Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 920
Filtrar
1.
Ann Afr Med ; 23(3): 512-513, 2024 Jul 01.
Artigo em Francês, Inglês | MEDLINE | ID: mdl-39034583

RESUMO

Hyperkinesias in a patient with complex-I deficiency due to the variant m.10191T>C in MT-ND3 have not been previously reported. The patient is a 32 years-old female with multisystem mitochondrial disease due to variant m.10191T>C in MT-ND3, who has been experiencing episodic, spontaneous or induced abnormal movements since age 23. The abnormal movements started as right hemi-athetosis, bilateral dystonia of the legs, or unilateral dystonia of the right arm and leg. They often progressed to severe ballism, involving the trunk, and limbs. The arms were more dystonic than the legs. In conclusion, complex-I deficiency due to the variant m.10191T>C in MT-ND3 may manifest as multisystem disease including hyperkinesias. Neurologists should be aware of hyperkinesias as a manifestation of complex-I deficiency.


RésuméL'hyperkinésie d'une patiente atteinte d'un déficit en complexe I dû à la variante m.10191T>C du gène MT-ND3 n'a jamais été rapportée auparavant. La patiente est une femme de 32 ans atteinte d'une maladie mitochondriale multisystémique due à la variante m.10191T>C du gène MT-ND3, qui présente des mouvements anormaux épisodiques, spontanés ou provoqués depuis l'âge de 18 ans. mouvements anormaux épisodiques, spontanés ou provoqués depuis l'âge de 23 ans. Les mouvements anormaux ont commencé par une hémiathétose droite, dystonie bilatérale des jambes ou dystonie unilatérale du bras et de la jambe droite. Ils ont souvent évolué vers un ballisme sévère, impliquant le tronc et les membres. le tronc et les membres. Les bras étaient plus dystoniques que les jambes. En conclusion, le déficit en complexe I dû à la variante m.10191T>C du gène MT-ND3 peut se manifester par une maladie multisystémique comprenant des hyperkinésies. Les neurologues doivent être conscients que l'hyperkinésie est une manifestation du déficit en complexe-I. de la déficience en complexe I.


Assuntos
Doença de Leigh , Humanos , Feminino , Adulto , Doença de Leigh/complicações , Doença de Leigh/diagnóstico , Hipercinese/etiologia , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/complicações , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação
2.
J Diabetes Complications ; 38(8): 108798, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991492

RESUMO

AIMS: Type 1 diabetes has been associated with mitochondrial dysfunction. However, the mechanism of this dysfunction in adults remains unclear. METHODS: A secondary analysis was conducted using data from several clinical trials measuring in-vivo and ex-vivo mitochondrial function in adults with type 1 diabetes (n = 34, age 38.8 ± 14.6 years) and similarly aged controls (n = 59, age 44.6 ± 13.9 years). In-vivo mitochondrial function was assessed before, during, and after isometric exercise with 31phosphorous magnetic resonance spectroscopy. High resolution respirometry of vastus lateralis muscle tissue was used to assess ex-vivo measures. RESULTS: In-vivo data showed higher rates of anaerobic glycolysis (p = 0.013), and a lower maximal mitochondrial oxidative capacity (p = 0.012) and mitochondrial efficiency (p = 0.024) in adults with type 1 diabetes. After adjustment for age and percent body fat maximal mitochondrial capacity (p = 0.014) continued to be lower and anaerobic glycolysis higher (p = 0.040) in adults with type 1 diabetes. Ex-vivo data did not demonstrate significant differences between the two groups. CONCLUSIONS: The in-vivo analysis demonstrates that adults with type 1 diabetes have mitochondrial dysfunction. This builds on previous research showing in-vivo mitochondrial dysfunction in youths with type 1 diabetes and suggests that defects in substrate or oxygen delivery may play a role in in-vivo dysfunction.


