Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003649

RESUMO

Trichomonas gallinae (T. gallinae) has a great influence on the pigeon industry. Pigeons display different resistance abilities to T. gallinae, so the study of the molecular mechanism of resistance is necessary in breeding disease resistant lines. MiRNA plays important roles in the immune response, but there are still no reports of miRNA regulating trichomonosis resistance. We used small RNA sequencing technology to characterize miRNA profiles in different groups. T. gallinae was nasally inoculated in one day old squabs, and according to the infection status, the groups were divided into control (C), susceptible (S) and tolerant (T) groups. We identified 2429 miRNAs in total, including 1162 known miRNAs and 1267 new miRNAs. In a comparison among the C, S and T groups, the target genes of differentially expressed miRNAs were analyzed via GO and KEGG annotation. The results showed that the target genes were enriched in immune-response-related pathways. This indicated that the differentially expressed miRNAs had a critical influence on T. gallinae infection. Novel_miR_741, which could inhibit the expression of PRKCQ, was down-regulated in the T group compared to the C group. It was proven that a decreased novel_miR_741 expression would increase the expression of PRKCQ and increase the immune response. This study brings new insights into understanding the mechanism of trichomonosis resistance.


Assuntos
Doenças das Aves , MicroRNAs , Tricomoníase , Trichomonas , Animais , Trichomonas/genética , Columbidae/genética , MicroRNAs/genética , Proteína Quinase C-theta , Doenças das Aves/genética , Tricomoníase/veterinária
2.
Sci Rep ; 13(1): 17800, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853004

RESUMO

The Altai falcon from Central Asia always attracted the attention of humans. Long considered a totemic bird in its native area, modern falconers still much appreciated this large-bodied and mighty bird of prey due to its rarity and unique look. The peculiar body characteristics halfway between the saker falcon (Falco cherrug) and the gyrfalcon (F. rusticolus) triggered debates about its contentious taxonomy. The weak phylogenetic signal associated with traditional genetic methods could not resolve this uncertainty. Here, we address the controversial evolutionary origin of Altai falcons by means of a genome-wide approach, Restriction-site Associated DNA sequencing, using sympatric eastern sakers falcons, allopatric western saker falcons and gyrfalcons as outgroup. This approach provided an unprecedented insight into the phylogenetic relationships of the studied populations by delivering 17,095 unlinked SNPs shedding light on the polyphyletic nature of Altai falcons within eastern sakers. Thus we concluded that the former must correspond to a low taxonomic rank, probably an ecotype or form of the latter. Also, we found that eastern sakers are paraphyletic without gyrfalcons, thus, these latter birds are best regarded as the direct sister lineage of the eastern sakers. This evolutionary relationship, corroborated also by re-analyzing the dataset with the inclusion of outgroup samples (F. biarmicus and F. peregrinus), put eastern sakers into a new light as the potential ancestral genetic source of high latitude and altitude adaptation in descendent populations. Finally, conservation genomic values hint at the stable genetic background of the studied saker populations.


Assuntos
Doenças das Aves , Falconiformes , Animais , Humanos , Filogenia , Falconiformes/genética , Sequência de Bases , Análise de Sequência de DNA , Genômica , Doenças das Aves/genética
3.
Genes (Basel) ; 14(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36980895

RESUMO

Valgus-valgus deformity (VVD) is a common leg deformity in broilers with inward or outward deviation of the tibiotarsus and tarsometatarsus. The competing endogenous RNA (ceRNA) network plays an essential role in the study of leg disease. However, its role in the etiology and pathogenesis of VVD remains unclear. Here, based on case (VVD) and control (normal) group design, we performed analyses of differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs) and differentially expressed mRNAs (DEmRNAs). Transcriptome data derived 86 DEcircRNAs, 13 DEmiRNAs and 410 DEmRNAs. Functional analysis showed that DEmRNAs were significantly enriched in cell cycle, apoptosis, ECM-receptor interaction, FoxO signaling pathway and protein processing synthesis. DEcirc/miRNA-associated DEmRNAs were associated with skeletal and muscle growth and development pathways, including mTOR, Wnt, and VEGF signaling pathways. Subsequently, a circRNA-miRNA-mRNA regulatory network was constructed based on the ceRNA hypothesis, including 8 circRNAs, 6 miRNAs, and 31 mRNAs, which were significantly enriched in the skeletal developmental pathway. Finally, two key mRNAs (CDC20 and CTNNB1) and their regulatory axes were screened by the PPI network and cytohubba. The expression levels of CDC20 and CTNNB1 in cartilage and seven other tissues were also quantified by qPCR. In conclusion, we analyzed the functions of DEmRNA, DEcircRNA and DEmiRNA and constructed the hub ceRNA regulatory axis, and obtained two hub genes, CDC20 and CTNNB1. The study more deeply explored the etiology and pathogenesis of VVD and lays the foundation for further study of the role of the ceRNA network on skeletal development.


