Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.597
Filtrar
1.
Commun Biol ; 7(1): 1017, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289466

RESUMO

Infectious diseases can drive populations and species to extinction. Beak and feather disease virus (BFDV) is a circovirus of global conservation concern that can infect all Psittaciformes and some other species. Yet some parrot species, such as Crimson rosellas (Platycercus elegans), can live successfully with high BFDV prevalence (>40%) with no clinical signs reported in infected individuals. We assessed BFDV load in 10-12 tissues per bird, from n = 66 P. elegans, to reveal tissue tropism and BFDV persistence in tissues. Here we show that in 94% of individuals, BFDV was detected in one or more tissues. While BFDV replicated to high levels in subadults, in adults (some confirmed seropositive) the virus persisted in various tissues at much lower levels. Our findings reveal that BFDV is much more common in wild P. elegans than previously thought and suggest that current screening practices (mostly on blood) may substantially underestimate BFDV infection estimates, with implications for biosecurity and conservation programs globally.


Assuntos
Doenças das Aves , Infecções por Circoviridae , Circovirus , Animais , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Circovirus/isolamento & purificação , Circovirus/genética , Circovirus/fisiologia , Doenças das Aves/virologia , Doenças das Aves/epidemiologia , Papagaios/virologia
2.
Parasitol Res ; 123(8): 304, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162844

RESUMO

The family Cimicidae comprises ectoparasites feeding exclusively on the blood of endothermic animals. Cimicid swallow bugs specifically target swallow birds (Hirundinidae) and their nestlings in infested nests. Bugs of the genus Oeciacus are commonly found in mud nests of swallows and martins, while they rarely visit the homes of humans. Although-unlike other cimicid species-the house martin bug Oeciacus hirundinis has never been reported as a vector of zoonotic pathogens, its possible role in arbovirus circulation in continental Europe is unclear. Samples of O. hirundinis were therefore collected from abandoned house martin (Delichon urbicum) nests in southern Moravia (Czech Republic) during the 2021/2022 winter season and checked for alpha-, flavi- and bunyaviruses by RT-PCR. Of a total of 96 pools consisting of three adult bugs each, one pool tested positive for Usutu virus (USUV)-RNA. Phylogenetic analysis showed that the virus strain was closely related to Italian and some Central European strains and corresponded to USUV lineage 5. The detection of USUV in O. hirundinis during wintertime in the absence of swallows raises the question for a possible role of this avian ectoparasite in virus overwintering in Europe.


Assuntos
Cimicidae , Flavivirus , Filogenia , Estações do Ano , Animais , Cimicidae/virologia , Flavivirus/isolamento & purificação , Flavivirus/genética , Flavivirus/classificação , República Tcheca , RNA Viral/genética , Doenças das Aves/parasitologia , Doenças das Aves/virologia
3.
Sci Rep ; 14(1): 19452, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169115

RESUMO

Bagaza virus (BAGV) is a mosquito-borne flavivirus of the family Flaviviridae, genus Orthoflavivirus, Ntaya serocomplex. Like other viruses of the Ntaya and Japanese encephalitis serocomplexes, it is maintained in nature in transmission cycles involving viremic wild bird reservoirs and Culex spp. mosquitoes. The susceptibility of red-legged partridge, ring-necked pheasant, Himalayan monal and common wood pigeon is well known. Determining whether other species are susceptible to BAGV infection is fundamental to understanding the dynamics of disease transmission and maintenance. In September 2023, seven Eurasian magpies were found dead in a rural area in the Mértola district (southern Portugal) where a BAGV-positive cachectic red-legged partridge had been found two weeks earlier. BAGV had also been detected in several red-legged partridges in the same area in September 2021. Three of the magpies were tested for Bagaza virus, Usutu virus, West Nile virus, Avian influenza virus and Avian paramyxovirus serotype 1, and were positive for BAGV only. Sequencing data confirmed the specificity of the molecular detection. Our results indicate that BAGV is circulating in southern Portugal and confirm that Eurasian magpie is potential susceptible to BAGV infection. The inclusion of the abundant Eurasian magpie in the list of BAGV hosts raises awareness of the potential role of this species as as an amplifying host.