Assuntos
Diabetes Mellitus Tipo 1 , Mitocôndrias Musculares , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/fisiopatologia , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Glicólise/fisiologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Doenças Mitocondriais/complicações , Estudos de Casos e Controles , Espectroscopia de Ressonância Magnética , Adulto Jovem , Exercício Físico/fisiologia
3.
J Pediatr Hematol Oncol ; 46(5): e338-e347, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857202

RESUMO

Primary mitochondrial disorders (PMDs) are known for their pleiotropic manifestations in humans, affecting almost any organ or system at any time. Hematologic manifestations, such as cytopenias and sideroblastic anemia, occur in 10% to 30% of patients with confirmed PMDs. These can be the initial presenting features or complications that develop over time. Surveillance for these manifestations allows for prompt identification and treatment. This article provides an overview of the pathophysiology underpinning the hematologic effects of mitochondrial dysfunction, discussing the 3 key roles of the mitochondria in hematopoiesis: providing energy for cell differentiation and function, synthesizing heme, and generating iron-sulfur clusters. Subsequently, the diagnosis and management of mitochondrial disorders are discussed, focusing on hematologic manifestations and the specific conditions commonly associated with them. Through this, we aimed to provide a concise point of reference for those considering a mitochondrial cause for a patient's hematologic abnormality, or for those considering a hematologic manifestation in a patient with known or suspected mitochondrial disease.


Assuntos
Doenças Hematológicas , Doenças Mitocondriais , Humanos , Doenças Mitocondriais/complicações , Doenças Hematológicas/sangue , Doenças Hematológicas/complicações , Doenças Hematológicas/patologia , Mitocôndrias/patologia , Hematopoese , Anemia Sideroblástica/diagnóstico , Anemia Sideroblástica/terapia
5.
Mol Genet Metab ; 142(3): 108510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843620

RESUMO

BACKGROUND: Information about dysarthria and dysphagia in mitochondrial diseases (MD) is scarce. However, this knowledge is needed to identify speech and swallowing problems early, to monitor the disease course, and to develop and offer optimal treatment and support. This study therefore aims to examine the prevalence and severity of dysarthria and dysphagia in patients with MD and its relation to clinical phenotype and disease severity. Secondary aim is to determine clinically relevant outcome measures for natural history studies and clinical trials. METHODS: This retrospective cross-sectional medical record study includes adults (age ≥ 18 years) diagnosed with genetically confirmed MD who participated in a multidisciplinary admission within the Radboud center for mitochondrial medicine between January 2015 and April 2023. Dysarthria and dysphagia were examined by administering the Radboud dysarthria assessment, swallowing speed, dysphagia limit, test of mastication and swallowing solids (TOMASS), and 6-min mastication test (6MMT). The disease severity was assessed using the Newcastle mitochondrial disease scale for adults (NMDAS). RESULTS: The study included 224 patients with MD with a median age of 42 years of whom 37.5% were male. The pooled prevalence of dysarthria was 33.8% and of dysphagia 35%. Patients with MD showed a negative deviation from the norm on swallowing speed, TOMASS (total time) and the 6MMT. Furthermore, a significant moderate relation was found between the presence of dysarthria and the clinical phenotypes. There was a statistically significant difference in total time on the TOMASS between the clinical phenotypes. Finally, disease severity showed a significant moderate relation with the severity of dysarthria and a significant weak relation with the severity of dysphagia. CONCLUSION: Dysarthria and dysphagia occur in about one-third of patients with MD. It is important for treating physicians to pay attention to this subject because of the influence of both disorders on social participation and wellbeing. Referral to a speech and language therapist should therefore be considered, especially in patients with a more severe clinical phenotype. The swallowing speed, TOMASS and 6MMT are the most clinically relevant tests to administer.


Assuntos
Transtornos de Deglutição , Disartria , Doenças Mitocondriais , Humanos , Transtornos de Deglutição/etiologia , Transtornos de Deglutição/fisiopatologia , Disartria/etiologia , Disartria/fisiopatologia , Masculino , Feminino , Doenças Mitocondriais/complicações , Doenças Mitocondriais/fisiopatologia , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Estudos Transversais , Idoso , Índice de Gravidade de Doença , Prevalência , Deglutição , Adulto Jovem , Fenótipo
6.
BMJ Case Rep ; 17(4)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684350