Assuntos
Doenças das Aves , Redes Reguladoras de Genes , Membro Posterior , Masculino , Animais , Galinhas , RNA Circular/genética , RNA Mensageiro/genética , Doenças Ósseas/genética , Doenças Ósseas/veterinária , Doenças das Aves/genética , MicroRNAs/genética , Cartilagem/metabolismo
4.
Mol Phylogenet Evol ; 174: 107556, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35738542

RESUMO

The avian feather louse Philopterus-complex (Phthiraptera: Ischnocera: Philopteridae) currently contains 12 genera that have been grouped together because of shared morphological characteristics. Although previously lumped into a single genus (Philopterus), more recent morphological treatments have separated the group into several different genera. Here we evaluate the status of these genera using DNA sequence data from 118 ingroup specimens belonging to ten genera in the Philopterus-complex: Australophilopterus Mey, 2004, Cinclosomicola Mey 2004, Clayiella Eichler, 1940, Corcorides Mey, 2004, Mayriphilopterus Mey, 2004, Paraphilopterus Mey 2004, Philopteroides Mey 2004, Philopterus Nitzsch, 1818, Tyranniphilopterus Mey, 2004, and Vinceopterus Gustafsson, Lei, Chu, Zou, and Bush, 2019. Our sampling includes 97 new louse-host association records. Our analyses suggest that the genus Debeauxoecus Conci, 1941, parasitic on pittas (Aves: Pittidae), is outside of the Philopterus-complex, and that there is strong support for the monophyly of a group containing the remaining genera from the complex. Some diverse genera, such as Philopterus (sensu stricto) and Mayriphilopterus are supported as monophyletic, whereas the genera Australophilopterus, Philopteroides, and Tyranniphilopterus are not. The present study is the largest phylogenetic reconstruction of avian lice belonging to the Philopterus-complex to date and suggests that further generic revision is needed in the group to integrate molecular and morphological information.


Assuntos
Anoplura , Doenças das Aves , Iscnóceros , Passeriformes , Ftirápteros , Animais , Doenças das Aves/genética , Doenças das Aves/parasitologia , Plumas , Iscnóceros/anatomia & histologia , Iscnóceros/genética , Passeriformes/parasitologia , Ftirápteros/genética , Filogenia
5.
Sci Rep ; 11(1): 24191, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921222

RESUMO

Usutu virus (USUV) is a zoonotic arbovirus causing avian mass mortalities. The first outbreak in North-Western Germany occurred in 2018. This retrospective analysis focused on combining virological and pathological findings in birds and immunohistochemistry. 25 common blackbirds, one great grey owl, and one kingfisher collected from 2011 to 2018 and positive for USUV by qRT-PCR were investigated. Macroscopically, most USUV infected birds showed splenomegaly and hepatomegaly. Histopathological lesions included necrosis and lymphohistiocytic inflammation within spleen, Bursa fabricii, liver, heart, brain, lung and intestine. Immunohistochemistry revealed USUV antigen positive cells in heart, spleen, pancreas, lung, brain, proventriculus/gizzard, Bursa fabricii, kidney, intestine, skeletal muscle, and liver. Analysis of viral genome allocated the virus to Europe 3 or Africa 2 lineage. This study investigated whether immunohistochemical detection of double-stranded ribonucleic acid (dsRNA) serves as an alternative tool to detect viral intermediates. Tissue samples of six animals with confirmed USUV infection by qRT-PCR but lacking viral antigen in liver and spleen, were further examined immunohistochemically. Two animals exhibited a positive signal for dsRNA. This could indicate either an early state of infection without sufficient formation of virus translation products, occurrence of another concurrent virus infection or endogenous dsRNA not related to infectious pathogens and should be investigated in more detail in future studies.


