Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.190
Filtrar
1.
Genes (Basel) ; 15(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062701

RESUMO

Acute febrile illness (AFI) and severe neurological disorders (SNDs) often present diagnostic challenges due to their potential origins from a wide range of infectious agents. Nanopore metagenomics is emerging as a powerful tool for identifying the microorganisms potentially responsible for these undiagnosed clinical cases. In this study, we aim to shed light on the etiological agents underlying AFI and SND cases that conventional diagnostic methods have not been able to fully elucidate. Our approach involved analyzing samples from fourteen hospitalized patients using a comprehensive nanopore metagenomic approach. This process included RNA extraction and enrichment using the SMART-9N protocol, followed by nanopore sequencing. Subsequent steps involved quality control, host DNA/cDNA removal, de novo genome assembly, and taxonomic classification. Our findings in AFI cases revealed a spectrum of disease-associated microbes, including Escherichia coli, Streptococcus sp., Human Immunodeficiency Virus 1 (Subtype B), and Human Pegivirus. Similarly, SND cases revealed the presence of pathogens such as Escherichia coli, Clostridium sp., and Dengue virus type 2 (Genotype-II lineage). This study employed a metagenomic analysis method, demonstrating its efficiency and adaptability in pathogen identification. Our investigation successfully identified pathogens likely associated with AFI and SNDs, underscoring the feasibility of retrieving near-complete genomes from RNA viruses. These findings offer promising prospects for advancing our understanding and control of infectious diseases, by facilitating detailed genomic analysis which is critical for developing targeted interventions and therapeutic strategies.


Assuntos
Metagenômica , Sequenciamento por Nanoporos , Humanos , Metagenômica/métodos , Sequenciamento por Nanoporos/métodos , Masculino , Feminino , Doenças do Sistema Nervoso/microbiologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/virologia , Adulto , Pessoa de Meia-Idade , Nanoporos , Idoso , Metagenoma/genética , Febre/microbiologia , Febre/virologia , Escherichia coli/genética
2.
CNS Neurosci Ther ; 30(7): e14880, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39073001

RESUMO

Adenylyl cyclases (Adcys) catalyze the formation of cAMP, a secondary messenger essential for cell survival and neurotransmission pathways in the CNS. Adcy2, one of ten Adcy isoforms, is highly expressed in the CNS. Abnormal Adcy2 expression and mutations have been reported in various neurological disorders in both rodents and humans. However, due to the lack of genetic tools, loss-of-function studies of Adcy2 are scarce. In this review, we summarize recent findings on Adcy2 expression and function in neurological diseases. Specifically, we first introduce the biochemistry, structure, and function of Adcy2 briefly. Next, the expression and association of Adcy2 in human patients and rodent models of neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), psychiatric disorders (Tourette syndrome, schizophrenia, and bipolar disorder), and other neurological conditions (stress-associated disorders, stroke, epilepsy, and Lesch-Nyhan Syndrome) are elaborated. Furthermore, we discuss the pros and cons of current studies as well as key questions that need to be answered in the future. We hope to provide a focused review on Adcy2 that promotes future research in the field.


Assuntos
Adenilil Ciclases , Doenças do Sistema Nervoso , Humanos , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Animais , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/metabolismo
4.
Lancet Neurol ; 23(7): 725-739, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876750

RESUMO

Nucleotide repeat expansions in the human genome are a well-known cause of neurological disease. In the past decade, advances in DNA sequencing technologies have led to a better understanding of the role of non-coding DNA, that is, the DNA that is not transcribed into proteins. These techniques have also enabled the identification of pathogenic non-coding repeat expansions that cause neurological disorders. Mounting evidence shows that adult patients with familial or sporadic presentations of epilepsy, cognitive dysfunction, myopathy, neuropathy, ataxia, or movement disorders can be carriers of non-coding repeat expansions. The description of the clinical, epidemiological, and molecular features of these recently identified non-coding repeat expansion disorders should guide clinicians in the diagnosis and management of these patients, and help in the genetic counselling for patients and their families.


