Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.384
Filtrar
1.
J Neuroinflammation ; 21(1): 243, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342313

RESUMO

Demyelination occurs widely in the central nervous system (CNS) neurodegenerative diseases, especially the multiple sclerosis (MS), which with a complex and inflammatory lesion microenvironment inhibiting remyelination. Sirtuin6 (SIRT6), a histone/protein deacetylase is of interest for its promising effect in transcriptional regulation, cell cycling, inflammation, metabolism and longevity. Here we show that SIRT6 participates in the remyelination process in mice subjected to LPC-induced demyelination. Using pharmacological SIRT6 inhibitor or activator, we found that SIRT6 modulated LPC-induced damage in motor or cognitive function. Inhibition of SIRT6 impaired myelin regeneration, exacerbated neurological deficits, and decreased oligodendrocyte precursor cells (OPCs) proliferation and differentiation, whereas activation of SIRT6 reversed behavioral performance in mice, demonstrating a beneficial effect of SIRT6. Importantly, based on RNA sequencing analysis of the corpus callosum tissues, it was further revealed that SIRT6 took charge in regulation of glial activation during remyelination, and significant alterations in CHI3L1 were obtained, a glycoprotein specifically secreted by astrocytes. Impaired proliferation and differentiation of OPCs could be induced in vitro using supernatants from reactive astrocyte, especially when SIRT6 was inhibited. Mechanistically, SIRT6 regulates the secretion of CHI3L1 from reactive astrocytes by histone-H3-lysine-9 acetylation (H3K9Ac). Adeno-associated virus-overexpression of SIRT6 (AAV-SIRT6-OE) in astrocytes improved remyelination and functional recovery after LPC-induced demyelination, whereas together with AAV-CHI3L1-OE inhibits this therapeutic effect. Collectively, our data elucidate the role of SIRT6 in remyelination and further reveal astrocytic SIRT6/CHI3L1 as the key regulator for improving the remyelination environment, which may be a potential target for MS therapy.


Assuntos
Astrócitos , Doenças Desmielinizantes , Camundongos Endogâmicos C57BL , Sirtuínas , Animais , Sirtuínas/metabolismo , Sirtuínas/genética , Camundongos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Lisofosfatidilcolinas/toxicidade , Masculino , Células Cultivadas , Remielinização/efeitos dos fármacos , Remielinização/fisiologia
2.
Sci Rep ; 14(1): 22398, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333683

RESUMO

Several neurodegenerative diseases, such as multiple sclerosis and Parkinson's disease, are linked to alterations in myelin content or structure. Transmembrane receptors such as integrins could be involved in these alterations. In the present study, we investigated the role of αv-integrins in experimental models of neuroinflammation and demyelination with the use of lebecetin (LCT), a C-lectin protein purified from Macrovipera lebetina viper venom, as an αv-integrin modulator. In a model of neuroinflammation, LCT inhibited the upregulation of αv, ß3, ß5, α5, and ß1 integrins, as well as the associated release of pro-inflammatory factor IL-6 and chemokine CXCL-10, and decreased the expression of phosphorylated NfκB. The subsequent "indirect culture" between reactive astrocytes and oligodendrocytes showed a down-regulation of αv and ß3 integrins versus upregulation of ß1 one, accompanied by a reduced expression of myelin basic protein (MBP). Treatment of oligodendrocytes with LCT rectified the changes in integrin and MBP expression. Through Western blot quantification, LCT was shown to upregulate the expression levels of PI3K and p-mTOR while downregulating expression levels of p-AKT in oligodendrocytes, suggesting the neuroprotective and pro-myelinating effects of LCT may be related to the PI3K/mTor/AKT pathway. Concomitantly, we found that LCT promoted remyelination by tracking the increased expression of MBP in the brains of cuprizone-intoxicated mice. These results point to an involvement of integrins in not only neuroinflammation but demyelination as well. Thus, targeting αv integrins could offer potential therapeutic avenues for the treatment of demyelinating diseases.