Assuntos
Infecções por Flavivirus/genética , Flavivirus/genética , Animais , Doenças das Aves/genética , Encéfalo , Surtos de Doenças , Genoma Viral , Alemanha , Coração , História do Século XXI , Imuno-Histoquímica , Pulmão , Pâncreas , Filogenia , Estudos Retrospectivos , Aves Canoras/metabolismo , Baço , Estrigiformes/metabolismo
6.
PLoS Pathog ; 17(3): e1009451, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33739988

RESUMO

Salmonella enterica is a diverse bacterial pathogen and a primary cause of human and animal infections. While many S. enterica serovars present a broad host-specificity, several specialized pathotypes have been adapted to colonize and cause disease in one or limited numbers of host species. The underlying mechanisms defining Salmonella host-specificity are far from understood. Here, we present genetic analysis, phenotypic characterization and virulence profiling of a monophasic S. enterica serovar Typhimurium strain that was isolated from several wild sparrows in Israel. Whole genome sequencing and complete assembly of its genome demonstrate a unique genetic signature that includes the integration of the BTP1 prophage, loss of the virulence plasmid, pSLT and pseudogene accumulation in multiple T3SS-2 effectors (sseJ, steC, gogB, sseK2, and sseK3), catalase (katE), tetrathionate respiration (ttrB) and several adhesion/ colonization factors (lpfD, fimH, bigA, ratB, siiC and siiE) encoded genes. Correspondingly, this strain demonstrates impaired biofilm formation, intolerance to oxidative stress and compromised intracellular replication within non-phagocytic host cells. Moreover, while this strain showed attenuated pathogenicity in the mouse, it was highly virulent and caused an inflammatory disease in an avian host. Overall, our findings demonstrate a unique phenotypic profile and genetic makeup of an overlooked S. Typhimurium sparrow-associated lineage and present distinct genetic signatures that are likely to contribute to its pathoadaptation to passerine birds.


Assuntos
Doenças das Aves/genética , Especificidade de Hospedeiro/genética , Salmonelose Animal/genética , Salmonella typhimurium/genética , Pardais/microbiologia , Adaptação Fisiológica/genética , Animais , Virulência/genética
7.
PLoS One ; 15(8): e0238189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841273

RESUMO

The use of reference genes is required for relative quantification in gene expression analysis and the stability of these genes can be variable depending on the experimental design. Therefore, it is indispensable to test the reliability of endogenous genes previously to their use. This study evaluated nine candidate reference genes to select the most stable genes to be used as reference in gene expression studies with the femoral cartilage of normal and epiphysiolysis-affected broilers. The femur articular cartilage of 29 male broilers with 35 days of age was collected, frozen and further submitted to RNA extraction and quantitative PCR (qPCR) analysis. The candidate reference genes evaluated were GAPDH, HMBS, HPRT1, MRPS27, MRPS30, RPL30, RPL4, RPL5, and RPLP1. For the gene stability evaluation, three software were used: GeNorm, BestKeeper and NormFinder, and a global ranking was generated using the function RankAggreg. In this study, the RPLP1 and RPL5 were the most reliable endogenous genes being recommended for expression studies with femur cartilage in broilers with epiphysiolysis and possible other femur anomalies.


Assuntos
Doenças das Aves/genética , Cartilagem Articular/metabolismo , Galinhas/genética , Epifise Deslocada/veterinária , Algoritmos , Animais , Doenças das Aves/metabolismo , Galinhas/metabolismo , Epifise Deslocada/genética , Epifise Deslocada/metabolismo , Fêmur , Expressão Gênica , Perfilação da Expressão Gênica/estatística & dados numéricos , Perfilação da Expressão Gênica/veterinária , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
8.
Viruses ; 12(5)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423052

RESUMO

Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.