Assuntos
Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/diagnóstico , Diagnóstico Diferencial , Expansão das Repetições de DNA/genética
5.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920691

RESUMO

Neurological and neuropsychiatric disorders pose substantial challenges to public health, necessitating a comprehensive understanding of the molecular mechanisms underlying their pathogenesis. In recent years, the focus has shifted toward the intricate world of non-coding RNAs (ncRNAs), a class of RNA molecules that do not encode proteins but play pivotal roles in gene regulation and cellular processes. This review explores the emerging significance of ncRNAs in the context of neurological and neuropsychiatric disorders, shedding light on their diverse functions and regulatory mechanisms. The dysregulation of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), has been implicated in the pathophysiology of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and mood disorders. This review delves into the specific roles these ncRNAs play in modulating key cellular processes, including synaptic plasticity, neuroinflammation, and apoptosis, providing a nuanced understanding of their impact on disease progression. Furthermore, it discusses the potential diagnostic and therapeutic implications of targeting ncRNAs in neurological and neuropsychiatric disorders. The identification of specific ncRNA signatures holds promise for the development of novel biomarkers for early disease detection, while the manipulation of ncRNA expression offers innovative therapeutic avenues. Challenges and future directions in the field are also considered, highlighting the need for continued research to unravel the complexities of ncRNA-mediated regulatory networks in the context of neurological and neuropsychiatric disorders. This review aims to provide a comprehensive overview of the current state of knowledge and stimulate further exploration into the fascinating realm of ncRNAs in the brain's intricate landscape.


Assuntos
Transtornos Mentais , Doenças do Sistema Nervoso , RNA não Traduzido , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Genes (Basel) ; 15(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927589

RESUMO

PIWI-interacting RNAs (piRNAs), a class of small non-coding RNAs (sncRNAs) with 24-32 nucleotides (nt), were initially identified in the reproductive system. Unlike microRNAs (miRNAs) or small interfering RNAs (siRNAs), piRNAs normally guide P-element-induced wimpy testis protein (PIWI) families to slice extensively complementary transposon transcripts without the seed pairing. Numerous studies have shown that piRNAs are abundantly expressed in the brain, and many of them are aberrantly regulated in central neural system (CNS) disorders. However, the role of piRNAs in the related developmental and pathological processes is unclear. The elucidation of piRNAs/PIWI would greatly improve the understanding of CNS development and ultimately lead to novel strategies to treat neural diseases. In this review, we summarized the relevant structure, properties, and databases of piRNAs and their functional roles in neural development and degenerative disorders. We hope that future studies of these piRNAs will facilitate the development of RNA-based therapeutics for CNS disorders.


Assuntos
RNA Interferente Pequeno , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Neurogênese/genética
7.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928128

RESUMO

The process of identification and management of neurological disorder conditions faces challenges, prompting the investigation of novel methods in order to improve diagnostic accuracy. In this study, we conducted a systematic literature review to identify the significance of genetics- and molecular-pathway-based machine learning (ML) models in treating neurological disorder conditions. According to the study's objectives, search strategies were developed to extract the research studies using digital libraries. We followed rigorous study selection criteria. A total of 24 studies met the inclusion criteria and were included in the review. We classified the studies based on neurological disorders. The included studies highlighted multiple methodologies and exceptional results in treating neurological disorders. The study findings underscore the potential of the existing models, presenting personalized interventions based on the individual's conditions. The findings offer better-performing approaches that handle genetics and molecular data to generate effective outcomes. Moreover, we discuss the future research directions and challenges, emphasizing the demand for generalizing existing models in real-world clinical settings. This study contributes to advancing knowledge in the field of diagnosis and management of neurological disorders.


Assuntos
Aprendizado de Máquina , Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética
8.
Sci Rep ; 14(1): 14666, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918466

RESUMO

Due to its involvement in physiological and pathological processes, histone deacetylase 6 (HDAC6) is considered a promising pharmaceutical target for several neurological manifestations. However, the exact regulatory role of HDAC6 in the central nervous system (CNS) is still not fully understood. Hence, using a semi-automated literature screening technique, we systematically collected HDAC6-protein interactions that are experimentally validated and reported in the CNS. The resulting HDAC6 network encompassed 115 HDAC6-protein interactions divided over five subnetworks: (de)acetylation, phosphorylation, protein complexes, regulatory, and aggresome-autophagy subnetworks. In addition, 132 indirect interactions identified through HDAC6 inhibition were collected and categorized. Finally, to display the application of our HDAC6 network, we mapped transcriptomics data of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis on the network and highlighted that in the case of Alzheimer's disease, alterations predominantly affect the HDAC6 phosphorylation subnetwork, whereas differential expression within the deacetylation subnetwork is observed across all three neurological disorders. In conclusion, the HDAC6 network created in the present study is a novel and valuable resource for the understanding of the HDAC6 regulatory mechanisms, thereby providing a framework for the integration and interpretation of omics data from neurological disorders and pharmacodynamic assessments.