Assuntos
Doenças Desmielinizantes , Modelos Animais de Doenças , Doenças Neuroinflamatórias , Venenos de Víboras , Animais , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/induzido quimicamente , Venenos de Víboras/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Integrina alfaV/metabolismo , Camundongos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Masculino
3.
STAR Protoc ; 5(3): 103242, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39093706

RESUMO

Cognitive dysfunction is a prevalent feature in multiple sclerosis, a chronic inflammatory demyelinating disease, which may be correlated with the impairment of adult hippocampal neurogenesis. Here, we present a detailed protocol for the induction of cuprizone demyelinated mice to assess the cognitive function and explore the precise mechanisms underlying cognitive deficits in demyelinated hippocampus. We describe steps for behavioral tests, 5-Ethynyl-2'-deoxyuridine (EdU) and bromodeoxyuridine (BrdU) administration, retrovirus packaging and stereotactic injection, hippocampal tissue preparation, and immunofluorescence staining. For complete details on the use and execution of this protocol, please refer to Song et al.1.


Assuntos
Cognição , Modelos Animais de Doenças , Hipocampo , Neurogênese , Animais , Hipocampo/patologia , Neurogênese/fisiologia , Camundongos , Cognição/fisiologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/induzido quimicamente , Masculino , Cuprizona/toxicidade , Esclerose Múltipla/patologia
5.
Cell Mol Life Sci ; 81(1): 346, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134808

RESUMO

In people with multiple sclerosis (MS), newborn and surviving oligodendrocytes (OLs) can contribute to remyelination, however, current therapies are unable to enhance or sustain endogenous repair. Low intensity repetitive transcranial magnetic stimulation (LI-rTMS), delivered as an intermittent theta burst stimulation (iTBS), increases the survival and maturation of newborn OLs in the healthy adult mouse cortex, but it is unclear whether LI-rTMS can promote remyelination. To examine this possibility, we fluorescently labelled oligodendrocyte progenitor cells (OPCs; Pdgfrα-CreER transgenic mice) or mature OLs (Plp-CreER transgenic mice) in the adult mouse brain and traced the fate of each cell population over time. Daily sessions of iTBS (600 pulses; 120 mT), delivered during cuprizone (CPZ) feeding, did not alter new or pre-existing OL survival but increased the number of myelin internodes elaborated by new OLs in the primary motor cortex (M1). This resulted in each new M1 OL producing ~ 471 µm more myelin. When LI-rTMS was delivered after CPZ withdrawal (during remyelination), it significantly increased the length of the internodes elaborated by new M1 and callosal OLs, increased the number of surviving OLs that supported internodes in the corpus callosum (CC), and increased the proportion of axons that were myelinated. The ability of LI-rTMS to modify cortical neuronal activity and the behaviour of new and surviving OLs, suggests that it may be a suitable adjunct intervention to enhance remyelination in people with MS.


Assuntos
Cuprizona , Doenças Desmielinizantes , Bainha de Mielina , Oligodendroglia , Remielinização , Estimulação Magnética Transcraniana , Animais , Estimulação Magnética Transcraniana/métodos , Oligodendroglia/metabolismo , Doenças Desmielinizantes/terapia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Camundongos , Bainha de Mielina/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Córtex Motor/patologia , Córtex Motor/metabolismo , Sobrevivência Celular , Camundongos Endogâmicos C57BL , Esclerose Múltipla/terapia , Esclerose Múltipla/patologia
6.
Nat Commun ; 15(1): 6744, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112447

RESUMO

Demyelination is a common pathological feature in a wide range of diseases, characterized by the loss of myelin sheath and myelin-supporting oligodendrocytes. These losses lead to impaired axonal function, increased vulnerability of axons to damage, and result in significant brain atrophy and neuro-axonal degeneration. Multiple pathomolecular processes contribute to neuroinflammation, oligodendrocyte cell death, and progressive neuronal dysfunction. In this study, we use the cuprizone mouse model of demyelination to investigate long-term non-invasive gamma entrainment using sensory stimulation as a potential therapeutic intervention for promoting myelination and reducing neuroinflammation in male mice. Here, we show that multisensory gamma stimulation mitigates demyelination, promotes oligodendrogenesis, preserves functional integrity and synaptic plasticity, attenuates oligodendrocyte ferroptosis-induced cell death, and reduces brain inflammation. Thus, the protective effects of multisensory gamma stimulation on myelin and anti-neuroinflammatory properties support its potential as a therapeutic approach for demyelinating disorders.