Assuntos
Flavivirus , Animais , Portugal , Flavivirus/genética , Flavivirus/isolamento & purificação , Filogenia , Doenças das Aves/virologia , Doenças das Aves/epidemiologia , Infecções por Flavivirus/virologia , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/epidemiologia
5.
Viruses ; 16(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39066213

RESUMO

In this study, we provide a genomic description of the first isolation of the Umattila virus (UMAV) in Brazil. The virus was obtained from the blood of a bird (Turdus fumigatus) and isolated in a C6/36 cell culture. The viral genome contains ten segments, and its organization is characteristic of viruses of the genus Orbivirus (family Sedoreoviridae). The coding region of each segment was sequenced, demonstrating the nucleotide identity with UMAV. The phylogenetic inference results were in line with these findings and demonstrated the formation of two distinct monophyletic clades containing strains isolated around the world, where our isolate, belonging to the same clade as the prototype strain, was allocated to a different subclade, highlighting the genetic divergence between them. This work reports the first isolation of UMAV in Brazil, and due to the scarcity of information on this viral agent in the scientific literature, it is essential to carry out further studies to better understand its epidemiology, dispersion, and, in particular, its interactions with vertebrate hosts, vectors, and the environment.


Assuntos
Genoma Viral , Orbivirus , Filogenia , Brasil , Animais , Orbivirus/isolamento & purificação , Orbivirus/genética , Orbivirus/classificação , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , Aves/virologia , Doenças das Aves/virologia , RNA Viral/genética , Linhagem Celular
6.
Virol J ; 21(1): 153, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972989

RESUMO

Wild waterfowl serve as a reservoir of some astroviruses. Fecal samples from wild waterfowl collected at Hong Kong's Marshes were tested using pan-astrovirus reverse transcription-PCR. Positive samples underwent subsequent host identification using DNA barcoding. Based on deduced partial sequences, noteworthy samples from three astrovirus groups (mammalian, avian and unclassified astroviruses) were further analyzed by next-generation sequencing. One sample of Avastrovirus 4 clade, MP22-196, had a nearly complete genome identified. The results of ORF2 phylogenetic analysis and genetic distance analysis indicate that Avastrovirus 4 is classified as a distinct subclade within Avastrovirus. MP22-196 has typical astrovirus genome characteristics. The unique characteristics and potential differences of this genome, compared to other avian astrovirus sequences, involve the identification of a modified sgRNA sequence situated near the ORF2 start codon, which precedes the ORF1b stop codon. Additionally, the 3' UTR of MP22-196 is shorter than other avian astroviruses. This study expands our understanding of the Avastrovirus 4 clade.


Assuntos
Infecções por Astroviridae , Aves , Fezes , Variação Genética , Genoma Viral , Filogenia , Animais , Hong Kong , Aves/virologia , Fezes/virologia , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Animais Selvagens/virologia , Doenças das Aves/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Avastrovirus/genética , Avastrovirus/classificação , Avastrovirus/isolamento & purificação , RNA Viral/genética , Fases de Leitura Aberta , Astroviridae/genética , Astroviridae/isolamento & purificação , Astroviridae/classificação
7.
BMC Vet Res ; 20(1): 305, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982473

RESUMO

BACKGROUND: Pigeon Rotavirus A (RVA) infection has been confirmed in pigeons in the last decade as a cause of Young Pigeon Disease (YPD). Although YPD has been known for many years to date, no studies have been conducted to track the spread of RVA infection in pigeons during the racing season. The presented research aims to determine the course of RVA infection during the flights of young racing pigeons in the summer season, in one of the districts in the Mazovian Voivodeship in Poland. RESULTS: Faecal samples of pigeons collected from transport baskets in vehicles transporting pigeons to the starting point were tested. The quantitative RT-PCR (qRT-PCR) was used to detect the genetic material of RVA. Samples taken during 6 flights were analysed. The study showed a percentage increase in infections up to the fourth flight of pigeons, and then their decrease. With Cq values below 20, breeders did not participate in the next flight and/or reported disease in the flock. With positive Cq values of 20 to 30, clinical signs of disease were not reported. Of the 76 breeders participating in the races, at least one positive result was found in 46 (60.5%). Including the occurrence of the disease during the racing season was reported by 11 breeders (14.4%). The main clinical signs in sick pigeons were vomiting, diarrhea and stowed crop. The tested pigeons were not vaccinated against RVA. CONCLUSIONS: During training and racing of pigeons, it is not possible to avoid exposing them to pathogens, including RVA, regardless of whether pigeons from different breeders are placed in the same baskets or are in separate baskets. However, after four flights the number of new cases of the disease decreases which indicates the development of immunity. The qRT-PCR test is useful in the diagnosis and differentiation of clinical (Cq below 20) and subclinical RVA infections in racing pigeons.