RESUMO

The POLG mutation, a leading cause of mitochondrial diseases, exhibits a wide-ranging age of onset and a complex clinical presentation. We encountered an atypical clinical profile in an elderly man with a POLG mutation, characterised by a stroke-like episode, chronic insomnia and transient oculomasticatory rhythmic movement. History revealed chronic constipation since his 50s and progressive bilateral ophthalmoplegia since his early 60s. Subsequently, he had experienced acute encephalopathy and later developed chronic insomnia. The present neurological examination showed bilateral complete ophthalmoplegia, ptosis, and rhythmic ocular and jaw movements. Imaging indicated findings suggestive of a stroke-like episode and eventual genetic analysis revealed a homozygous missense mutation in the POLG gene. This case expands the clinical spectrum of POLG mutations in individuals over 60 years, showcasing the rare combination of a stroke-like episode, chronic insomnia and oculomasticatory rhythmic movement.


Assuntos
DNA Polimerase gama , Distúrbios do Início e da Manutenção do Sono , Humanos , Masculino , DNA Polimerase gama/genética , Distúrbios do Início e da Manutenção do Sono/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/complicações , Mutação de Sentido Incorreto , Doenças Mitocondriais/genética , Doenças Mitocondriais/complicações , Doenças Mitocondriais/diagnóstico , Idoso , Pessoa de Meia-Idade , Oftalmoplegia/genética , Oftalmoplegia/diagnóstico , Blefaroptose/genética , Mutação
7.
Eur J Neurol ; 31(7): e16275, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38576261

RESUMO

BACKGROUND AND PURPOSE: Primary mitochondrial diseases (PMDs) are common inborn errors of energy metabolism, with an estimated prevalence of one in 4300. These disorders typically affect tissues with high energy requirements, including heart, muscle and brain. Epilepsy may be the presenting feature of PMD, can be difficult to treat and often represents a poor prognostic feature. The aim of this study was to develop guidelines and consensus recommendations on safe medication use and seizure management in mitochondrial epilepsy. METHODS: A panel of 24 experts in mitochondrial medicine, pharmacology and epilepsy management of adults and/or children and two patient representatives from seven countries was established. Experts were members of five different European Reference Networks, known as the Mito InterERN Working Group. A Delphi technique was used to allow the panellists to consider draft recommendations on safe medication use and seizure management in mitochondrial epilepsy, using two rounds with predetermined levels of agreement. RESULTS: A high level of consensus was reached regarding the safety of 14 out of all 25 drugs reviewed, resulting in endorsement of National Institute for Health and Care Excellence guidelines for seizure management, with some modifications. Exceptions including valproic acid in POLG disease, vigabatrin in patients with γ-aminobutyric acid transaminase deficiency and topiramate in patients at risk for renal tubular acidosis were highlighted. CONCLUSIONS: These consensus recommendations describe our intent to improve seizure control and reduce the risk of drug-related adverse events in individuals living with PMD-related epilepsy.


Assuntos
Anticonvulsivantes , Doenças Mitocondriais , Convulsões , Humanos , Doenças Mitocondriais/complicações , Doenças Mitocondriais/terapia , Convulsões/terapia , Convulsões/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Consenso , Epilepsia/terapia , Epilepsia/tratamento farmacológico , Técnica Delphi
9.
AAPS J ; 26(3): 47, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622374

RESUMO

BACKGROUND: Sepsis-induced acute lung injury (ALI) is one of the serious life-threatening complications of sepsis and is pathologically associated with mitochondrial dysfunction. Ginsenoside Rg1 has good therapeutic effects on ALI. Herein, the pharmacological effects of Rg1 in sepsis-induced ALI were investigated. METHODS: Sepsis-induced ALI models were established by CLP operation and LPS treatment. HE staining was adopted to analyze lung pathological changes. The expression and secretion of cytokines were measured by RT-qPCR and ELISA. Cell viability and apoptosis were assessed by MTT assay, flow cytometry and TUNEL staining. ROS level and mitochondrial membrane potential (MMP) were analyzed using DHE probe and JC-1 staining, respectively. FBXO3 m6A level was assessed using MeRIP assay. The interactions between FBXO3, YTHDF1, and PGC-1α were analyzed by Co-IP or RIP. RESULTS: Rg1 administration ameliorated LPS-induced epithelial cell inflammation, apoptosis, and mitochondrial dysfunction in a dose-dependent manner. Mechanically, Rg1 reduced PGC-1α ubiquitination modification level by inhibiting FBXO3 expression m6A-YTHDF1 dependently. As expected, Rg1's mitigative effect on LPS-induced inflammation, apoptosis and mitochondrial dysfunction in lung epithelial cells was abolished by FBXO3 overexpression. Moreover, FBXO3 upregulation eliminated the restoring effect of Rg1 on CLP-induced lung injury in rats. CONCLUSION: Rg1 activated PGC-1α/Nrf2 signaling pathway by reducing FBXO3 stability in an m6A-YTHDF1-dependent manner to improve mitochondrial function in lung epithelial cells during sepsis-induced ALI progression.