Assuntos
Cuprizona , Doenças Desmielinizantes , Modelos Animais de Doenças , Bainha de Mielina , Oligodendroglia , Animais , Cuprizona/toxicidade , Masculino , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/terapia , Doenças Desmielinizantes/patologia , Camundongos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Bainha de Mielina/metabolismo , Camundongos Endogâmicos C57BL , Ferroptose , Plasticidade Neuronal , Encéfalo/patologia , Encéfalo/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/patologia
7.
CNS Neurosci Ther ; 30(8): e14922, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39138640

RESUMO

AIMS: The mechanism underlying the reversible unconsciousness induced by general anesthetics (GA) remains unclear. Recent studies revealed the critical roles of myelin and oligodendrocytes (OLs) in higher functions of the brain. However, it is unknown whether myelin actively participates in the regulation of GA. The aim of this study is to investigate the roles and possible mechanisms of myelin in the regulation of consciousness alterations induced by isoflurane anesthesia. METHODS: First, demyelination models for the entire brain and specific neural nuclei were established to investigate the potential role of myelination in the regulation of GA, as well as its possible regional specificity. c-Fos staining was then performed on the demyelinated nuclei to verify the impact of myelin loss on neuronal activity. Finally, the activity of neurons during isoflurane anesthesia in demyelinated mice was recorded by optical fiber photometric calcium signal. The related behavioral indicators and EEG were recorded and analyzed. RESULTS: A prolonged emergence time was observed from isoflurane anesthesia in demyelinated mice, which suggested the involvement of myelin in regulating GA. The demyelination in distinct nuclei by LPC further clarified the region-specific roles of isoflurane anesthesia regulation by myelin. The effect of demyelination on isoflurane anesthesia in the certain nucleus was consistent with that in neurons towards isoflurane anesthesia. Finally, we found that the mechanism of myelin in the modulation of isoflurane anesthesia is possibly through the regulation of neuronal activity. CONCLUSIONS: In brief, myelin in the distinct neural nucleus plays an essential role in regulating the process of isoflurane anesthesia. The possible mechanism of myelin in the regulation of isoflurane anesthesia is neuronal activity modification by myelin integrity during GA. Our findings enhanced the comprehension of myelin function, and offered a fresh perspective for investigating the neural mechanisms of GA.


Assuntos
Anestésicos Inalatórios , Isoflurano , Camundongos Endogâmicos C57BL , Bainha de Mielina , Neurônios , Isoflurano/farmacologia , Animais , Anestésicos Inalatórios/farmacologia , Camundongos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Doenças Desmielinizantes/induzido quimicamente , Eletroencefalografia , Encéfalo/efeitos dos fármacos
8.
Biol Res ; 57(1): 48, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034395

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an irreversible progressive CNS pathology characterized by the loss of myelin (i.e. demyelination). The lack of myelin is followed by a progressive neurodegeneration triggering symptoms as diverse as fatigue, motor, locomotor and sensory impairments and/or bladder, cardiac and respiratory dysfunction. Even though there are more than fourteen approved treatments for reducing MS progression, there are still no cure for the disease. Thus, MS research is a very active field and therefore we count with different experimental animal models for studying mechanisms of demyelination and myelin repair, however, we still lack a preclinical MS model assembling demyelination mechanisms with relevant clinical-like signs. RESULTS: Here, by inducing the simultaneous demyelination of both callosal and cerebellar white matter fibers by the double-site injection of lysolecithin (LPC), we were able to reproduce CNS demyelination, astrocyte recruitment and increases levels of proinflammatory cytokines levels along with motor, locomotor and urinary impairment, as well as cardiac and respiratory dysfunction, in the same animal model. Single site LPC-injections either in corpus callosum or cerebellum only, fails in to reproduce such a complete range of MS-like signs. CONCLUSION: We here report that the double-site LPC injections treatment evoke a complex MS-like mice model. We hope that this experimental approach will help to deepen our knowledge about the mechanisms of demyelinated diseases such as MS.


