and challenging.


Assuntos
Doenças Ósseas , Calcinose , Criança , Humanos , Osso e Ossos , Doenças Ósseas/metabolismo , Matriz Óssea/metabolismo , Densidade Óssea , Calcinose/metabolismo
19.
Front Endocrinol (Lausanne) ; 14: 1150068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415664

RESUMO

Diabetes mellitus (DM) has been shown to be a clinical risk factor for bone diseases including osteoporosis and fragility. Bone metabolism is a complicated process that requires coordinated differentiation and proliferation of bone marrow mesenchymal stem cells (BMSCs). Owing to the regenerative properties, BMSCs have laid a robust foundation for their clinical application in various diseases. However, mounting evidence indicates that the osteogenic capability of BMSCs is impaired under high glucose conditions, which is responsible for diabetic bone diseases and greatly reduces the therapeutic efficiency of BMSCs. With the rapidly increasing incidence of DM, a better understanding of the impacts of hyperglycemia on BMSCs osteogenesis and the underlying mechanisms is needed. In this review, we aim to summarize the current knowledge of the osteogenesis of BMSCs in hyperglycemia, the underlying mechanisms, and the strategies to rescue the impaired BMSCs osteogenesis.


Assuntos
Doenças Ósseas , Hiperglicemia , Células-Tronco Mesenquimais , Humanos , Osteogênese , Diferenciação Celular , Doenças Ósseas/metabolismo , Hiperglicemia/metabolismo
20.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446790

RESUMO

Neurofibromatosis type 1 is a rare autosomal dominant genetic disorder, with up to 50% of patients clinically displaying skeletal defects. Currently, the pathogenesis of bone disorders in NF1 patients is unclear, and there are no effective preventive and treatment measures. In this study, we found that knockout of the NF1 gene reduced cAMP levels and osteogenic differentiation in an osteoblast model, and icariin activated the cAMP/PKA/CREB pathway to promote osteoblast differentiation of the NF1 gene knockout cell model by increasing intracellular cAMP levels. The PKA selective inhibitor H89 significantly impaired the stimulatory effect of icariin on osteogenesis in the NF1 cell model. In this study, an osteoblast model of NF1 was successfully constructed, and icariin was applied to the cell model for the first time. The results will help to elucidate the molecular mechanism of NF1 bone disease and provide new ideas for the clinical prevention and treatment of NF1 bone disease and drug development in the future.


Assuntos
Doenças Ósseas , Neurofibromatose 1 , Humanos , Osteogênese/genética , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Genes da Neurofibromatose 1 , Técnicas de Inativação de Genes , Diferenciação Celular/genética , Doenças Ósseas/metabolismo , Osteoblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...