Assuntos
Lesão Pulmonar Aguda , Ginsenosídeos , Doenças Mitocondriais , Sepse , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , Transdução de Sinais , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/complicações , Inflamação , Sepse/complicações , Sepse/tratamento farmacológico , Doenças Mitocondriais/complicações
10.
Ageing Res Rev ; 97: 102307, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38614368

RESUMO

Sleep is a highly intricate biological phenomenon, and its disorders play a pivotal role in numerous diseases. However, the specific regulatory mechanisms remain elusive. In recent years, the role of mitochondria in sleep disorders has gained considerable attention. Sleep deprivation not only impairs mitochondrial morphology but also decreases the number of mitochondria and triggers mitochondrial dysfunction. Furthermore, mitochondrial dysfunction has been implicated in the onset and progression of various sleep disorder-related neurological diseases, especially neurodegenerative conditions. Therefore, a greater understanding of the impact of sleep disorders on mitochondrial dysfunction may reveal new therapeutic targets for neurodegenerative diseases. In this review, we comprehensively summarize the recent key findings on the mechanisms underlying mitochondrial dysfunction caused by sleep disorders and their role in initiating or exacerbating common neurodegenerative diseases. In addition, we provide fresh insights into the diagnosis and treatment of sleep disorder-related diseases.


Assuntos
Mitocôndrias , Doenças Neurodegenerativas , Transtornos do Sono-Vigília , Humanos , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Transtornos do Sono-Vigília/fisiopatologia , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Animais , Doenças Mitocondriais/fisiopatologia , Doenças Mitocondriais/complicações , Doenças Mitocondriais/metabolismo
12.
Cell Stress Chaperones ; 29(2): 349-357, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485043

RESUMO

This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control, including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.


Assuntos
Cardiotoxicidade , Doenças Mitocondriais , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Doxorrubicina/efeitos adversos , Mitocôndrias , Antibióticos Antineoplásicos/efeitos adversos , Doenças Mitocondriais/complicações , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Miócitos Cardíacos
13.
World J Gastroenterol ; 30(8): 881-900, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38516248