Assuntos
Cerebelo , Corpo Caloso , Doenças Desmielinizantes , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Animais , Esclerose Múltipla/patologia , Corpo Caloso/patologia , Cerebelo/patologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/induzido quimicamente , Camundongos , Masculino , Lisofosfatidilcolinas , Citocinas/metabolismo , Bainha de Mielina/patologia
9.
Int J Biol Macromol ; 277(Pt 1): 134144, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053824

RESUMO

Multiple sclerosis is a chronic inflammatory demyelinating disorder of the CNS characterized by continuous myelin damage accompanied by deterioration in functions. Clobetasol propionate (CP) is the most potent topical corticosteroid with serious side effects related to systemic absorption. Previous studies introduced CP for remyelination without considering systemic toxicity. This work aimed at fabrication and optimization of double coated nano-oleosomes loaded with CP to achieve brain targeting through intranasal administration. The optimized formulation was coated with lactoferrin and chitosan for the first time. The obtained double-coated oleosomes had particle size (220.07 ± 0.77 nm), zeta potential (+30.23 ± 0.41 mV) along with antioxidant capacity 9.8 µM ascorbic acid equivalents. Double coating was well visualized by TEM and significantly decreased drug release. Three different doses of CP were assessed in-vivo using cuprizone-induced demyelination in C57Bl/6 mice. Neurobehavioral tests revealed improvement in motor and cognitive functions of mice in a dose-dependent manner. Histopathological examination of the brain showed about 2.3 folds increase in corpus callosum thickness in 0.3 mg/kg CP dose. Moreover, the measured biomarkers highlighted the significant antioxidant and anti-inflammatory capacity of the formulation. In conclusion, the elaborated biopolymer-integrating nanocarrier succeeded in remyelination with 6.6 folds reduction in CP dose compared to previous studies.


Assuntos
Quitosana , Clobetasol , Cuprizona , Doenças Desmielinizantes , Modelos Animais de Doenças , Lactoferrina , Esclerose Múltipla , Remielinização , Animais , Lactoferrina/química , Lactoferrina/farmacologia , Quitosana/química , Camundongos , Clobetasol/farmacologia , Clobetasol/química , Remielinização/efeitos dos fármacos , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/induzido quimicamente , Lipossomos/química , Camundongos Endogâmicos C57BL , Masculino , Tamanho da Partícula , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Liberação Controlada de Fármacos
10.
Neuroscience ; 555: 41-51, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39033991

RESUMO

The research aims to study the therapeutic impact of HEK293-XPack-Olig2 cell-derived exosomes on remyelination of the corpus callosum in a cuprizone-induced demyelinating disease model. A lentiviral vector expressing Olig2 was constructed using XPack technology. The highly abundant Olig2 exosomes (ExoOs) were isolated by centrifugation for subsequent experiments. Western blot, nanoparticle tracking analysis (NTA), and electron microscopy showed no significant difference in particle size and morphology between Exos and ExoOs, and a high level of Olig2 expression could be detected in ExoOs, indicating that exosome modification by XPack technology was successful. The Black Gold/Fluromyelin staining analysis showed that the ExoOs group significantly reduced the demyelination area in the corpus callosum compared to the PBS and Exos groups. Additionally, the PDGFRα/APC staining of the demyelinating region revealed an increase in APC+ oligodendrocytes and a decrease in PDGFRα+ oligodendrocyte progenitor cells (OPCs) in the ExoOs group. Furthermore, there was evident myelin regeneration in the demyelinated areas after ExoOs treatment, with better g-ratio and a higher number of intact myelin compared to the other treatment groups. The level of Sox10 expression in the brain tissue of the ExoOs group were higher compared to those of the PBS and Exos groups. The demyelination process can be significantly slowed down by the XPack-modified exosomes, the differentiation of OPCs promoted, and myelin regeneration accelerated under pathological conditions. This process is presumed to be achieved by changing the expression level of intracellular differentiation-related genes after exosomes transport Olig2 enriched into oligodendrocyte progenitors.


Assuntos
Cuprizona , Doenças Desmielinizantes , Exossomos , Fator de Transcrição 2 de Oligodendrócitos , Exossomos/metabolismo , Cuprizona/toxicidade , Animais , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Humanos , Células HEK293 , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Remielinização/fisiologia , Camundongos , Células Precursoras de Oligodendrócitos/metabolismo , Camundongos Endogâmicos C57BL , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Masculino , Oligodendroglia/metabolismo , Modelos Animais de Doenças
12.
Sci Rep ; 14(1): 13988, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886527