Assuntos
Doenças das Aves , Columbidae , Fezes , Infecções por Rotavirus , Rotavirus , Estações do Ano , Animais , Columbidae/virologia , Infecções por Rotavirus/veterinária , Infecções por Rotavirus/virologia , Infecções por Rotavirus/epidemiologia , Doenças das Aves/virologia , Doenças das Aves/epidemiologia , Rotavirus/isolamento & purificação , Fezes/virologia , Polônia/epidemiologia
8.
PLoS Negl Trop Dis ; 18(7): e0012172, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985837

RESUMO

Usutu virus (USUV) is an emerging flavivirus that is maintained in an enzootic cycle with mosquitoes as vectors and birds as amplifying hosts. In Europe, the virus has caused mass mortality of wild birds, mainly among Common Blackbird (Turdus merula) populations. While mosquitoes are the primary vectors for USUV, Common Blackbirds and other avian species are exposed to other arthropod ectoparasites, such as ticks. It is unknown, however, if ticks can maintain and transmit USUV. We addressed this question using in vitro and in vivo experiments and field collected data. USUV replicated in IRE/CTVM19 Ixodes ricinus tick cells and in injected ticks. Moreover, I. ricinus nymphs acquired the virus via artificial membrane blood-feeding and maintained the virus for at least 70 days. Transstadial transmission of USUV from nymphs to adults was confirmed in 4.9% of the ticks. USUV disseminated from the midgut to the haemocoel, and was transmitted via the saliva of the tick during artificial membrane blood-feeding. We further explored the role of ticks by monitoring USUV in questing ticks and in ticks feeding on wild birds in the Netherlands between 2016 and 2019. In total, 622 wild birds and the Ixodes ticks they carried were tested for USUV RNA. Of these birds, 48 (7.7%) carried USUV-positive ticks. The presence of negative-sense USUV RNA in ticks, as confirmed via small RNA-sequencing, showed active virus replication. In contrast, we did not detect USUV in 15,381 questing ticks collected in 2017 and 2019. We conclude that I. ricinus can be infected with USUV and can transstadially and horizontally transmit USUV. However, in comparison to mosquito-borne transmission, the role of I. ricinus ticks in the epidemiology of USUV is expected to be minor.


Assuntos
Doenças das Aves , Infecções por Flavivirus , Flavivirus , Ixodes , Ninfa , Animais , Ixodes/virologia , Ixodes/fisiologia , Flavivirus/fisiologia , Flavivirus/genética , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/virologia , Ninfa/virologia , Doenças das Aves/virologia , Doenças das Aves/transmissão , Aves/virologia , Vetores Aracnídeos/virologia , Vetores Aracnídeos/fisiologia , Países Baixos , Feminino
9.
Poult Sci ; 103(9): 104028, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043026

RESUMO

Enteropathies are a serious concern in racing pigeons as they significantly impair performance in races and their training, and viruses are suspected to be one of the main factors. Astroviruses are well-known to be responsible for causing enteric disease in humans and various other animals including birds, although their prevalence and pathogenicity in pigeons is poorly understood. In this study, we investigated 2 groups of young racing pigeons (sick-study group and healthy-control group) to assess the correlation between the number of astrovirus genome copies in cloacal swabs and the occurrence of enteropathy. To determine this, we developed a novel TaqMan quantitative PCR (qPCR) and digital droplet PCR (ddPCR) methods for astrovirus detection and absolute quantitative analysis. We also performed high-throughput sequencing to obtain the complete genome sequences and establish the genetic similarity of the obtained strains to known astroviruses of poultry and other avian species. Two new complete genome sequences of pigeon astroviruses in the Avastrovirus genus were identified, representing 2 new species. These were found most closely related to astroviruses identified in Columbidae species and chickens. They share an average of 75.8% genome-wide pairwise identity and 57.6% and 64.6% capsid protein sequence identity with other unclassified columbid avastrovirus sequences in GenBank. Although the difference in prevalence of astrovirus in the study and control group was found statistically insignificant, there was a significant difference between the number of genome copies in positive samples from both groups. These unambiguous results leave the role of astroviruses as enteropathogenic factors in pigeons still undetermined.