RESUMO

BACKGROUND: Immune dysregulation and metabolic derangement have been recognized as key factors that contribute to the progression of hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF). However, the mechanisms underlying immune and metabolic derangement in patients with advanced HBV-ACLF are unclear. AIM: To identify the bioenergetic alterations in the liver of patients with HBV-ACLF causing hepatic immune dysregulation and metabolic disorders. METHODS: Liver samples were collected from 16 healthy donors (HDs) and 17 advanced HBV-ACLF patients who were eligible for liver transplantation. The mitochondrial ultrastructure, metabolic characteristics, and immune microenvironment of the liver were assessed. More focus was given to organic acid metabolism as well as the function and subpopulations of macrophages in patients with HBV-ACLF. RESULTS: Compared with HDs, there was extensive hepatocyte necrosis, immune cell infiltration, and ductular reaction in patients with ACLF. In patients, the liver suffered severe hypoxia, as evidenced by increased expression of hypoxia-inducible factor-1α. Swollen mitochondria and cristae were observed in the liver of patients. The number, length, width, and area of mitochondria were adaptively increased in hepatocytes. Targeted metabolomics analysis revealed that mitochondrial oxidative phosphorylation decreased, while anaerobic glycolysis was enhanced in patients with HBV-ACLF. These findings suggested that, to a greater extent, hepa-tocytes used the extra-mitochondrial glycolytic pathway as an energy source. Patients with HBV-ACLF had elevated levels of chemokine C-C motif ligand 2 in the liver homogenate, which stimulates peripheral monocyte infiltration into the liver. Characterization and functional analysis of macrophage subsets revealed that patients with ACLF had a high abundance of CD68+ HLA-DR+ macrophages and elevated levels of both interleukin-1ß and transforming growth factor-ß1 in their livers. The abundance of CD206+ CD163+ macrophages and expression of interleukin-10 decreased. The correlation analysis revealed that hepatic organic acid metabolites were closely associated with macrophage-derived cytokines/chemokines. CONCLUSION: The results indicated that bioenergetic alteration driven by hypoxia and mitochondrial dysfunction affects hepatic immune and metabolic remodeling, leading to advanced HBV-ACLF. These findings highlight a new therapeutic target for improving the treatment of HBV-ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Hepatite B Crônica , Doenças Mitocondriais , Humanos , Vírus da Hepatite B , Hipóxia , Doenças Mitocondriais/complicações
14.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 313-319, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38538363

RESUMO

Septic cardiomyopathy (SCM) has a high incidence and complex pathogenesis, which can significantly increase the mortality of sepsis patients. NOD-like receptor protein 3 (NLRP3) inflammatory corpuscles play an important role in the pathogenesis of SCM. Mitochondrial dysfunction in cardiomyocytes is also one of the important pathogenesis of SCM. Activation of NLRP3 inflammatory corpuscles is closely related to mitochondrial dysfunction. The study of interaction mechanism between the two is helpful to find a new therapeutic scheme for SCM. This article reviews the interaction between NLRP3 inflammatory corpuscles and mitochondrial dysfunction in the pathogenesis of SCM, as well as the related mechanisms of traditional Chinese medicine (TCM) prevention and treatment of SCM, providing theoretical reference for further exploring therapeutic targets for SCM.


Assuntos
Cardiomiopatias , Doenças Mitocondriais , Sepse , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas NLR , Cardiomiopatias/etiologia , Sepse/metabolismo , Doenças Mitocondriais/complicações , Doenças Mitocondriais/metabolismo
15.
Respir Res ; 25(1): 110, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431661

RESUMO

Acute lung injury (ALI) is one of the life-threatening complications of sepsis, and macrophage polarization plays a crucial role in the sepsis-associated ALI. However, the regulatory mechanisms of macrophage polarization in ALI and in the development of inflammation are largely unknown. In this study, we demonstrated that macrophage polarization occurs in sepsis-associated ALI and is accompanied by mitochondrial dysfunction and inflammation, and a decrease of PRDX3 promotes the initiation of macrophage polarization and mitochondrial dysfunction. Mechanistically, PRDX3 overexpression promotes M1 macrophages to differentiate into M2 macrophages, and enhances mitochondrial functional recovery after injury by reducing the level of glycolysis and increasing TCA cycle activity. In conclusion, we identified PRDX3 as a critical hub integrating oxidative stress, inflammation, and metabolic reprogramming in macrophage polarization. The findings illustrate an adaptive mechanism underlying the link between macrophage polarization and sepsis-associated ALI.


Assuntos
Lesão Pulmonar Aguda , Macrófagos , Peroxirredoxina III , Humanos , Lesão Pulmonar Aguda/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Doenças Mitocondriais/complicações , Doenças Mitocondriais/metabolismo , Peroxirredoxina III/metabolismo , Sepse/metabolismo , Animais , Camundongos
16.
Chem Biol Interact ; 393: 110943, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38462020