RESUMO

Demyelination is generated in several nervous system illnesses. Developing strategies for effective clinical treatments requires the discovery of promyelinating drugs. Increased GABAergic signaling through γ-aminobutyric acid type A receptor (GABAAR) activation in oligodendrocytes has been proposed as a promyelinating condition. GABAAR expressed in oligodendroglia is strongly potentiated by n-butyl-ß-carboline-3-carboxylate (ß-CCB) compared to that in neurons. Here, mice were subjected to 0.3% cuprizone (CPZ) added in the food to induce central nervous system demyelination, a well-known model for multiple sclerosis. Then ß-CCB (1 mg/Kg) was systemically administered to analyze the remyelination status in white and gray matter areas. Myelin content was evaluated using Black-Gold II (BGII) staining, immunofluorescence (IF), and magnetic resonance imaging (MRI). Evidence indicates that ß-CCB treatment of CPZ-demyelinated animals promoted remyelination in several white matter structures, such as the fimbria, corpus callosum, internal capsule, and cerebellar peduncles. Moreover, using IF, it was observed that CPZ intake induced an increase in NG2+ and a decrease in CC1+ cell populations, alterations that were importantly retrieved by ß-CCB treatment. Thus, the promyelinating character of ß-CCB was confirmed in a generalized demyelination model, strengthening the idea that it has clinical potential as a therapeutic drug.


Assuntos
Carbolinas , Cuprizona , Doenças Desmielinizantes , Modelos Animais de Doenças , Remielinização , Animais , Cuprizona/toxicidade , Remielinização/efeitos dos fármacos , Camundongos , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/metabolismo , Carbolinas/farmacologia , Carbolinas/administração & dosagem , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/patologia , Substância Branca/efeitos dos fármacos , Substância Branca/metabolismo , Substância Branca/patologia , Imageamento por Ressonância Magnética
13.
Glia ; 72(10): 1801-1820, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38899723

RESUMO

The kappa opioid receptor has been identified as a promising therapeutic target for promoting remyelination. In the current study, we evaluated the ability of nalfurafine to promote oligodendrocyte progenitor cell (OPC) differentiation and myelination in vitro, and its efficacy in an extended, cuprizone-induced demyelination model. Primary mouse (C57BL/6J) OPC-containing cultures were treated with nalfurafine (0.6-200 nM), clemastine (0.01-100 µM), T3 (30 ng/mL), or vehicle for 5 days. Using immunocytochemistry and confocal microscopy, we found that nalfurafine treatment increased OPC differentiation, oligodendrocyte (OL) morphological complexity, and myelination of nanofibers in vitro. Adult male mice (C57BL/6J) were given a diet containing 0.2% cuprizone and administered rapamycin (10 mg/kg) once daily for 12 weeks followed by 6 weeks of treatment with nalfurafine (0.01 or 0.1 mg/kg), clemastine (10 mg/kg), or vehicle. We quantified the number of OLs using immunofluorescence, gross myelination using black gold staining, and myelin thickness using electron microscopy. Cuprizone + rapamycin treatment produced extensive demyelination and was accompanied by a loss of mature OLs, which was partially reversed by therapeutic administration of nalfurafine. We also assessed these mice for functional behavioral changes in open-field, horizontal bar, and mouse motor skill sequence tests (complex wheel running). Cuprizone + rapamycin treatment resulted in hyperlocomotion, poorer horizontal bar scores, and less distance traveled on the running wheels. Partial recovery was observed on both the horizontal bar and complex running wheel tests over time, which was facilitated by nalfurafine treatment. Taken together, these data highlight the potential of nalfurafine as a remyelination-promoting therapeutic.


Assuntos
Cuprizona , Doenças Desmielinizantes , Camundongos Endogâmicos C57BL , Morfinanos , Bainha de Mielina , Sirolimo , Compostos de Espiro , Animais , Morfinanos/farmacologia , Masculino , Compostos de Espiro/farmacologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/tratamento farmacológico , Camundongos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Sirolimo/farmacologia , Cuprizona/toxicidade , Células Cultivadas , Modelos Animais de Doenças , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos
14.
Neurosci Lett ; 836: 137869, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38852766