Assuntos
Infecções por Astroviridae , Avastrovirus , Doenças das Aves , Columbidae , Genoma Viral , Filogenia , Animais , Columbidae/virologia , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Infecções por Astroviridae/epidemiologia , Doenças das Aves/virologia , Doenças das Aves/epidemiologia , Avastrovirus/genética , Avastrovirus/isolamento & purificação , Avastrovirus/classificação
10.
Virology ; 598: 110173, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39018684

RESUMO

Wild birds harbour a vast diversity of adenoviruses that remain uncharacterised with respect to their genome organisation and evolutionary relatedness within complex host ecosystems. Here, we characterise a novel adenovirus type within Aviadenovirus genus associated with severe necrotising hepatitis in a captive Timneh grey parrot, tentatively named as Timneh grey parrot adenovirus 1 (TpAdV-1). The TpAdV-1 genome is 39,867 bp and encodes 46 putative genes with seven hitherto not described ones. Comparative genomics and phylogenetic analyses revealed highest nucleotide identity with psittacine adenovirus 1 and psittacine adenovirus 4 that formed a discrete monophyletic clade within Aviadenovirus lineage suggesting a deep host co-divergent lineage within Psittaciformes hosts. Several recombination breakpoints were identified within the TpAdV-1 genome, which highlighted an ancient evolutionary relationship across the genera Aviadenovirus, Mastadenovirus and Atadenovirus. This study hints towards a host-adapted sub-lineage of avian adenovirus capable of having significant host virulence in Psittaciformes birds augmented with ecological opportunity.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves , Genoma Viral , Papagaios , Filogenia , Animais , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologia , Aviadenovirus/genética , Aviadenovirus/classificação , Aviadenovirus/isolamento & purificação , Aviadenovirus/patogenicidade , Papagaios/virologia , Doenças das Aves/virologia
11.
Virus Genes ; 60(5): 510-516, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38866926

RESUMO

In order to study the integration of reticuloendotheliosis virus (REV) in pigeonpox virus (PPV), we collected suspected pigeonpox disease material, amplified the 4b core protein gene of PPV, the gp90 gene of REV, and the integrated sequence fragments from the end of the ORF201 segment of PPV to the beginning of the LTR of REV, and sequenced these genes. The results showed that a 4b core protein fragment of 332 bp was amplified and identified as pigeonpox virus, which was named SX/TY/LTR 01/2023. Sequence analysis showed that the pigeonpox virus isolate belonged to genotype A2, which was the closest to the domestic CVL strain, with a identity of 99.4%. A band of 1191 bp was amplified from the gp90 gene of REV, named SX/TY/PPV-REV01/2023, and sequence analysis indicated that REV belonged to genotype III. The sequence analysis showed that REV belonged to genotype III, and belonged to the same large branch as the domestic isolates JSRD0701 and LNR0801, with 99.3% identity. The integrated sequence fragment was amplified to a band of 637 bp, which determined that the REV sequence was integrated in the PPV rather than a mixed infection of the two viruses. This indicates that REV was integrated in this isolation of PPV, suggesting that pigeon farms need to prevent reticuloendotheliosis at the same time when preventing pigeonpox.


Assuntos
Avipoxvirus , Filogenia , Vírus da Reticuloendoteliose , Animais , Vírus da Reticuloendoteliose/genética , Vírus da Reticuloendoteliose/isolamento & purificação , Avipoxvirus/genética , Avipoxvirus/isolamento & purificação , Avipoxvirus/classificação , Columbidae/virologia , Infecções por Poxviridae/virologia , Infecções por Poxviridae/veterinária , Genótipo , Análise de Sequência de DNA , Doenças das Aves/virologia
12.
J Zoo Wildl Med ; 55(2): 341-354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38875191

