Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
2.
J Clin Invest ; 134(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087478

RESUMO

Most cases of human prion disease arise due to spontaneous misfolding of WT or mutant prion protein, yet recapitulating this event in animal models has proven challenging. It remains unclear whether spontaneous prion generation can occur within the mouse lifespan in the absence of protein overexpression and how disease-causing mutations affect prion strain properties. To address these issues, we generated knockin mice that express the misfolding-prone bank vole prion protein (BVPrP). While mice expressing WT BVPrP (I109 variant) remained free from neurological disease, a subset of mice expressing BVPrP with mutations (D178N or E200K) causing genetic prion disease developed progressive neurological illness. Brains from spontaneously ill knockin mice contained prion disease-specific neuropathological changes as well as atypical protease-resistant BVPrP. Moreover, brain extracts from spontaneously ill D178N- or E200K-mutant BVPrP-knockin mice exhibited prion seeding activity and transmitted disease to mice expressing WT BVPrP. Surprisingly, the properties of the D178N- and E200K-mutant prions appeared identical before and after transmission, suggesting that both mutations guide the formation of a similar atypical prion strain. These findings imply that knockin mice expressing mutant BVPrP spontaneously develop a bona fide prion disease and that mutations causing prion diseases may share a uniform initial mechanism of action.


Assuntos
Modelos Animais de Doenças , Técnicas de Introdução de Genes , Camundongos Transgênicos , Doenças Priônicas , Proteínas Priônicas , Animais , Camundongos , Doenças Priônicas/genética , Doenças Priônicas/patologia , Doenças Priônicas/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Mutação de Sentido Incorreto , Humanos , Arvicolinae/genética , Arvicolinae/metabolismo , Substituição de Aminoácidos , Príons/genética , Príons/metabolismo , Dobramento de Proteína
3.
PeerJ ; 12: e17552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948234

RESUMO

Transmissible spongiform encephalopathies (TSEs) are a fatal neurogenerative disease that include Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE), and several others as well as the recently described camel prion disease (CPD). CPD originally was documented in 3.1% of camels examined during an antemortem slaughterhouse inspection in the Ouargla region of Algeria. Of three individuals confirmed for CPD, two were sequenced for the exon 3 of the prion protein gene (PRNP) and were identical to sequences previously reported for Camelus dromedarius. Given that other TSEs, such as BSE, are known to be capable of cross-species transmission and that there is household consumption of meat and milk from Camelus, regulations to ensure camel and human health should be a One Health priority in exporting countries. Although the interspecies transmissibility of CPD currently is unknown, genotypic characterization of Camelus PRNP may be used for predictability of predisposition and potential susceptibility to CPD. Herein, eight breeds of dromedary camels from a previous genetic (mitochondrial DNA and microsatellites) and morphological study were genotyped for PRNP and compared to genotypes from CPD-positive Algerian camels. Sequence data from PRNP indicated that Ethiopian camels possessed 100% sequence identity to CPD-positive camels from Algeria. In addition, the camel PRNP genotype is unique compared to other members of the Orders Cetartiodactyla and Perissodactyla and provides an in-depth phylogenetic analysis of families within Cetartiodactyla and Perissodactyla that was used to infer the evolutionary history of the PRNP gene.


Assuntos
Camelus , Doenças Priônicas , Animais , Camelus/genética , Doenças Priônicas/genética , Doenças Priônicas/veterinária , Argélia/epidemiologia , Proteínas Priônicas/genética , Genótipo , Filogenia , Príons/genética
4.
PLoS Pathog ; 20(7): e1012370, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976748

RESUMO

Prions can exist as different strains that consist of conformational variants of the misfolded, pathogenic prion protein isoform PrPSc. Defined by stably transmissible biological and biochemical properties, strains have been identified in a spectrum of prion diseases, including chronic wasting disease (CWD) of wild and farmed cervids. CWD is highly contagious and spreads via direct and indirect transmission involving extraneural sites of infection, peripheral replication and neuroinvasion of prions. Here, we investigated the impact of infection route on CWD prion conformational selection and propagation. We used gene-targeted mouse models expressing deer PrP for intracerebral or intraperitoneal inoculation with fractionated or unfractionated brain homogenates from white-tailed deer, harboring CWD strains Wisc-1 or 116AG. Upon intracerebral inoculation, Wisc-1 and 116AG-inoculated mice differed in conformational stability of PrPSc. In brains of mice infected intraperitoneally with either inoculum, PrPSc propagated with identical conformational stability and fewer PrPSc deposits in most brain regions than intracerebrally inoculated animals. For either inoculum, PrPSc conformational stability in brain and spinal cord was similar upon intracerebral infection but significantly higher in spinal cords of intraperitoneally infected animals. Inoculation with fractionated brain homogenates resulted in lower variance of survival times upon intraperitoneal compared to intracerebral infection. In summary, we demonstrate that extraneural infection mitigates the impact of PrPSc quaternary structure on infection and reduces conformational variability of PrPSc propagated in the brain. These findings provide new insights into the evolution of stable CWD strains in natural, extraneural transmissions.