RESUMO

Dietary administration of a copper chelator, cuprizone (CPZ), has long been reported to induce intense and reproducible demyelination of several brain structures such as the corpus callosum. Despite the widespread use of CPZ as an animal model for demyelinating diseases such as multiple sclerosis (MS), the mechanism by which it induces demyelination and then allows robust remyelination is still unclear. An intensive mapping of the cell dynamics of oligodendrocyte (OL) lineage during the de- and remyelination course would be particularly important for a deeper understanding of this model. Here, using a panel of OL lineage cell markers as in situ hybridization (ISH) probes, including Pdgfra, Plp, Mbp, Mog, Enpp6, combined with immunofluorescence staining of CC1, SOX10, we provide a detailed dynamic profile of OL lineage cells during the entire course of the model from 1, 2, 3.5 days, 1, 2, 3, 4,5 weeks of CPZ treatment, as well as after 1, 2, 3, 4 weeks of recovery from CPZ treatment. The result showed an unexpected early death of mature OLs and response of OL progenitor cells (OPCs) in vivo upon CPZ challenge, and a prolonged upregulation of myelin-forming OLs compared to the intact control even 4 weeks after CPZ withdrawal. These data may serve as a basic reference system for future studies of the effects of any intervention on de- and remyelination using the CPZ model, and imply the need to optimize the timing windows for the introduction of pro-remyelination therapies in demyelinating diseases such as MS.


Assuntos
Linhagem da Célula , Cuprizona , Doenças Desmielinizantes , Oligodendroglia , Cuprizona/toxicidade , Animais , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Modelos Animais de Doenças , Hibridização In Situ/métodos , Camundongos Endogâmicos C57BL , Camundongos , Remielinização/efeitos dos fármacos , Remielinização/fisiologia , Masculino , Quelantes/toxicidade , Quelantes/farmacologia , Bainha de Mielina/patologia , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo
15.
Lipids Health Dis ; 23(1): 194, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909243

RESUMO

BACKGROUND: Lipid droplet (LD)-laden microglia is a key pathological hallmark of multiple sclerosis. The recent discovery of this novel microglial subtype, lipid-droplet-accumulating microglia (LDAM), is notable for increased inflammatory factor secretion and diminished phagocytic capability. Lipophagy, the autophagy-mediated selective degradation of LDs, plays a critical role in this context. This study investigated the involvement of microRNAs (miRNAs) in lipophagy during demyelinating diseases, assessed their capacity to modulate LDAM subtypes, and elucidated the potential underlying mechanisms involved. METHODS: C57BL/6 mice were used for in vivo experiments. Two weeks post demyelination induction at cervical level 4 (C4), histological assessments and confocal imaging were performed to examine LD accumulation in microglia within the lesion site. Autophagic changes were observed using transmission electron microscopy. miRNA and mRNA multi-omics analyses identified differentially expressed miRNAs and mRNAs under demyelinating conditions and the related autophagy target genes. The role of miR-223 in lipophagy under these conditions was specifically explored. In vitro studies, including miR-223 upregulation in BV2 cells via lentiviral infection, validated the bioinformatics findings. Immunofluorescence staining was used to measure LD accumulation, autophagy levels, target gene expression, and inflammatory mediator levels to elucidate the mechanisms of action of miR-223 in LDAM. RESULTS: Oil Red O staining and confocal imaging revealed substantial LD accumulation in the demyelinated spinal cord. Transmission electron microscopy revealed increased numbers of autophagic vacuoles at the injury site. Multi-omics analysis revealed miR-223 as a crucial regulatory gene in lipophagy during demyelination. It was identified that cathepsin B (CTSB) targets miR-223 in autophagy to integrate miRNA, mRNA, and autophagy gene databases. In vitro, miR-223 upregulation suppressed CTSB expression in BV2 cells, augmented autophagy, alleviated LD accumulation, and decreased the expression of the inflammatory mediator IL-1ß. CONCLUSION: These findings indicate that miR-223 plays a pivotal role in lipophagy under demyelinating conditions. By inhibiting CTSB, miR-223 promotes selective LD degradation, thereby reducing the lipid burden and inflammatory phenotype in LDAM. This study broadens the understanding of the molecular mechanisms of lipophagy and proposes lipophagy induction as a potential therapeutic approach to mitigate inflammatory responses in demyelinating diseases.