Assuntos
Desacetilase 6 de Histona , Mapas de Interação de Proteínas , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Humanos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Fosforilação , Acetilação , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia
9.
Eur J Hum Genet ; 32(8): 1014-1021, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839988

RESUMO

In the past decade, next-generation sequencing (NGS) has revolutionised genetic diagnostics for rare neurological disorders (RND). However, the lack of standardised technical, interpretative, and reporting standards poses a challenge for ensuring consistent and high-quality diagnostics globally. To address this, the European Reference Network for Rare Neurological Diseases (ERN-RND) collaborated with the European Molecular Genetics Quality Network (EMQN) to establish an external quality assessment scheme for NGS-based diagnostics in RNDs. The scheme, initiated in 2021 with a pilot involving 29 labs and followed by a second round in 2022 with 42 labs, aimed to evaluate the performance of laboratories in genetic testing for RNDs. Each participating lab analysed genetic data from three hypothetical cases, assessing genotyping, interpretation, and clerical accuracy. Despite a majority of labs using exome or genome sequencing, there was considerable variability in gene content, sequencing quality, adherence to standards, and clinical guidance provision. Results showed that while most labs provided correct molecular diagnoses, there was significant variability in reporting technical quality, adherence to interpretation standards, reporting strategies, and clinical commentary. Notably, some labs returned results with the potential for adverse medical outcomes. This underscores the need for further harmonisation, guideline development, and external quality assessment in the evolving landscape of genomic diagnostics for RNDs. Overall, the experience with the scheme highlighted the generally good quality of participating labs but emphasised the imperative for ongoing improvement in data analysis, interpretation, and reporting to enhance patient safety.


Assuntos
Testes Genéticos , Doenças do Sistema Nervoso , Doenças Raras , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/diagnóstico , Doenças Raras/genética , Doenças Raras/diagnóstico , Europa (Continente) , Testes Genéticos/normas , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas
10.
Genet Med ; 26(8): 101169, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38785164

RESUMO

PURPOSE: Pathogenic variants in kinesin family member 1A (KIF1A) are associated with KIF1A-associated neurological disorder. We report the clinical phenotypes and correlate genotypes of individuals with KIF1A-associated neurological disorder. METHODS: Medical history and adaptive function were assessed longitudinally. In-person evaluations included neurological, motor, ophthalmologic, and cognitive assessments. RESULTS: We collected online data on 177 individuals. Fifty-seven individuals were also assessed in-person. Most individuals had de novo heterozygous missense likely pathogenic/pathogenic KIF1A variants. The most common characteristics were hypotonia, spasticity, ataxia, seizures, optic nerve atrophy, cerebellar atrophy, and cognitive impairment. Mean Vineland adaptive behavior composite score (VABS-ABC) was low (M = 62.9, SD = 19.1). The mean change in VABS-ABC over time was -3.1 (SD = 7.3). The decline in VABS-ABC was associated with the age at first assessment and abnormal electroencephalogram/seizure. There was a positive correlation between evolutionary scale model (ESM) score for the variants and final VABS-ABC (P = .003). Abnormal electroencephalogram/seizure, neuroimaging result, and ESM explain 34% of the variance in final VABS-ABC (P < .001). CONCLUSION: In-person assessment confirmed caregiver report and identified additional visual deficits. Adaptive function declined over time consistent with both the neurodevelopmental and neurodegenerative nature of the condition. Using ESM score assists in predicting phenotype across a wide range of unique variants.


Assuntos
Genótipo , Cinesinas , Mutação de Sentido Incorreto , Fenótipo , Humanos , Cinesinas/genética , Masculino , Feminino , Mutação de Sentido Incorreto/genética , Criança , Adolescente , Adulto , Pré-Escolar , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/fisiopatologia , Adulto Jovem , Pessoa de Meia-Idade , Estudos Longitudinais , Lactente , Convulsões/genética , Convulsões/fisiopatologia , Eletroencefalografia
11.
Arch Dis Child ; 109(9): 730-735, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38789118