RESUMO

Parrot bornaviruses are responsible for proventricular dilatation disease (PDD) in psittacines. This study aimed to determine the occurrence and factors associated with Parrot bornaviruses infection in psittacines kept in captivity in a state in the southern region of Brazil. A cross-sectional study was carried out with 192 birds from two facilities (A and B) in 2019, using choanal, esophageal, and cloacal swabs and feathers, totaling 768 samples subjected to reverse-transcription polymerase chain reaction (RT-PCR), for the matrix (M) protein gene with a final product of 350 base pairs (bp). Genetic sequencing of three positive samples was performed by the Sanger method. In the study, the overall virus occurrence was 35.9% (69/192), with 40.4% (42/104) in Facility A and 30.7% (27/88) in Facility B. Sequencing analysis of the samples revealed the presence of Parrot bornavirus 2 (PaBV-2) in both facilities. Swab samples from the choanal (40/69), esophageal (30/69), cloacal (35/69), and feather (15/69) tested positive, facilitating the molecular diagnosis of Parrot bornaviruses. The results indicated that there is no single ideal sample type for antemortem molecular diagnosis of this virus. Simultaneously testing all four samples at the same time point yielded more diagnoses than testing any single sample among the four. Most of the 29 sampled psittacine species were native, and 46.9% of the birds (90/192) consisted of endangered species. Among the psittacines that tested positive, 88.4% (61/69) were clinically healthy, and 8.7% (6/69) exhibited clinical or behavioral signs, including behavioral changes, alterations in feathering, and changes in body score at the time of collection. This study showcases the application of minimally invasive sampling for diagnosing Parrot bornaviruses, enabling sample collection when the birds are restrained for clinical evaluation. This approach facilitates a prompt and effective antemortem diagnosis, thereby serving as an efficient screening method for parrots kept in captivity.


Assuntos
Doenças das Aves , Bornaviridae , Infecções por Mononegavirales , Animais , Brasil/epidemiologia , Doenças das Aves/virologia , Doenças das Aves/epidemiologia , Bornaviridae/isolamento & purificação , Bornaviridae/genética , Bornaviridae/classificação , Infecções por Mononegavirales/veterinária , Infecções por Mononegavirales/virologia , Infecções por Mononegavirales/epidemiologia , Estudos Transversais , Animais de Zoológico , Papagaios/virologia , Psittaciformes/virologia
13.
Sci Rep ; 14(1): 13815, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877168

RESUMO

This study was aimed to investigate the frequency of PiCV recombination, the kinetics of PiCV viremia and shedding and the correlation between viral replication and host immune response in young pigeons subclinically infected with various PiCV variants and kept under conditions mimicking the OLR system. Fifteen racing pigeons originating from five breeding facilities were housed together for six weeks. Blood and cloacal swab samples were collected from birds every seven days to recover complete PiCV genomes and determine PiCV genetic diversity and recombination dynamics, as well as to assess virus shedding rate, level of viremia, expression of selected genes and level of anti-PiCV antibodies. Three hundred and eighty-eight complete PiCV genomes were obtained and thirteen genotypes were distinguished. Twenty-five recombination events were detected. Recombinants emerged during the first three weeks of the experiment which was consistent with the peak level of viremia and viral shedding. A further decrease in viremia and shedding partially corresponded with IFN-γ and MX1 gene expression and antibody dynamics. Considering the role of OLR pigeon rearing system in spreading infectious agents and allowing their recombination, it would be reasonable to reflect on the relevance of pigeon racing from both an animal welfare and epidemiological perspective.


Assuntos
Doenças das Aves , Infecções por Circoviridae , Circovirus , Columbidae , Eliminação de Partículas Virais , Animais , Columbidae/virologia , Circovirus/genética , Circovirus/imunologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/virologia , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/imunologia , Doenças das Aves/virologia , Doenças das Aves/epidemiologia , Doenças das Aves/imunologia , Viremia/epidemiologia , Viremia/virologia , Viremia/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Genoma Viral , Recombinação Genética , Genótipo , Replicação Viral , Filogenia
14.
Viruses ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38932208