Assuntos
Autofagia , Catepsina B , Doenças Desmielinizantes , Gotículas Lipídicas , Lisofosfatidilcolinas , Camundongos Endogâmicos C57BL , MicroRNAs , Microglia , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Microglia/patologia , Camundongos , Gotículas Lipídicas/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Catepsina B/metabolismo , Catepsina B/genética , Lisofosfatidilcolinas/metabolismo , Modelos Animais de Doenças , Masculino , Regulação da Expressão Gênica , Linhagem Celular
16.
Mol Biol Rep ; 51(1): 674, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787497

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) with inflammation and immune dysfunction. OBJECTIVES: We compared the remyelination and immunomodulation properties of mesenchymal stem cells (MSCs) with their conditioned medium (CM) in the cuprizone model. METHODS: Twenty-four C57BL/ 6 mice were divided into four groups. After cuprizone demyelination, MSCs and their CM were injected into the right lateral ventricle of mice. The expression level of IL-1ß, TNF-α, and BDNF genes was evaluated using the qRT-PCR. APC antibody was used to assess the oligodendrocyte population using the immunofluorescent method. The remyelination and axonal repair were studied by specific staining of the LFB and electron microscopy techniques. RESULTS: Transplantation of MSCs and CM increased the expression of the BDNF gene and decreased the expression of IL-1ß and TNF-α genes compared to the cuprizone group, and these effects in the cell group were more than CM. Furthermore, cell transplantation resulted in a significant improvement in myelination and axonal repair, which was measured by luxol fast blue and transmission electron microscope images. The cell group had a higher number of oligodendrocytes than other groups. CONCLUSIONS: According to the findings, injecting MSCs intraventricularly versus cell-conditioned medium can be a more effective approach to improving chronic demyelination in degenerative diseases like MS.


Assuntos
Cuprizona , Doenças Desmielinizantes , Modelos Animais de Doenças , Inflamação , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Animais , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Células-Tronco Mesenquimais/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Meios de Cultivo Condicionados/farmacologia , Inflamação/patologia , Inflamação/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Oligodendroglia/metabolismo , Remielinização , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo , Masculino , Bainha de Mielina/metabolismo
17.
Neurochem Res ; 49(8): 2087-2104, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38819698

RESUMO

Addressing inflammation, demyelination, and associated neurodegeneration in inflammatory demyelinating diseases like multiple sclerosis (MS) remains challenging. ACT-1004-1239, a first-in-class and potent ACKR3 antagonist, currently undergoing clinical development, showed promise in preclinical MS models, reducing neuroinflammation and demyelination. However, its effectiveness in treating established disease and impact on remyelination after the occurrence of demyelinated lesions remain unexplored. This study assessed the therapeutic effect of ACT-1004-1239 in two demyelinating disease models. In the proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) model, ACT-1004-1239 administered upon the detection of the first signs of paralysis, resulted in a dose-dependent reduction in EAE disease severity, concomitant with diminished immune cell infiltrates in the CNS and reduced demyelination. Notably, efficacy correlated with elevated plasma concentrations of CXCL11 and CXCL12, two pharmacodynamic biomarkers of ACKR3 antagonism. Combining ACT-1004-1239 with siponimod, an approved immunomodulatory treatment for MS, synergistically reduced EAE severity. In the cuprizone-induced demyelination model, ACT-1004-1239 administered after 5 weeks of cuprizone exposure, significantly accelerated remyelination, already quantifiable one week after cuprizone withdrawal. Additionally, ACT-1004-1239 penetrated the CNS, elevating brain CXCL12 concentrations. These results demonstrate that ACKR3 antagonism significantly reduces the severity of experimental demyelinating diseases, even when treatment is initiated therapeutically, after the occurrence of lesions. It confirms the dual mode of action of ACT-1004-1239, exhibiting both immunomodulatory effects by reducing neuroinflammation and promyelinating effects by accelerating myelin repair. The results further strengthen the rationale for evaluating ACT-1004-1239 in clinical trials for patients with demyelinating diseases.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Remielinização , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Remielinização/efeitos dos fármacos , Camundongos , Feminino , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/induzido quimicamente , Cuprizona , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Compostos de Benzil/uso terapêutico , Compostos de Benzil/farmacologia , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo
18.
J Neurosci ; 44(28)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38749703

RESUMO

Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand-mediated activation hindering myelin repair. Following chronic cuprizone (CPZ)-induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase-/butyrylcholinesterase (BChE)-mediated degradation. Using choline acetyltransferase (ChAT) reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and CPZ demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin-induced demyelination. In CPZ-demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following CPZ demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand-mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand-mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.