Assuntos
Encéfalo , Cervos , Proteínas PrPSc , Doença de Emaciação Crônica , Animais , Camundongos , Doença de Emaciação Crônica/transmissão , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas PrPSc/metabolismo , Conformação Proteica , Príons/metabolismo , Príons/patogenicidade , Doenças Priônicas/transmissão , Doenças Priônicas/patologia , Doenças Priônicas/metabolismo , Camundongos Transgênicos
5.
Acta Neuropathol ; 148(1): 10, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048735

RESUMO

Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, < 1% were transmitted by misfolded PrP, ~ 15% are inherited, and ~ 85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate localized initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of > 5000× across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a localized presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.


Assuntos
Síndrome de Creutzfeldt-Jakob , Mutação em Linhagem Germinativa , Proteínas Priônicas , Humanos , Proteínas Priônicas/genética , Masculino , Feminino , Idoso , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Pessoa de Meia-Idade , Mutação em Linhagem Germinativa/genética , Encéfalo/patologia , Idoso de 80 Anos ou mais , Doenças Priônicas/genética , Doenças Priônicas/patologia , Mutação
6.
J Neurol Sci ; 463: 123119, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39029285

RESUMO

Prion diseases are caused by prions, which are proteinaceous infectious particles that have been identified as causative factors of transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease (CJD). Prion diseases are devastating neurodegenerative disorders in humans and many animals, including sheep, cows, deer, cats, and camels. Prion diseases are classified into sporadic and genetic forms. Additionally, a third, environmentally acquired category exists. This type includes kuru, iatrogenic CJD caused by human dura mater grafts or human pituitary-derived hormones, and variant CJD transmitted through food contaminated with bovine spongiform encephalopathy prions. Bovine spongiform encephalopathy and variant CJD have nearly been controlled, but chronic wasting disease, a prion disease affecting deer, is spreading widely in North America and South Korea and recently in Northern Europe. Recently, amyloid-beta, alpha-synuclein, and other proteins related to Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases were reported to have prion features such as transmission to animals. Amyloid-beta transmission to humans has been suggested in iatrogenic CJD cases and in cerebral amyloid angiopathy cases with cerebral bleeding occurring long after childhood neurosurgery with or without cadaveric dura mater transplantation. These findings indicate that diseases caused by various prions, namely various transmissible proteins, appear to be a threat, particularly in the current longevity society. Prion disease represented by CJD has obvious transmissibility and is considered to be an "archetype of various neurodegenerative diseases". Overcoming prion diseases is a top priority currently in our society, and this strategy will certainly contribute to elucidating pathomechanism of other neurodegenerative diseases and developing new therapies for them.


Assuntos
Doenças Priônicas , Humanos , Doenças Priônicas/transmissão , Animais , Síndrome de Creutzfeldt-Jakob/transmissão , Príons/metabolismo
7.
Methods Mol Biol ; 2812: 367-377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39068373

RESUMO

A protein, which can attain a prion state, differs from standard proteins in terms of structural conformation and aggregation propensity. High-throughput sequencing technology provides an opportunity to gain insight into the prion disease condition when coupled with single-cell RNA-Seq analysis to reveal transcriptional changes during prion-based pathogenicity. In this chapter, we present a protocol for RNA-Seq analysis of mammalian prion disease using a single-cell RNA sequencing dataset procured from the NCBI GEO database. This protocol is a tool that can assist researchers in characterizing mammalian prion disease in a reproducible and reusable manner. Further, the resulting output has the potential to provide transcript biomarkers for mammalian prion diseases, which can be employed for diagnostic and prognostic purposes.