Assuntos
Doenças das Aves/imunologia , Infecções por Birnaviridae/veterinária , Vírus da Doença Infecciosa da Bursa/fisiologia , MicroRNAs/imunologia , Animais , Apoptose , Doenças das Aves/genética , Doenças das Aves/virologia , Infecções por Birnaviridae/genética , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Interações Hospedeiro-Patógeno , Imunidade Inata , MicroRNAs/genética , Proteínas Virais/genética , Proteínas Virais/imunologia , Replicação Viral
9.
J Recept Signal Transduct Res ; 40(5): 426-435, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32249640

RESUMO

Outstanding increase of oral absorption, bioavailability, and antiviral efficacy of phosphorylated nucleosides and basic antiviral influence of abacavir is the central idea for the development of new series of phosphorylated abacavir (ABC) derivatives. The designed compounds were primarily screened for antiviral nature against HN protein of NDV and VP7 protein of BTV using the molecular environment approach. Out of all the designed compounds, the compounds which are having higher binding energies against these two viral strains were prompted for the synthesis of the target compounds (5A-K). Among the synthesized title compounds (5A-K), the compounds which have exhibited higher dock scores akin to the rest of the compounds were then selected and screened for the antiviral activity against NDV and BTV infected embryonated eggs and BHK 21 cell lines through the in ovo and in vitro approaches. The results revealed that all the designed compounds have formed higher binding energies against both the targets. Among all, the compounds which are selected based on their dock scores such as 5A, 5F, 5G, 5H, 5I, and 5K against NDV and 5J, 5E, 5I, 5C, 5A, and 5K against BTV have shown significant antiviral activity against HN protein of NDV, VP7 protein of Bluetongue virus in both NDV- and BTV-treated embryonated eggs and BHK 21 cell lines. Hence, it is concluded that, the best lead compounds will stand as the potential antiviral agents and prompted them as virtuous therapeutics against NDV and BTV in future.


Assuntos
Bluetongue/tratamento farmacológico , Didesoxinucleosídeos/farmacologia , Proteína HN/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Animais , Doenças das Aves/tratamento farmacológico , Doenças das Aves/genética , Doenças das Aves/virologia , Bluetongue/genética , Bluetongue/virologia , Vírus Bluetongue/efeitos dos fármacos , Vírus Bluetongue/genética , Vírus Bluetongue/patogenicidade , Simulação por Computador , Didesoxinucleosídeos/química , Doença de Newcastle/tratamento farmacológico , Doença de Newcastle/genética , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Fosforilação , Ovinos/virologia , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/genética , Relação Estrutura-Atividade , Proteínas do Core Viral/genética
10.
Int J Mol Sci ; 20(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683847

RESUMO

MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in the regulation of various biological processes including cell development and differentiation, apoptosis, tumorigenesis, immunoregulation and viral infections. Avian immunosuppressive diseases refer to those avian diseases caused by pathogens that target and damage the immune organs or cells of the host, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. As such, once a disease with an immunosuppressive feature occurs in flocks, it would be difficult for the stakeholders to have an optimal economic income. Infectious bursal disease (IBD), avian leukemia (AL), Marek's disease (MD), chicken infectious anemia (CIA), reticuloendotheliosis (RE) and avian reovirus infection are on the top list of commonly-seen avian diseases with a feature of immunosuppression, posing an unmeasurable threat to the poultry industry across the globe. Understanding the pathogenesis of avian immunosuppressive disease is the basis for disease prevention and control. miRNAs have been shown to be involved in host response to pathogenic infections in chickens, including regulation of immunity, tumorigenesis, cell proliferation and viral replication. Here we summarize current knowledge on the roles of miRNAs in avian response to viral infection and pathogenesis of avian immunosuppressive diseases, in particular, MD, AL, IBD and RE.


Assuntos
Doenças das Aves/imunologia , Vírus da Doença Infecciosa da Bursa/imunologia , MicroRNAs/imunologia , Viroses/imunologia , Animais , Doenças das Aves/genética , Doenças das Aves/virologia , Galinhas , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade/genética , Imunidade/imunologia , Vírus da Doença Infecciosa da Bursa/fisiologia , Doença de Marek/genética , Doença de Marek/imunologia , Doença de Marek/virologia , MicroRNAs/genética , Viroses/genética , Viroses/virologia
11.
Virus Genes ; 55(6): 815-824, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549291