Assuntos
Doenças Desmielinizantes , Oligodendroglia , Transdução de Sinais , Animais , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Camundongos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Feminino , Masculino , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Camundongos Endogâmicos C57BL , Acetilcolina/metabolismo , Cuprizona/toxicidade , Lisofosfatidilcolinas/toxicidade , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Colina O-Acetiltransferase/metabolismo , Remielinização/fisiologia , Remielinização/efeitos dos fármacos , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Camundongos Transgênicos
19.
Behav Brain Res ; 469: 115041, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723674

RESUMO

Cognitive impairment (CI) and memory deficit are prevalent manifestations of multiple sclerosis (MS). This study explores the therapeutic potential of arbutin on memory deficits using a rat hippocampal demyelination model induced by lysophosphatidylcholine (LPC). Demyelination was induced by bilateral injection of 1% LPC into the CA1 area of the hippocampus, and the treated group received daily arbutin injections (50 mg/kg, i.p) for two weeks. Arbutin significantly improved memory impairment 14 days post-demyelination as assessed by Morris water maze test. Histological and immunohistochemical analyses demonstrated that arbutin reduced demyelination suppressed pro-inflammatory markers (IL-1ß, TNF-α) and increased anti-inflammatory cytokine IL-10. Arbutin also diminished astrocyte activation, decreased iNOS, enhanced anti-oxidative factors (Nrf2, HO-1), and exhibited neuroprotective effects by elevating myelin markers (MBP) and brain derived neurotrophic factor (BDNF). These findings propose arbutin as a potential therapeutic candidate for multiple sclerosis-associated memory deficits, warranting further clinical exploration.


Assuntos
Anti-Inflamatórios , Arbutina , Doenças Desmielinizantes , Modelos Animais de Doenças , Lisofosfatidilcolinas , Transtornos da Memória , Fármacos Neuroprotetores , Animais , Lisofosfatidilcolinas/farmacologia , Ratos , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Masculino , Arbutina/farmacologia , Arbutina/administração & dosagem , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/induzido quimicamente , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Ratos Sprague-Dawley
20.
Brain Stimul ; 17(3): 575-587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648972

RESUMO

BACKGROUND: Current treatments for Multiple Sclerosis (MS) poorly address chronic innate neuroinflammation nor do they offer effective remyelination. The vagus nerve has a strong regulatory role in inflammation and Vagus Nerve Stimulation (VNS) has potential to affect both neuroinflammation and remyelination in MS. OBJECTIVE: This study investigated the effects of VNS on demyelination and innate neuroinflammation in a validated MS rodent model. METHODS: Lysolecithin (LPC) was injected in the corpus callosum (CC) of 46 Lewis rats, inducing a demyelinated lesion. 33/46 rats received continuously-cycled VNS (cVNS) or one-minute per day VNS (1minVNS) or sham VNS from 2 days before LPC-injection until perfusion at 3 days post-injection (dpi) (corresponding with a demyelinated lesion with peak inflammation). 13/46 rats received cVNS or sham from 2 days before LPC-injection until perfusion at 11 dpi (corresponding with a partial remyelinated lesion). Immunohistochemistry and proteomics analyses were performed to investigate the extend of demyelination and inflammation. RESULTS: Immunohistochemistry showed that cVNS significantly reduced microglial and astrocytic activation in the lesion and lesion border, and significantly reduced the Olig2+ cell count at 3 dpi. Furthermore, cVNS significantly improved remyelination with 57.4 % versus sham at 11 dpi. Proteomic gene set enrichment analyses showed increased activation of (glutamatergic) synapse pathways in cVNS versus sham, most pronounced at 3 dpi. CONCLUSION: cVNS improved remyelination of an LPC-induced lesion. Possible mechanisms might include modulation of microglia and astrocyte activity, increased (glutamatergic) synapses and enhanced oligodendrocyte clearance after initial injury.


Assuntos
Doenças Desmielinizantes , Lisofosfatidilcolinas , Ratos Endogâmicos Lew , Remielinização , Estimulação do Nervo Vago , Animais , Ratos , Remielinização/fisiologia , Remielinização/efeitos dos fármacos , Lisofosfatidilcolinas/toxicidade , Doenças Desmielinizantes/terapia , Doenças Desmielinizantes/induzido quimicamente , Estimulação do Nervo Vago/métodos , Masculino , Doenças Neuroinflamatórias/terapia , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/etiologia , Modelos Animais de Doenças , Esclerose Múltipla/terapia , Esclerose Múltipla/induzido quimicamente , Corpo Caloso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...