Assuntos
Doenças Priônicas , Animais , Doenças Priônicas/genética , Humanos , RNA-Seq/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mamíferos/genética , Análise de Célula Única/métodos , Príons/genética , Príons/metabolismo , Análise de Sequência de RNA/métodos
8.
FASEB J ; 38(14): e23843, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39072789

RESUMO

Prion diseases result from the misfolding of the physiological prion protein (PrPC) to a pathogenic conformation (PrPSc). Compelling evidence indicates that prevention and/or reduction of PrPSc replication are promising therapeutic strategies against prion diseases. However, the existence of different PrPSc conformations (or strains) associated with disease represents a major problem when identifying anti-prion compounds. Efforts to identify strain-specific anti-prion molecules are limited by the lack of biologically relevant high-throughput screening platforms to interrogate compound libraries. Here, we describe adaptations to the protein misfolding cyclic amplification (PMCA) technology (able to faithfully replicate PrPSc strains) that increase its throughput to facilitate the screening of anti-prion molecules. The optimized PMCA platform includes a reduction in sample and reagents, as well as incubation/sonication cycles required to efficiently replicate and detect rodent-adapted and cervid PrPSc strains. The visualization of PMCA products was performed via dot blots, a method that contributed to reduced processing times. These technical changes allowed us to evaluate small molecules with previously reported anti-prion activity. This proof-of-principle screening was evaluated for six rodent-adapted prion strains. Our data show that these compounds targeted either none, all or some PrPSc strains at variable concentrations, demonstrating that this PMCA system is suitable to test compound libraries for putative anti-prion molecules targeting specific PrPSc strains. Further analyses of a small compound library against deer prions demonstrate the potential of this new PMCA format to identify strain-specific anti-prion molecules. The data presented here demonstrate the use of the PMCA technique in the selection of prion strain-specific anti-prion compounds.


Assuntos
Proteínas PrPSc , Dobramento de Proteína , Animais , Dobramento de Proteína/efeitos dos fármacos , Proteínas PrPSc/metabolismo , Proteínas PrPSc/química , Camundongos , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Príons/metabolismo
9.
Bull Math Biol ; 86(7): 82, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837083

RESUMO

Many neurodegenerative diseases (NDs) are characterized by the slow spatial spread of toxic protein species in the brain. The toxic proteins can induce neuronal stress, triggering the Unfolded Protein Response (UPR), which slows or stops protein translation and can indirectly reduce the toxic load. However, the UPR may also trigger processes leading to apoptotic cell death and the UPR is implicated in the progression of several NDs. In this paper, we develop a novel mathematical model to describe the spatiotemporal dynamics of the UPR mechanism for prion diseases. Our model is centered around a single neuron, with representative proteins P (healthy) and S (toxic) interacting with heterodimer dynamics (S interacts with P to form two S's). The model takes the form of a coupled system of nonlinear reaction-diffusion equations with a delayed, nonlinear flux for P (delay from the UPR). Through the delay, we find parameter regimes that exhibit oscillations in the P- and S-protein levels. We find that oscillations are more pronounced when the S-clearance rate and S-diffusivity are small in comparison to the P-clearance rate and P-diffusivity, respectively. The oscillations become more pronounced as delays in initiating the UPR increase. We also consider quasi-realistic clinical parameters to understand how possible drug therapies can alter the course of a prion disease. We find that decreasing the production of P, decreasing the recruitment rate, increasing the diffusivity of S, increasing the UPR S-threshold, and increasing the S clearance rate appear to be the most powerful modifications to reduce the mean UPR intensity and potentially moderate the disease progression.


Assuntos
Conceitos Matemáticos , Modelos Neurológicos , Neurônios , Doenças Priônicas , Resposta a Proteínas não Dobradas , Resposta a Proteínas não Dobradas/fisiologia , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Doenças Priônicas/fisiopatologia , Neurônios/metabolismo , Humanos , Animais , Dinâmica não Linear , Simulação por Computador , Príons/metabolismo , Análise Espaço-Temporal , Apoptose
10.
Front Public Health ; 12: 1411489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939567