RESUMO

Viruses are believed to be ubiquitous; however, the diversity of viruses is largely unknown because of the bias of previous research toward pathogenic viruses. Deep sequencing is a promising and unbiased approach to detect viruses from animal-derived materials. Although cranes are known to be infected by several viruses such as influenza A viruses, previous studies targeted limited species of viruses, and thus viruses that infect cranes have not been extensively studied. In this study, we collected crane fecal samples in the Izumi plain in Japan, which is an overwintering site for cranes, and performed metagenomic shotgun sequencing analyses. We detected aviadenovirus-like sequences in the fecal samples and tentatively named the discovered virus crane-associated adenovirus 1 (CrAdV-1). We determined that our sequence accounted for approximately three-fourths of the estimated CrAdV-1 genome size (33,245 bp). The GC content of CrAdV-1 genome is 34.1%, which is considerably lower than that of other aviadenoviruses. Phylogenetic analyses revealed that CrAdV-1 clusters with members of the genus Aviadenovirus, but is distantly related to the previously identified aviadenoviruses. The protein sequence divergence between the DNA polymerase of CrAdV-1 and those of other aviadenoviruses is 45.2-46.8%. Based on these results and the species demarcation for the family Adenoviridae, we propose that CrAdV-1 be classified as a new species in the genus Aviadenovirus. Results of this study contribute to a deeper understanding of the diversity and evolution of viruses and provide additional information on viruses that infect cranes, which might lead to protection of the endangered species of cranes.


Assuntos
Infecções por Adenoviridae/genética , Aviadenovirus/genética , Doenças das Aves/genética , Infecções por Adenoviridae/virologia , Animais , Aviadenovirus/isolamento & purificação , Doenças das Aves/virologia , Aves/genética , Aves/virologia , Fezes/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Japão , Filogenia
12.
Virus Genes ; 55(6): 802-814, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31463770

RESUMO

The establishment of viral pathogens in new host environments following spillover events probably requires adaptive changes within both the new host and pathogen. After many generations, signals for ancient cross-species transmission may become lost and a strictly host-adapted phylogeny may mimic true co-divergence while the virus may retain an inherent ability to jump host species. The mechanistic basis for such processes remains poorly understood. To study the dynamics of virus-host co-divergence and the arbitrary chances of spillover in various reservoir hosts with equal ecological opportunity, we examined structural constraints of capsid protein in extant populations of Beak and feather disease virus (BFDV) during known spillover events. By assessing reservoir-based genotype stratification, we identified co-divergence defying signatures in the evolution BFDV which highlighted primordial processes of cryptic host adaptation and competing forces of host co-divergence and cross-species transmission. We demonstrate that, despite extensive surface plasticity gathered over a longer span of evolution, structural constraints of the capsid protein allow opportunistic host switching in host-adapted populations. This study provides new insights into how small populations of endangered psittacine species may face multidirectional forces of infection from reservoirs with apparently co-diverging genotypes.


Assuntos
Doenças das Aves/genética , Infecções por Circoviridae/genética , Circovirus/genética , Evolução Molecular , Animais , Doenças das Aves/virologia , Proteínas do Capsídeo/genética , Infecções por Circoviridae/virologia , Circovirus/patogenicidade , Fluxo Gênico , Genótipo , Especificidade de Hospedeiro/genética , Papagaios/genética , Papagaios/virologia , Filogenia , Psittaciformes/genética , Psittaciformes/virologia
13.
Genome Biol Evol ; 11(8): 2125-2135, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31298688

RESUMO

The crested ibis (Nipponia nippon) is endangered worldwide. Although a series of conservation measures have markedly increased the population size and distribution area of these birds, the high mortality of embryos and nestlings considerably decreases the survival potential of this bird species. High-throughput sequencing technology was utilized to compare whole genomes between ten samples from dead crested ibises (including six dead embryos and four dead nestlings aged 0-45 days) and 32 samples from living birds. The results indicated that the dead samples all shared the genetic background of a specific ancestral subpopulation. Furthermore, the dead individuals were less genetically diverse and suffered higher degrees of inbreeding compared with these measures in live birds. Several candidate genes (KLHL3, SETDB2, TNNT2, PKP1, AK1, and EXOSC3) associated with detrimental diseases were identified in the genomic regions that differed between the alive and dead samples, which are likely responsible for the death of embryos and nestlings. In addition, in these regions, we also found several genes involved in the protein catabolic process (UBE4A and LONP1), lipid metabolism (ACOT1), glycan biosynthesis and metabolism (HYAL1 and HYAL4), and the immune system (JAM2) that are likely to promote the normal development of embryos and nestlings. The aberrant conditions of these genes and biological processes may contribute to the death of embryos and nestlings. Our data identify congenital factors underlying the death of embryos and nestlings at the whole genome level, which may be useful toward informing more effective conservation efforts for this bird species.