RESUMO

Viruses from Picornaviridae family are known pathogens of poultry, although the information on their occurrence and pathogenicity in pigeons is scarce. In this research, efforts are made to broaden the knowledge on Megrivirus B and Pigeon picornavirus B prevalence, phylogenetic relationship with other avian picornaviruses and their possible connection with enteric disease in racing pigeons. As a result of Oxford Nanopore Sequencing, five Megrivirus and two pigeon picornavirus B-like genome sequences were recovered, among which three recombinant strains were detected. The recombinant fragments represented an average of 10.9% and 25.5% of the genome length of the Pigeon picornavirus B and Megrivirus B reference strains, respectively. The phylogenetic analysis revealed that pigeons are carriers of species-specific picornaviruses. TaqMan qPCR assays revealed 7.8% and 19.0% prevalence of Megrivirus B and 32.2% and 39.7% prevalence of Pigeon picornavirus B in the group of pigeons exhibiting signs of enteropathy and in the group of asymptomatic pigeons, respectively. In turn, digital droplet PCR showed a considerably higher number of genome copies of both viruses in sick than in asymptomatic pigeons. The results of quantitative analysis leave the role of picornaviruses in enteropathies of pigeons unclear.


Assuntos
Doenças das Aves , Columbidae , Genoma Viral , Filogenia , Infecções por Picornaviridae , Picornaviridae , Animais , Columbidae/virologia , Picornaviridae/genética , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Doenças das Aves/virologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Recombinação Genética
15.
BMC Ecol Evol ; 24(1): 84, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926829

RESUMO

BACKGROUND: Accelerating biodiversity loss necessitates monitoring the potential pathogens of vulnerable species. With a third of New Zealand's avifauna considered at risk of extinction, a greater understanding of the factors that influence microbial transmission in this island ecosystem is needed. We used metatranscriptomics to determine the viruses, as well as other microbial organisms (i.e. the infectomes), of seven bird species, including the once critically endangered black robin (Petroica traversi), on two islands in the remote Chatham Islands archipelago, New Zealand. RESULTS: We identified 19 likely novel avian viruses across nine viral families. Black robins harboured viruses from the Flaviviridae, Herpesviridae, and Picornaviridae, while introduced starlings (Sturnus vulgaris) and migratory seabirds (Procellariiformes) carried viruses from six additional viral families. Potential cross-species virus transmission of a novel passerivirus (family: Picornaviridae) between native (black robins and grey-backed storm petrels) and introduced (starlings) birds was also observed. Additionally, we identified bacterial genera, apicomplexan parasites, as well as a novel megrivirus linked to disease outbreaks in other native New Zealand birds. Notably, island effects were outweighed by host taxonomy as a significant driver of viral composition, even among sedentary birds. CONCLUSIONS: These findings underscore the value of surveillance of avian populations to identify and minimise escalating threats of disease emergence and spread in these island ecosystems. Importantly, they contribute to our understanding of the potential role of introduced and migratory birds in the transmission of microbes and associated diseases, which could impact vulnerable island-endemic species.


Assuntos
Doenças das Aves , Aves , Ilhas , Animais , Nova Zelândia/epidemiologia , Aves/virologia , Doenças das Aves/virologia , Doenças das Aves/transmissão , Doenças das Aves/microbiologia , Doenças das Aves/epidemiologia , Vírus/isolamento & purificação , Vírus/genética , Vírus/classificação , Biodiversidade
16.
Vet Res Commun ; 48(4): 2841-2846, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38888630

RESUMO

Seabirds are one of the most threatened avian groups. Viruses, including herpesvirus, represent considerable threats to marine avifauna. Herein, our goal was to survey herpesvirus in Procellariiformes that stranded in Brazil between June and July 2021. We analyzed 12 Cory's shearwaters (Calonectris borealis), two Great Shearwaters (Ardenna gravis, syn. Puffinus gravis) and one Yellow-nosed Albatross (Thalassarche chlororynchos) found in an unusual mortality event in Bahía state, northeastern Brazil. After necropsy, selected tissue samples were tested for herpesvirus using a broad-range nested PCR. Overall, 20% (3/15) of the birds were herpesvirus-positive, i.e., two Cory's Shearwaters and one Great Shearwater. One alphaherpesvirus sequence type was identified in each shearwater species, classified into the genus Mardivirus. This study describes two likely novel herpesviruses in shearwaters, contributing to the currently very scarce data regarding infectious agents in Procellariiformes. Further studies are necessary to evaluate the presence and characteristics of herpesvirus in Procellariiformes, and the presence (or not) of related disease in order to understand the epidemiology of this infectious agent and eventually contribute to the conservation of this endangered seabird group.