RESUMO

Introduction: Human prion disease (PrD), a group of fatal and transmissible neurodegenerative diseases, consists of Creutzfeldt-Jakob disease (CJD), kuru, fatal familial insomnia (FFI), Gerstmann-Sträussler-Scheinker disease (GSS), and variably protease-sensitive prionopathy (VPSPr). The emergence of bovine spongiform encephalopathy (BSE) in cattle and variant CJD (vCJD) has greatly threatened public health, both in humans and animals. Since the 1990's, dozens of countries and territories have conducted PrD surveillance programs. Methods: In this study, the case numbers and alternative trends of different types of PrD globally and in various countries or territories from 1993 to 2020 were collected and analyzed based on the data from the websites of the international and national PrD surveillance programs, as well as from relevant publications. Results: The total numbers of the reported PrD and sporadic CJD (sCJD) cases in 34 countries with accessible annual case numbers were 27,872 and 24,623, respectively. The top seven countries in PrD cases were the USA (n = 5,156), France (n = 3,276), Germany (n = 3,212), Italy (n = 2,995), China (n = 2,662), the UK (n = 2,521), Spain (n = 1,657), and Canada (n = 1,311). The annual PrD case numbers and mortalities, either globally or in the countries, showed an increased trend in the past 27 years. Genetic PrD cases accounted for 10.83% of all reported PrD cases; however, the trend varied largely among the different countries and territories. There have been 485 iatrogenic CJD (iCJD) cases and 232 vCJD cases reported worldwide. Discussion: The majority of the countries with PrD surveillance programs were high- and upper-middle-income countries. However, most low- and lower-middle-income countries in the world did not conduct PrD surveillance or even report PrD cases, indicating that the number of human PrD cases worldwide is markedly undervalued. Active international PrD surveillance for both humans and animals is still vital to eliminate the threat of prion disease from a public health perspective.


Assuntos
Saúde Global , Doenças Priônicas , Humanos , Doenças Priônicas/epidemiologia , Saúde Global/estatística & dados numéricos , Síndrome de Creutzfeldt-Jakob/epidemiologia , Animais , Bovinos
11.
Sci Rep ; 14(1): 13749, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877012

RESUMO

Prion diseases are fatal, infectious, neurodegenerative disorders resulting from accumulation of misfolded cellular prion protein in the brain. Early pathological changes during CNS prion disease also include reactive astrocyte activation with increased CD44 expression, microgliosis, as well as loss of dendritic spines and synapses. CD44 is a multifunctional cell surface adhesion and signalling molecule which is considered to play roles in astrocyte morphology and the maintenance of dendritic spine integrity and synaptic plasticity. However, the role of CD44 in prion disease was unknown. Here we used mice deficient in CD44 to determine the role of CD44 during prion disease. We show that CD44-deficient mice displayed no difference in their response to CNS prion infection when compared to wild type mice. Furthermore, the reactive astrocyte activation and microgliosis that accompanies CNS prion infection was unimpaired in the absence of CD44. Together, our data show that although CD44 expression is upregulated in reactive astrocytes during CNS prion disease, it is dispensable for astrocyte and microglial activation and the development of prion neuropathogenesis.


Assuntos
Astrócitos , Receptores de Hialuronatos , Doenças Priônicas , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Doenças Priônicas/genética , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Endogâmicos C57BL
12.
Neurology ; 103(2): e209506, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38896810

RESUMO

OBJECTIVES: To longitudinally characterize disease-relevant CSF and plasma biomarkers in individuals at risk for genetic prion disease up to disease conversion. METHODS: This single-center longitudinal cohort study has followed known carriers of PRNP pathogenic variants at risk for prion disease, individuals with a close relative who died of genetic prion disease but who have not undergone predictive genetic testing, and controls. All participants were asymptomatic at first visit and returned roughly annually. We determined PRNP genotypes, measured NfL and GFAP in plasma, and RT-QuIC, total PrP, NfL, T-tau, and beta-synuclein in CSF. RESULTS: Among 41 carriers and 21 controls enrolled, 28 (68%) and 15 (71%) were female, and mean ages were 47.5 and 46.1. At baseline, all individuals were asymptomatic. We observed RT-QuIC seeding activity in the CSF of 3 asymptomatic E200K carriers who subsequently converted to symptomatic and died of prion disease. 1 P102L carrier remained RT-QuIC negative through symptom conversion. No other individuals developed symptoms. The prodromal window from detection of RT-QuIC positivity to disease onset was 1 year long in an E200K individual homozygous (V/V) at PRNP codon 129 and 2.5 and 3.1 years in 2 codon 129 heterozygotes (M/V). Changes in neurodegenerative and neuroinflammatory markers were variably observed prior to onset, with increases observed for plasma NfL in 4/4 converters, and plasma GFAP, CSF NfL, CSF T-tau, and CSF beta-synuclein each in 2/4 converters, although values relative to age and fold changes relative to individual baseline were not remarkable for any of these markers. CSF PrP was longitudinally stable with mean coefficient of variation 9.0% across all individuals over up to 6 years, including data from converting individuals at RT-QuIC-positive timepoints. DISCUSSION: CSF prion seeding activity may represent the earliest detectable prodromal sign in E200K carriers. Neuronal damage and neuroinflammation markers show limited sensitivity in the prodromal phase. CSF PrP levels remain stable even in the presence of RT-QuIC seeding activity. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov NCT05124392 posted 2017-12-01, updated 2023-01-27.