RESUMO

OBJECTIVE: To resolve unsolved whole-genome sequencing (WGS) data in individuals with paediatric neurological disorders. DESIGN: A cohort study method using updated bioinformatic tools, new analysis targets, clinical information and literature databases was employed to reanalyse existing unsolved genome data. PARTICIPANTS: From January 2016 to September 2023, a total of 615 individuals who aged under 18 years old, exhibited neurological disorders and received singleton WGS were recruited. 364 cases were unsolved during initial WGS analysis, in which 102 consented to reanalyse existing singleton WGS data. RESULTS: Median duration for reanalysis after initial negative WGS results was 2 years and 4 months. The diagnostic yield was 29 of 102 individuals (28.4%) through reanalysis. New disease gene discovery and new target acquisitions contributed to 13 of 29 solved cases (44.8%). The reasons of non-detected causative variants during initial WGS analysis were variant reclassification in 9 individuals (31%), analytical issue in 9 (31%), new emerging disease-gene association in 8 (27.6%) and clinical update in 3 (10.3%). The 29 new diagnoses increased the cumulative diagnostic yield of clinical WGS in the entire study cohort to 45.5% after reanalysis. CONCLUSIONS: Unsolved paediatric WGS individuals with neurological disorders could obtain molecular diagnoses through reanalysis within a timeframe of 2-2.5 years. New disease gene, structural variations and deep intronic splice variants make a significant contribution to diagnostic yield. This approach can provide precise genetic counselling to positive reanalysis results and end a diagnostic odyssey.


Assuntos
Doenças do Sistema Nervoso , Sequenciamento Completo do Genoma , Humanos , Criança , Doenças do Sistema Nervoso/genética , Sequenciamento Completo do Genoma/métodos , Adolescente , Masculino , Pré-Escolar , Feminino , Estudos de Coortes , Lactente , Biologia Computacional/métodos
13.
Environ Health Perspect ; 132(5): 57003, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752992

RESUMO

BACKGROUND: Genetic susceptibility to chemicals is incompletely characterized. However, nervous system disease development following pesticide exposure can vary in a population, implying some individuals may have higher genetic susceptibility to pesticide-induced nervous system disease. OBJECTIVES: We aimed to build a computational approach to characterize single-nucleotide polymorphisms (SNPs) implicated in chemically induced adverse outcomes and used this framework to assess the link between differential population susceptibility to pesticides and human nervous system disease. METHODS: We integrated publicly available datasets of Chemical-Gene, Gene-Pathway, and SNP-Disease associations to build Chemical-Pathway-Gene-SNP-Disease linkages for humans. As a case study, we integrated these linkages with spatialized pesticide application data for the US from 1992 to 2018 and spatialized nervous system disease rates for 2018. Through this, we characterized SNPs that may be important in states with high disease occurrence based on the pesticides used there. RESULTS: We found that the number of SNP hits per pesticide in US states positively correlated with disease incidence and prevalence for Alzheimer's disease, Parkinson disease, and multiple sclerosis. We performed frequent itemset mining to differentiate pesticides used over time in states with high and low disease occurrence and found that only 19% of pesticide sets overlapped between 10 states with high disease occurrence and 10 states with low disease occurrence rates, and more SNPs were implicated in pathways in high disease occurrence states. Through a cross-validation of subsets of five high and low disease occurrence states, we characterized SNPs, genes, pathways, and pesticides more frequently implicated in high disease occurrence states. DISCUSSION: Our findings support that pesticides contribute to nervous system disease, and we developed priority lists of SNPs, pesticides, and pathways for further study. This data-driven approach can be adapted to other chemicals, diseases, and locations to characterize differential population susceptibility to chemical exposures. https://doi.org/10.1289/EHP14108.


Assuntos
Praguicidas , Polimorfismo de Nucleotídeo Único , Praguicidas/toxicidade , Humanos , Estados Unidos/epidemiologia , Predisposição Genética para Doença , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/genética , Exposição Ambiental
14.
PLoS One ; 19(5): e0247212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753848

RESUMO

We investigated the functional classes of genomic regions containing SNPS contributing most to the SNP-heritability of important psychiatric and neurological disorders and behavioral traits, as determined from recent genome-wide association studies. We employed linkage-disequilibrium score regression with several brain-specific genomic annotations not previously utilized. The classes of genomic annotations conferring substantial SNP-heritability for the psychiatric disorders and behavioral traits differed systematically from the classes associated with neurological disorders, and both differed from the classes enriched for height, a biometric trait used here as a control outgroup. The SNPs implicated in these psychiatric disorders and behavioral traits were highly enriched in CTCF binding sites, in conserved regions likely to be enhancers, and in brain-specific promoters, regulatory sites likely to affect responses to experience. The SNPs relevant for neurological disorders were highly enriched in constitutive coding regions and splice regulatory sites.


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Mentais , Doenças do Sistema Nervoso , Polimorfismo de Nucleotídeo Único , Humanos , Transtornos Mentais/genética , Doenças do Sistema Nervoso/genética , Desequilíbrio de Ligação , Predisposição Genética para Doença , Regiões Promotoras Genéticas
15.
Am J Hum Genet ; 111(5): 841-862, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593811

RESUMO

RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.