Assuntos
Doenças das Aves , Aves , Infecções por Herpesviridae , Herpesviridae , Animais , Brasil/epidemiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/epidemiologia , Doenças das Aves/virologia , Doenças das Aves/epidemiologia , Aves/virologia , Herpesviridae/isolamento & purificação , Herpesviridae/classificação , Herpesviridae/genética , Migração Animal , Filogenia
17.
Poult Sci ; 103(7): 103848, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843610

RESUMO

Pigeons infected with aviadenoviruses have been found worldwide. Recently, pigeon adenovirus 2 (PiAdV-2) has been widely distributed in racing pigeons in Germany. However, the epidemiology of this virus remains unclear due to the lack of a specific detection platform for PiAdV-2. In this study, we first detected PiAdV-2 positivity in racing pigeons (designated FJ21125 and FJ21128, which share 100% nucleotide identity with each other based on the fiber 2 gene) in Fujian, Southeast China. These genes shared 99.8% nucleotide identity with PiAdV-2 (GenBank No. NC_031501) but only 54.1% nucleotide identity with PiAdV-1 (GenBank No. NC024474). Then, the TaqMan-qPCR assay for the detection of PiAdV-2 was established based on fiber 2 gene characterization. The established assay had a correlation coefficient of 1.00, with an amplification efficiency of 99.0%. The minimum detection limit was 34.6 copies/µL. Only PiAdV-2 exhibited a positive fluorescent signal, and no signal was detected for other pathogens (including PiCV, FAdV-4, FAdV-8a, EDSV, PPMV-1, RVA and PiHV). The assay has good reproducibility, with a coefficient of variation less than 2.42% both intragroup and intergroup. The distributions of PiAdV-2 in fecal samples from YPDS (35 samples) and healthy (43 samples) racing pigeons from different geographical areas were investigated and were 37.14% (YPDS) and 20.93% (healthy), respectively. In summary, we developed a TaqMan-qPCR platform for the detection of PiAdV-2 infection with high sensitivity, specificity, and reproducibility. We confirmed the presence of PiAdV-2 in China, and our data suggested that there is no indication of a correlation between YPDS and PiAdV-2. This study provides more information on the pathogenesis mechanism and epidemiological surveillance of PiAdV-2.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Columbidae , Reação em Cadeia da Polimerase em Tempo Real , Animais , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/diagnóstico , Infecções por Adenoviridae/virologia , Infecções por Adenoviridae/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , China/epidemiologia , Aviadenovirus/isolamento & purificação , Aviadenovirus/genética , Doenças das Aves/virologia , Doenças das Aves/diagnóstico , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/diagnóstico
18.
Acta Trop ; 257: 107279, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38871069

RESUMO

The causative agent of severe fever with thrombocytopenia syndrome (SFTS) is Bandavirus dabieense, an emerging tick-borne zoonotic pathogen. Migratory birds have often been suggested as potential carriers of ticks that can transmit Bandavirus dabieense; however, their role remains unclear. The Republic of Korea (ROK) holds an important position as a stopover on the East Asian-Australasian Flyway. The present study aimed to investigate the potential involvement of migratory birds in the transmission of the SFTS virus (SFTSV) in the ROK. A total of 4,497 ticks were collected across various regions, including Heuksando and Daecheongdo, in the ROK, from bird migration seasons in 2022 and 2023. Genetic analysis of the SFTSV was performed for 96 ticks collected from 20 different species of migratory birds. Polymerase chain reaction (PCR) fragments of SFTSV were detected in one Haemaphysalis concinna nymph collected from a Black-faced Bunting (Emberiza spodocephala) and one Ixodes turdus nymph collected from an Olive-backed Pipit (Anthus hodgsoni) on Daecheongdo and Heuksando, respectively, during their northward migration in two spring seasons. This finding suggests that migratory birds can be considered as possible carriers and long-distance dispersers of ticks and associated tick-borne diseases. This study highlights the importance of clarifying the role and impact of migratory birds in the rapid expansion of tick-borne diseases, facilitating enhanced preparedness and the development of mitigation measures against emerging SFTS across and beyond East Asia.