Assuntos
Doenças das Aves/mortalidade , Aves/embriologia , Embrião não Mamífero/patologia , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Comportamento de Nidação , Polimorfismo de Nucleotídeo Único , Animais , Doenças das Aves/congênito , Doenças das Aves/genética , Embrião não Mamífero/metabolismo , Genética Populacional , Mortalidade
14.
Front Immunol ; 10: 1186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214170

RESUMO

Circular RNAs (circRNAs) are a class of endogenous noncoding RNA, which is different from linear RNA. CircRNA is an RNA molecule with a closed loop structure formed by reverse splicing. CircRNAs have been studied in several organisms, however, the circRNAs associated with the response to Salmonella enterica serovar Enteritidis (SE) inoculation in chickens are still unclear. In the current study, Jining Bairi chickens were inoculated with SE. CircRNAs involved in the response to SE inoculation were identified through next-generation sequencing. Our results showed that there were 5,118 circRNAs identified in the control and treated groups. There were 62 circRNAs significantly differentially expressed following SE inoculation. Functional classification revealed that those significantly differentially expressed circRNAs were associated with immune system process, rhythmic process and signaling following SE inoculation. CircRNAs NC_006091.4: 65510578|65515090, NC_006099.4: 16132825|16236906, and NC_006099.4: 15993284|16006290 play important roles in the response to SE inoculation. The findings in the current study provide evidence that circRNA alterations are involved in the response to SE inoculation in the chicken.


Assuntos
Doenças das Aves/imunologia , Ceco/fisiologia , Galinhas/imunologia , RNA Circular/genética , Animais , Animais Endogâmicos , Doenças das Aves/genética , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Imunidade , Infecções por Salmonella , Salmonella enteritidis
15.
J Anim Breed Genet ; 136(5): 351-361, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31037768

RESUMO

The plasma very low-density lipoprotein (VLDL) concentration is an effective blood biochemical indicator that could be used to select lean chicken lines. In the current study, we used Genome-wide association study (GWAS) method to detect SNPs with significant effects on plasma VLDL concentration. As a result, 38 SNPs significantly associated with plasma VLDL concentration were identified using at least one of the three mixed linear model (MLM) packages, including GRAMMAR, EMMAX and GEMMA. Nearly, all these SNPs with significant effects on plasma VLDL concentration (except Gga_rs16160897) have significantly different allele frequencies between lean and fat lines. The 1-Mb regions surrounding these 38 SNPs were extracted, and twelve important regions were obtained after combining the overlaps. A total of 122 genes in these twelve important regions were detected. Among these genes, LRRK2, ABCD2, TLR4, E2F1, SUGP1, NCAN, KLF2 and RAB8A were identified as important genes for plasma VLDL concentration based on their basic functions. The results of this study may supply useful information to select lean chicken lines.


Assuntos
Galinhas/genética , Estudo de Associação Genômica Ampla , Lipoproteínas VLDL/sangue , Animais , Doenças das Aves/sangue , Doenças das Aves/genética , Galinhas/sangue , Frequência do Gene , Sobrepeso/sangue , Sobrepeso/genética , Sobrepeso/veterinária , Polimorfismo de Nucleotídeo Único
16.
Genes (Basel) ; 10(5)2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075853

RESUMO

The chicken wingless-2 (wg-2) mutation is inherited in an autosomal recessive fashion, and the resulting phenotype in mutant (wg-2/wg-2) individuals is a developmental syndrome characterized by absent wings, truncated legs, craniofacial as well as skin and feather defects, and kidney malformations. Mapping and genotyping established that the mutation resides within 227 kilobases (kb) of chromosome 12 in a wg-2 congenic inbred line. A capture array was designed to target and sequence the candidate region along with flanking DNA in 24 birds from the line. Many point mutations and insertions or deletions were identified, and analysis of the linked variants indicated a point mutation predicted to cause a premature stop codon in the RAF1 gene. Expression studies were conducted inclusive of all genes in the candidate region. Interestingly, RAF1 transcription was elevated, yet the protein was absent in the mutants relative to normal individuals. RAF1 encodes a protein integral to the Ras/Raf/MAPK signaling pathway controlling cellular proliferation, and notably, human RASopathies are developmental syndromes caused by germline mutations in genes of this pathway. Our work indicates RAF1 as the priority candidate causative gene for wg-2 and provides a new animal model to study an important signaling pathway implicated in limb development, as well as RASopathies.