RESUMO

Acute kidney injury (AKI) is a common complication of cisplatin chemotherapy, which greatly limits its clinical effect and application. This study explored the function of solute Carrier Family 31 Member 1 (SLC31A1) in cisplatin-induced AKI and its possible mechanism. Mice and HK-2 cells were exposed to cisplatin to establish the in vivo and in vitro AKI models. Cell viability was detected by CCK-8. Mitochondrial and oxidative damage was determined by Mito-Tracker Green staining, mtROS level, ATP production, mitochondrial membrane potential, MDA content and CAT activity. AKI was evaluated by renal function and histopathological changes. Apoptosis was detected by TUNEL and caspase-3 expression. Molecule expression was measured by RT-qPCR, Western blotting, and immunohistochemistry. Molecular mechanism was studied by luciferase reporter assay and ChIP. SLC31A1 level was predominantly increased by cisplatin exposure in AKI models. Notably, copper ion (Cu+) level was enhanced by cisplatin challenge. Moreover, Cu+ supplementation intensified cisplatin-induced cell death, mitochondrial dysfunction, and oxidative stress in HK-2 cells, indicating the involvement of cuproptosis in cisplatin-induced AKI, whereas these changes were partially counteracted by SLC31A1 knockdown. E74 like ETS transcription factor 3 (ELF3) could directly bind to SLC31A1 promoter and promote its transcription. ELF3 was up-regulated and positively correlated with SLC31A1 expression upon cisplatin-induced AKI. SLC31A1 silencing restored renal function, alleviated mitochondrial dysfunction, and apoptosis in cisplatin-induced AKI mice. ELF3 transcriptionally activated SLC31A1 to trigger cuproptosis that drove cisplatin-induced AKI through mitochondrial dysfunction, indicating that SLC31A1 might be a promising therapeutic target to mitigate AKI during cisplatin chemotherapy.


Assuntos
Injúria Renal Aguda , Cisplatino , Cobre , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Apoptose , Cisplatino/efeitos adversos , Cobre/metabolismo , Proteínas de Transporte de Cobre , Doenças Mitocondriais/complicações
17.
JCI Insight ; 9(4)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38385747

RESUMO

Dynamic regulation of cellular metabolism is important for maintaining homeostasis and can directly influence immune cell function and differentiation, including NK cell responses. Persistent HIV-1 infection leads to a state of chronic immune activation, NK cell subset redistribution, and progressive NK cell dysregulation. In this study, we examined the metabolic processes that characterize NK cell subsets in HIV-1 infection, including adaptive NK cell subpopulations expressing the activating receptor NKG2C, which expand during chronic infection. These adaptive NK cells exhibit an enhanced metabolic profile in HIV-1- individuals infected with human cytomegalovirus (HCMV). However, the bioenergetic advantage of adaptive CD57+NKG2C+ NK cells is diminished during chronic HIV-1 infection, where NK cells uniformly display reduced oxidative phosphorylation (OXPHOS). Defective OXPHOS was accompanied by increased mitochondrial depolarization, structural alterations, and increased DRP-1 levels promoting fission, suggesting that mitochondrial defects are restricting the metabolic plasticity of NK cell subsets in HIV-1 infection. The metabolic requirement for the NK cell response to receptor stimulation was alleviated upon IL-15 pretreatment, which enhanced mammalian target of rapamycin complex 1 (mTORC1) activity. IL-15 priming enhanced NK cell functionality to anti-CD16 stimulation in HIV-1 infection, representing an effective strategy for pharmacologically boosting NK cell responses.


Assuntos
Infecções por Citomegalovirus , Infecções por HIV , HIV-1 , Doenças Mitocondriais , Humanos , Interleucina-15 , Células Matadoras Naturais , Doenças Mitocondriais/complicações
18.
Ageing Res Rev ; 96: 102248, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38408490

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of epileptic syndrome. It has been established that due to its complex pathogenesis, a considerable proportion of TLE patients often progress to drug-resistant epilepsy. Ferroptosis has emerged as an important neuronal death mechanism in TLE, which is primarily influenced by lipid accumulation and oxidative stress. In previous studies of ferroptosis, more attention has been focused on the impact of changes in the levels of proteins related to the redox equilibrium and signaling pathways on epileptic seizures. However, it is worth noting that the oxidative-reduction changes in different organelles may have different pathophysiological significance in the process of ferroptosis-related diseases. Mitochondria, as a key organelle involved in ferroptosis, its structural damage and functional impairment can lead to energy metabolism disorders and disruption of the excitatory inhibitory balance, significantly increasing the susceptibility to epileptic seizures. Therefore, secondary mitochondrial dysfunction in the process of ferroptosis could play a crucial role in TLE pathogenesis. This review focuses on ferroptosis and mitochondria, discussing the pathogenic role of ferroptosis-related mitochondrial dysfunction in TLE, thus aiming to provide novel insights and potential implications of ferroptosis-related secondary mitochondrial dysfunction in epileptic seizures and to offer new insights for the precise exploration of ferroptosis-related therapeutic targets for TLE patients.