Assuntos
Migração Animal , Aves , Phlebovirus , Filogenia , Animais , República da Coreia , Phlebovirus/isolamento & purificação , Phlebovirus/genética , Phlebovirus/classificação , Aves/virologia , Doenças das Aves/virologia , Doenças das Aves/parasitologia , Ixodes/virologia , Carrapatos/virologia , Carrapatos/classificação , Febre Grave com Síndrome de Trombocitopenia/virologia
19.
Poult Sci ; 103(8): 103940, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909506

RESUMO

Migratory wild birds can carry various pathogens, such as influenza A virus, which can spread to globally and cause disease outbreaks and epidemics. Continuous epidemiological surveillance of migratory wild birds is of great significance for the early warning, prevention, and control of epidemics. To investigate the pathogen infection status of migratory wild birds in eastern China, fecal samples were collected from wetlands to conduct pathogen surveillance. The results showed that duck orthoreovirus (DRV) and goose parvovirus (GPV) nucleic acid were detected positive in the fecal samples collected from wild ducks, egrets, and swan. Phylogenetic analysis of the amplified viral genes reveals that the isolates were closely related to the prevalent strains in the regions involved in East Asian-Australasian (EAA) migratory flyway. Phylogenetic analysis of the amplified viral genes confirmed that they were closely related to circulating strains in the regions involved in the EAA migration pathway. The findings of this study have expanded the host range of the orthoreovirus and parvovirus, and revealed possible virus transmission between wild migratory birds and poultry.


Assuntos
Animais Selvagens , Doenças das Aves , Orthoreovirus Aviário , Infecções por Parvoviridae , Parvovirus , Filogenia , Infecções por Reoviridae , Animais , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/virologia , Orthoreovirus Aviário/isolamento & purificação , Orthoreovirus Aviário/genética , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/epidemiologia , China/epidemiologia , Doenças das Aves/virologia , Doenças das Aves/epidemiologia , Animais Selvagens/virologia , Parvovirus/genética , Parvovirus/isolamento & purificação , Fezes/virologia , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Patos/virologia , Anseriformes/virologia , Monitoramento Epidemiológico/veterinária
20.
Infect Dis (Lond) ; 56(9): 743-758, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38836293

RESUMO

BACKGROUND: West Nile Virus (WNV) is a zoonotic arbovirus worldwide spread. Seasonal WNV outbreaks occur in the Mediterranean basin since the late 1990's with ever-increasing incidence. In Southern Spain WNV is endemic, as disease foci - caused by WNV lineage 1 (WNV-L1) strains - occur every year. On the contrary, WNV-L2 is the dominant lineage in Europe, so most European WNV sequences available belong to this lineage, WNV-L1 sequences being still scarce. METHODS: To fill this gap, this study reports the genetic characterisation of 27 newly described WNV-L1 strains, involved in outbreaks affecting wild birds and horses during the last decade in South-Western Spain. RESULTS: All strains except one belong to the Western Mediterranean-1 sub-cluster (WMed-1), related phylogenetically to Italian, French, Portuguese, Moroccan and, remarkably, Senegalese strains. This sub-cluster persisted, spread and evolved into three distinguishable WMed-1 phylogenetic groups that co-circulated, notably, in the same province (Cádiz). They displayed different behaviours: from long-term persistence and rapid spread to neighbouring regions within Spain, to long-distance spread to different countries, including transcontinental spread to Africa. Among the different introductions of WNV in Spain revealed in this study, some of them succeeded to get established, some extinguished from the territory shortly afterwards. Furthermore, Spain's southernmost province, Cádiz, constitutes a hotspot for virus incursion. CONCLUSION: Southern Spain seems a likely scenario for emergence of exotic pathogens of African origin. Therefore, circulation of diverse WNV-L1 variants in Spain prompts for an extensive surveillance under a One Health approach.


Assuntos
Aves , Filogenia , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/classificação , Vírus do Nilo Ocidental/isolamento & purificação , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Febre do Nilo Ocidental/transmissão , Animais , Espanha/epidemiologia , Aves/virologia , Doenças das Aves/virologia , Doenças das Aves/epidemiologia , Cavalos/virologia , Europa (Continente)/epidemiologia , Surtos de Doenças , África/epidemiologia , Doenças dos Cavalos/virologia , Doenças dos Cavalos/epidemiologia , Humanos , Animais Selvagens/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...