Assuntos
Proteínas Aviárias/genética , Doenças das Aves/genética , Códon sem Sentido/genética , Proteínas Proto-Oncogênicas c-raf/genética , Animais , Galinhas/genética , Embrião não Mamífero , Plumas/anormalidades , Deformidades Congênitas dos Membros , Mutação , Síndrome , Asas de Animais/anormalidades
17.
J Parasitol ; 105(1): 143-145, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30807718

RESUMO

Here, we report confirmation of sarcocysts of Sarcocystis jamaicensis in an experimental intermediate host, IFN-γ gene knockout (KO) mice orally inoculated sporocysts from its natural definitive host, a red-tailed hawk ( Buteo jamaicensis) (RTH). A RTH submitted to the Carolina Raptor Center, Huntersville, North Carolina, was euthanized because it could not be rehabilitated and released. Fully sporulated sporocysts from intestinal scrapings of the RTH were orally fed to 2 laboratory-reared outbred Swiss Webster mice (SW; Mus musculus) and to 2 KO mice. The sporocysts were infective for KO mice but not to SW mice. Both SW mice remained asymptomatic, and neither schizonts nor sarcocysts were found in their tissues when euthanized on day 54 post-inoculation (PI). The KO mice developed neurological signs and were necropsied 38-54 days PI. Schizonts/merozoites were found in both KO mice euthanized and they were confined to the brain. The predominant lesion was meningoencephalitis. Microscopic sarcocysts were found in muscles of both KO mice. When viewed with light microscopy, the sarcocyst wall appeared thin (<1 µm thick) and smooth. Ultrastructural details of sarcocysts are described.


Assuntos
Doenças das Aves/parasitologia , Falcões/parasitologia , Interferon gama/genética , Sarcocystis/fisiologia , Sarcocistose/veterinária , Animais , Doenças das Aves/genética , Doenças das Aves/patologia , Encéfalo/parasitologia , Chlorocebus aethiops , Feminino , Meningoencefalite/parasitologia , Meningoencefalite/patologia , Meningoencefalite/veterinária , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão/veterinária , North Carolina , Sarcocystis/isolamento & purificação , Sarcocystis/ultraestrutura , Sarcocistose/genética , Sarcocistose/parasitologia , Sarcocistose/patologia , Células Vero
18.
Sci Rep ; 9(1): 1347, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718911

RESUMO

Trichobilharzia species are parasitic flatworms (called schistosomes or flukes) that cause important diseases in birds and humans, but very little is known about their molecular biology. Here, using a transcriptomics-bioinformatics-based approach, we explored molecular aspects pertaining to the nutritional requirements of Trichobilharzia szidati ('visceral fluke') and T. regenti ('neurotropic fluke') in their avian host. We studied the larvae of each species before they enter (cercariae) and as they migrate (schistosomules) through distinct tissues in their avian (duck) host. Cercariae of both species were enriched for pathways or molecules associated predominantly with carbohydrate metabolism, oxidative phosphorylation and translation of proteins linked to ribosome biogenesis, exosome production and/or lipid biogenesis. Schistosomules of both species were enriched for pathways or molecules associated with processes including signal transduction, cell turnover and motility, DNA replication and repair, molecular transport and/or catabolism. Comparative informatic analyses identified molecular repertoires (within, e.g., peptidases and secretory proteins) in schistosomules that can broadly degrade macromolecules in both T. szidati and T. regenti, and others that are tailored to each species to selectively acquire nutrients from particular tissues through which it migrates. Thus, this study provides molecular evidence for distinct modes of nutrient acquisition between the visceral and neurotropic flukes of birds.