Assuntos
Biomarcadores , Doenças Priônicas , Proteínas Priônicas , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/sangue , Proteínas Priônicas/genética , Proteínas Priônicas/líquido cefalorraquidiano , Proteínas Priônicas/sangue , Doenças Priônicas/genética , Doenças Priônicas/líquido cefalorraquidiano , Doenças Priônicas/sangue , Doenças Priônicas/diagnóstico , Estudos Longitudinais , Adulto , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/sangue , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas de Neurofilamentos/sangue , Heterozigoto , Proteína Glial Fibrilar Ácida/sangue , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Proteína Glial Fibrilar Ácida/genética , Progressão da Doença , alfa-Sinucleína/líquido cefalorraquidiano , alfa-Sinucleína/genética , alfa-Sinucleína/sangue
14.
Eur J Neurosci ; 60(4): 4437-4452, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38887188

RESUMO

Mouse neuronal CAD 5 cell line effectively propagates various strains of prions. Previously, we have shown that it can also be differentiated into the cells morphologically resembling neurons. Here, we demonstrate that CAD 5 cells chronically infected with prions undergo differentiation under the same conditions. To make our model more realistic, we triggered the differentiation in the 3D culture created by gentle rocking of CAD 5 cell suspension. Spheroids formed within 1 week and were fully developed in less than 3 weeks of culture. The mature spheroids had a median size of ~300 µm and could be cultured for up to 12 weeks. Increased expression of differentiation markers GAP 43, tyrosine hydroxylase, ß-III-tubulin and SNAP 25 supported the differentiated status of the spheroid cells. The majority of them were found in the G0/G1 phase of the cell cycle, which is typical for differentiated cells. Moreover, half of the PrPC on the cell membrane was N-terminally truncated, similarly as in differentiated CAD 5 adherent cells. Finally, we demonstrated that spheroids could be created from prion-infected CAD 5 cells. The presence of prions was verified by immunohistochemistry, western blot and seed amplification assay. We also confirmed that the spheroids can be infected with the prions de novo. Our 3D culture model of differentiated CAD 5 cells is low cost, easy to produce and cultivable for weeks. We foresee its possible use in the testing of anti-prion compounds and future studies of prion formation dynamics.


Assuntos
Diferenciação Celular , Doenças Priônicas , Esferoides Celulares , Esferoides Celulares/metabolismo , Camundongos , Animais , Diferenciação Celular/fisiologia , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Linhagem Celular , Técnicas de Cultura de Células/métodos , Neurônios/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos , Príons/metabolismo
16.
Science ; 384(6703): ado7082, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38935715

RESUMO

Prion disease is caused by misfolding of the prion protein (PrP) into pathogenic self-propagating conformations, leading to rapid-onset dementia and death. However, elimination of endogenous PrP halts prion disease progression. In this study, we describe Coupled Histone tail for Autoinhibition Release of Methyltransferase (CHARM), a compact, enzyme-free epigenetic editor capable of silencing transcription through programmable DNA methylation. Using a histone H3 tail-Dnmt3l fusion, CHARM recruits and activates endogenous DNA methyltransferases, thereby reducing transgene size and cytotoxicity. When delivered to the mouse brain by systemic injection of adeno-associated virus (AAV), Prnp-targeted CHARM ablates PrP expression across the brain. Furthermore, we have temporally limited editor expression by implementing a kinetically tuned self-silencing approach. CHARM potentially represents a broadly applicable strategy to suppress pathogenic proteins, including those implicated in other neurodegenerative diseases.