Assuntos
Transdiferenciação Celular , Fibroblastos , Neurônios , Análise de Sequência de RNA , Humanos , Transdiferenciação Celular/genética , Fibroblastos/metabolismo , Fibroblastos/citologia , Análise de Sequência de RNA/métodos , Neurônios/metabolismo , Neurônios/citologia , Transcriptoma , Reprodutibilidade dos Testes , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/diagnóstico , RNA-Seq/métodos , Feminino , Masculino
16.
Signal Transduct Target Ther ; 9(1): 112, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670977

RESUMO

The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.


Assuntos
COVID-19 , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Reprogramação Celular/genética , SARS-CoV-2/genética , Diferenciação Celular/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patologia , Medicina Regenerativa , Doenças do Sistema Nervoso/terapia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia
17.
Expert Rev Mol Med ; 26: e11, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682637

RESUMO

Long non-coding RNAs (lncRNAs) are progressively being perceived as prominent molecular agents controlling multiple aspects of neuronal (patho)physiology. Amongst these is the HOX transcript antisense intergenic RNA, often abbreviated as HOTAIR. HOTAIR epigenetically regulates its target genes via its interaction with two different chromatin-modifying agents; histone methyltransferase polycomb-repressive complex 2 and histone demethylase lysine-specific demethylase 1. Parenthetically, HOTAIR elicits trans-acting sponging function against multiple micro-RNA species. Oncological research studies have confirmed the pathogenic functions of HOTAIR in multiple cancer types, such as gliomas and proposed it as a pro-oncological lncRNA. In fact, its expression has been suggested to be a predictor of the severity/grade of gliomas, and as a prognostic biomarker. Moreover, a propound influence of HOTAIR in other aspects of brain heath and disease states is just beginning to be unravelled. The objective of this review is to recapitulate all the relevant data pertaining to the regulatory roles of HOTAIR in neuronal (patho)physiology. To this end, we discuss the pathogenic mechanisms of HOTAIR in multiple neuronal diseases, such as neurodegeneration, traumatic brain injury and neuropsychiatric disorders. Finally, we also summarize the results from the studies incriminating HOTAIR in the pathogeneses of gliomas and other brain cancers. Implications of HOTAIR serving as a suitable therapeutic target in neuropathologies are also discussed.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Animais , Prognóstico , Epigênese Genética , Biomarcadores , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/terapia , Doenças do Sistema Nervoso/patologia , Glioma/genética , Glioma/patologia , Glioma/terapia , Glioma/metabolismo
18.
Biochem Pharmacol ; 224: 116218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643906

RESUMO

Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.


Assuntos
Neoplasias , RNA não Traduzido , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/terapia
20.
Rev Neurol (Paris) ; 180(5): 383-392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594146

RESUMO

Tandem repeats are a common, highly polymorphic class of variation in human genomes. Their expansion beyond a pathogenic threshold is a process that contributes to a wide range of neurological and neuromuscular genetic disorders, of which over 60 have been identified to date. The last few years have seen a resurgence in repeat expansion discovery propelled by technological advancements, enabling the identification of over 20 novel repeat expansion disorders. These expansions can occur in coding or non-coding regions of genes, resulting in a range of pathogenic mechanisms. In this article, we review strategies, tools and methods that can be used for efficient detection and characterization of known repeat expansions and identification of new expansion disorders. Features that can be used to prioritize repeat expansions include anticipation, which is characterized by increased severity or earlier onset of symptoms across generations, and founder effects, which contribute to higher prevalence rates in certain populations. Classical technologies such as Southern blotting, repeat-primed polymerase chain reaction (PCR) and long-range PCR can still be used to detect known repeat expansions, although they usually have significant limitations linked to the absence of sequence context. Targeted sequencing of known expansions using either long-range PCR or CRISPR-Cas9 enrichment combined with long-read sequencing or adaptive nanopore sampling are usually better but more expensive alternatives. The development of new bioinformatics tools applied to short-read genome data can now be used to detect repeat expansions either in a targeted manner or at the genome-wide level. In addition, technological advances, particularly long-read technologies such as optical genome mapping (Bionano Genomics), Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) HiFi sequencing, offer promising avenues for the detection of repeat expansions. Despite challenges in specific DNA extraction requirements, computation resources needed and data interpretation, these technologies have an immense potential to advance our understanding of repeat expansion disorders and improve diagnostic accuracy.


Assuntos
Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/diagnóstico , Expansão das Repetições de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...