Assuntos
Epilepsia do Lobo Temporal , Ferroptose , Doenças Mitocondriais , Humanos , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Convulsões/complicações , Convulsões/metabolismo , Convulsões/patologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/complicações , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia
19.
BMJ Case Rep ; 17(2)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38417938

RESUMO

Mitochondria are essential for human metabolic function. Over 350 genetic mutations are associated with mitochondrial diseases, which are inherited in a matrilineal fashion. In mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), defective mitochondrial function and resultant impaired cellular energy production compromise vascular perfusion in affected tissues. Early diagnostic criteria suggested the diagnosis should be considered in those under 40. However, a broader range of phenotypes are now recognised, including those that present for the first time later in life. The primary presenting feature in MELAS is a stroke-like episode invariably resulting in patients undergoing neuroradiological imaging. We present a case of a woman with a first presentation of a stroke-like episode and seizures in her 40s who was eventually diagnosed with MELAS. We detail her clinical presentation, treatment and diagnosis, emphasising the role of serial imaging in her diagnosis.


Assuntos
Acidose Láctica , Síndrome MELAS , Doenças Mitocondriais , Encefalomiopatias Mitocondriais , Acidente Vascular Cerebral , Feminino , Humanos , Síndrome MELAS/diagnóstico , Síndrome MELAS/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/complicações , Doenças Mitocondriais/complicações
20.
Eur J Paediatr Neurol ; 49: 60-65, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377647

RESUMO

Fatty acid oxidation (FAO) disorders are autosomal recessive genetic disorders affecting either the transport or the oxidation of fatty acids. Acute symptoms arise during prolonged fasting, intercurrent infections, or intense physical activity. Metabolic crises are characterized by alteration of consciousness, hypoglycemic coma, hepatomegaly, cardiomegaly, arrhythmias, rhabdomyolysis, and can lead to death. In this retrospective and multicentric study, the data of 54 patients with FAO disorders were collected. Overall, 35 patients (64.8%) were diagnosed after newborn screening (NBS), 17 patients on clinical presentation (31.5%), and two patients after family screening (3.7%). Deficiencies identified included medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (75.9%), very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (11.1%), long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency (3.7%), mitochondrial trifunctional protein (MTP) deficiency (1.8%), and carnitine palmitoyltransferase 2 (CPT 2) deficiency (7.4%). The NBS results of 25 patients were reviewed and the neurological outcome of this population was compared with that of the patients who were diagnosed on clinical presentation. This article sought to provide a comprehensive overview of how NBS implementation in Southern Belgium has dramatically improved the neurological outcome of patients with FAO disorders by preventing metabolic crises and death. Further investigations are needed to better understand the physiopathology of long-term complications in order to improve the quality of life of patients and to ensure optimal management.


Assuntos
Acil-CoA Desidrogenase/deficiência , Cardiomiopatias , Carnitina O-Palmitoiltransferase/deficiência , Erros Inatos do Metabolismo Lipídico , Erros Inatos do Metabolismo , Proteína Mitocondrial Trifuncional/deficiência , Triagem Neonatal , Rabdomiólise , Humanos , Recém-Nascido , Estudos Retrospectivos , Masculino , Feminino , Triagem Neonatal/métodos , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/complicações , Bélgica/epidemiologia , Lactente , Síndrome Congênita de Insuficiência da Medula Óssea/complicações , Síndrome Congênita de Insuficiência da Medula Óssea/diagnóstico , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Ácidos Graxos/metabolismo , Pré-Escolar , Doenças Musculares/diagnóstico , Criança , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/complicações , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/complicações , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...