Assuntos
DNA de Helmintos/genética , Filogenia , Schistosomatidae/genética , Esquistossomose/genética , Animais , Doenças das Aves/genética , Doenças das Aves/parasitologia , Aves/genética , Aves/parasitologia , Cercárias/classificação , Cercárias/genética , Cercárias/patogenicidade , Biologia Computacional , DNA de Helmintos/classificação , Patos/genética , Patos/parasitologia , Humanos , Nutrientes , Schistosomatidae/patogenicidade , Esquistossomose/parasitologia , Trematódeos/classificação , Trematódeos/genética , Trematódeos/patogenicidade
19.
Mol Ecol ; 28(2): 203-218, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726053

RESUMO

Parasites and other symbionts are crucial components of ecosystems, regulating host populations and supporting food webs. However, most symbiont systems, especially those involving commensals and mutualists, are relatively poorly understood. In this study, we have investigated the nature of the symbiotic relationship between birds and their most abundant and diverse ectosymbionts: the vane-dwelling feather mites. For this purpose, we studied the diet of feather mites using two complementary methods. First, we used light microscopy to examine the gut contents of 1,300 individual feather mites representing 100 mite genera (18 families) from 190 bird species belonging to 72 families and 19 orders. Second, we used high-throughput sequencing (HTS) and DNA metabarcoding to determine gut contents from 1,833 individual mites of 18 species inhabiting 18 bird species. Results showed fungi and potentially bacteria as the main food resources for feather mites (apart from potential bird uropygial gland oil). Diatoms and plant matter appeared as rare food resources for feather mites. Importantly, we did not find any evidence of feather mites feeding upon bird resources (e.g., blood, skin) other than potentially uropygial gland oil. In addition, we found a high prevalence of both keratinophilic and pathogenic fungal taxa in the feather mite species examined. Altogether, our results shed light on the long-standing question of the nature of the relationship between birds and their vane-dwelling feather mites, supporting previous evidence for a commensalistic-mutualistic role of feather mites, which are revealed as likely fungivore-microbivore-detritivore symbionts of bird feathers.


Assuntos
Doenças das Aves/genética , Código de Barras de DNA Taxonômico/métodos , Plumas/parasitologia , Ácaros/genética , Animais , Doenças das Aves/microbiologia , Doenças das Aves/parasitologia , Aves/genética , Aves/parasitologia , Ecossistema , Plumas/microbiologia , Microbioma Gastrointestinal/genética , Microscopia , Ácaros/microbiologia , Ácaros/patogenicidade , Simbiose/genética
20.
Mol Ecol ; 28(2): 379-390, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30536745

RESUMO

The high relevance of host-switching for the diversification of highly host-specific symbionts (i.e., those commonly inhabiting a single host species) demands a better understanding of host-switching dynamics at an ecological scale. Here, we used DNA metabarcoding to study feather mites on passerine birds in Spain, sequencing mtDNA (COI) for 25,540 individual mites (representing 64 species) from 1,130 birds (representing 71 species). Surprisingly, 1,228 (4.8%) mites from 84 (7.4%) birds were found on host species that were not the expected to be a host according to a recent bird-feather mite associations catalog. Unexpected associations were widespread across studied mite (40.6%) and bird (43.7%) species and showed smaller average infrapopulation sizes than typical associations. Unexpected mite species colonized hosts being distantly related to the set of their usual hosts, but with similar body size. The network of bird-mite associations was modular (i.e., some groups of bird and mite species tended to be more associated with each other than with the others), with 75.9% of the unexpected associations appearing within the module of the typical hosts of the mite species. Lastly, 68.4% of mite species found on unexpected hosts showed signatures of genetic differentiation, and we found evidence for reproduction or the potential for it in many of the unexpected associations. Results show host colonization as a common phenomenon even for these putatively highly host-specific symbionts. Thus, host-switching by feather mites, rather than a rare phenomenon, appears as a relatively frequent phenomenon shaped by ecological filters such as host morphology and is revealed as a fundamental component for a dynamic coevolutionary and codiversification scenario.


Assuntos
Doenças das Aves/parasitologia , Plumas/parasitologia , Interações Hospedeiro-Parasita/genética , Ácaros/genética , Animais , Doenças das Aves/genética , Código de Barras de DNA Taxonômico , DNA Mitocondrial/genética , Ácaros/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...