Assuntos
Encéfalo , Metilação de DNA , Dependovirus , Inativação Gênica , Histonas , Proteínas Priônicas , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Dependovirus/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Histonas/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Transgenes
17.
Carbohydr Polym ; 337: 122163, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710557

RESUMO

Prion diseases are fatal transmissible neurodegenerative disorders. Among known anti-prions, hydroxypropyl methylcellulose compounds (HPMCs) are unique in their chemical structure and action. They have several excellent anti-prion properties but the effectiveness depends on the prion-infected mouse model. In the present study, we investigated the effects of stearoxy-modified HPMCs on prion-infected cells and mice. Stearoxy modification improved the anti-prion efficacy of HPMCs in prion-infected cells and significantly prolonged the incubation period in a lower HPMC-responding mouse model. However, stearoxy modification showed no improvement over nonmodified HPMCs in an HPMC-responding mouse model. These results offer a new line of inquiry for use with prion-infected mice that do not respond well to HPMCs.


Assuntos
Derivados da Hipromelose , Doenças Priônicas , Animais , Derivados da Hipromelose/química , Camundongos , Doenças Priônicas/tratamento farmacológico , Modelos Animais de Doenças
18.
Prion ; 18(1): 89-93, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38734978

RESUMO

Although the development of aggregation assays has noticeably improved the accuracy of the clinical diagnosis of prion diseases, research on biomarkers remains vital. The major challenges to overcome are non-invasive sampling and the exploration of new biomarkers that may predict the onset or reflect disease progression. This will become extremely important in the near future, when new therapeutics are clinically evaluated and eventually become available for treatment. This article aims to provide an overview of the achievements of biomarker research in human prion diseases, addresses unmet needs in the field, and points out future perspectives.


Assuntos
Biomarcadores , Doenças Priônicas , Humanos , Biomarcadores/metabolismo , Biomarcadores/análise , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Animais
19.
J Transl Med ; 22(1): 503, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802941

RESUMO

BACKGROUND: Prion diseases are transmissible and fatal neurodegenerative diseases characterized by accumulation of misfolded prion protein isoform (PrPSc), astrocytosis, microgliosis, spongiosis, and neurodegeneration. Elevated levels of cell membrane associated PrPSc protein and inflammatory cytokines hint towards the activation of death receptor (DR) pathway/s in prion diseases. Activation of DRs regulate, either cell survival or apoptosis, autophagy and necroptosis based on the adaptors they interact. Very little is known about the DR pathways activation in prion disease. DR3 and DR5 that are expressed in normal mouse brain were never studied in prion disease, so also their ligands and any DR adaptors. This research gap is notable and investigated in the present study. METHODS: C57BL/6J mice were infected with Rocky Mountain Laboratory scrapie mouse prion strain. The progression of prion disease was examined by observing morphological and behavioural abnormalities. The levels of PrP isoforms and GFAP were measured as the marker of PrPSc accumulation and astrocytosis respectively using antibody-based techniques that detect proteins on blot and brain section. The levels of DRs, their glycosylation and ectodomain shedding, and associated factors warrant their examination at protein level, hence western blot analysis was employed in this study. RESULTS: Prion-infected mice developed motor deficits and neuropathology like PrPSc accumulation and astrocytosis similar to other prion diseases. Results from this research show higher expression of all DR ligands, TNFR1, Fas and p75NTR but decreased levels DR3 and DR5. The levels of DR adaptor proteins like TRADD and TRAF2 (primarily regulate pro-survival pathways) are reduced. FADD, which primarily regulate cell death, its level remains unchanged. RIPK1, which regulate pro-survival, apoptosis and necroptosis, its expression and proteolysis (inhibits necroptosis but activates apoptosis) are increased. CONCLUSIONS: The findings from the present study provide evidence towards the involvement of DR3, DR5, DR6, TL1A, TRAIL, TRADD, TRAF2, FADD and RIPK1 for the first time in prion diseases. The knowledge obtained from this research discuss the possible impacts of these 16 differentially expressed DR factors on our understanding towards the multifaceted neuropathology of prion diseases and towards future explorations into potential targeted therapeutic interventions for prion disease specific neuropathology.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Doenças Priônicas , Animais , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Receptores de Morte Celular/metabolismo , Transdução de Sinais , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Proteínas PrPSc/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...