Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 702
Filtrar
1.
Sci Rep ; 14(1): 18006, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097615

RESUMO

Choline is recognized as an essential nutrient for Atlantic salmon at all developmental stages. However, its dietary requirement is not well defined. Choline plays a critical role in lipid transport, and the clearest deficiency sign is intestinal steatosis. The present work, aiming to find whether lipid source and fish size may affect steatosis symptoms, was one of a series of studies conducted to identify which production-related conditions may influence choline requirement. Six choline-deficient diets were formulated varying in ratios of rapeseed oil to fish oil and fed to Atlantic salmon of 1.5 and 4.5 kg. After eight weeks, somatic characteristics were observed, and the severity of intestinal steatosis was assessed by histological, biochemical, and molecular analyses. Fatty acid composition in pyloric intestine, mesenteric tissue, and liver samples was also quantified. The increasing rapeseed oil level increased lipid digestibility markedly, enhancing lipid supply to the fish. Moreover, small fish consumed more feed, and consequently had a higher lipid intake. In conclusion, the results showed that choline requirement depends on dietary lipid load, which depends on the fatty acid profile as well as the fish size.


Assuntos
Ração Animal , Óleos de Peixe , Óleo de Brassica napus , Salmo salar , Animais , Óleo de Brassica napus/administração & dosagem , Salmo salar/metabolismo , Salmo salar/crescimento & desenvolvimento , Óleos de Peixe/administração & dosagem , Ração Animal/análise , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Doenças dos Peixes/patologia , Doenças dos Peixes/metabolismo , Fígado Gorduroso/veterinária , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Colina/metabolismo , Colina/administração & dosagem , Dieta/veterinária , Fígado/metabolismo , Fígado/patologia
2.
Front Immunol ; 15: 1431224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040116

RESUMO

Introduction: High-alkalinity water is a serious health hazard for fish and can cause oxidative stress and metabolic dysregulation in fish livers. However, the molecular mechanism of liver damage caused by high alkalinity in fish is unclear. Methods: In this study, 180 carp were randomly divided into a control (C) group and a high-alkalinity (A25) group and were cultured for 56 days. High-alkalinity-induced liver injury was analysed using histopathological, whole-transcriptome, and metabolomic analyses. Results: Many autophagic bodies and abundant mitochondrial membrane damage were observed in the A25 group. High alkalinity decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity and the total antioxidant capacity (T-AOC) and increased the malondialdehyde (MDA) content in liver tissues, causing oxidative stress in the liver. Transcriptome analysis revealed 61 differentially expressed microRNAs (miRNAs) and 4008 differentially expressed mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that mammalian target of rapamycin (mTOR), forkhead box O (FoxO), mitogen-activated protein kinase (MAPK), and the autophagy signalling pathway were the molecular mechanisms involved. High alkalinity causes oxidative stress and autophagy and results in autophagic damage in the liver. Bioinformatic predictions indicated that Unc-51 Like Kinase 2 (ULK2) was a potential target gene for miR-140-5p, demonstrating that high alkalinity triggered autophagy through the miR-140-5p-ULK2 axis. Metabolomic analysis revealed that the concentrations of cortisol 21-sulfate and beta-aminopropionitrile were significantly increased, while those of creatine and uracil were significantly decreased. Discussion: The effects of high alkalinity on oxidative stress and autophagy injury in the liver were analysed using whole-transcriptome miRNA-mRNA networks and metabolomics approaches. Our study provides new insights into liver injury caused by highly alkaline water.


Assuntos
Autofagia , Fígado , Metaboloma , Estresse Oxidativo , Transcriptoma , Animais , Fígado/metabolismo , Fígado/patologia , Perfilação da Expressão Gênica , Álcalis/toxicidade , Álcalis/efeitos adversos , MicroRNAs/genética , Metabolômica , Doenças dos Peixes/metabolismo
3.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063205

RESUMO

Hsp40-Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein-protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40-Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot.


Assuntos
Doenças dos Peixes , Linguados , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70 , Filogenia , Animais , Linguados/imunologia , Linguados/genética , Linguados/microbiologia , Linguados/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/genética , Simulação de Acoplamento Molecular , Aeromonas salmonicida/imunologia , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
4.
Front Immunol ; 15: 1419321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081319

RESUMO

Similar to other RNA viruses, grass carp reovirus, the causative agent of the hemorrhagic disease, replicates in cytoplasmic viral inclusion bodies (VIBs), orchestrated by host proteins and lipids. The host pathways that facilitate the formation and function of GCRV VIBs are poorly understood. This work demonstrates that GCRV manipulates grass carp oxysterol binding protein 1 (named as gcOSBP1) and vesicle-associated membrane protein-associated protein A/B (named as gcVAP-A/B), 3 components of cholesterol transport pathway, to generate VIBs. By siRNA-mediated knockdown, we demonstrate that gcOSBP1 is an essential host factor for GCRV replication. We reveal that the nonstructural proteins NS80 and NS38 of GCRV interact with gcOSBP1, and that the gcOSBP1 is recruited by NS38 and NS80 for promoting the generation of VIBs. gcOSBP1 increases the expression of gcVAP-A/B and promotes the accumulation of intracellular cholesterol. gcOSBP1 also interacts with gcVAP-A/B for forming gcOSBP1-gcVAP-A/B complexes, which contribute to enhance the accumulation of intracellular cholesterol and gcOSBP1-mediated generation of VIBs. Inhibiting cholesterol accumulation by lovastatin can completely abolish the effects of gcOSBP1 and/or gcVAP-A/B in promoting GCRV infection, suggesting that cholesterol accumulation is vital for gcOSBP1- and/or gcVAP-A/B-mediated GCRV replication. Thus, our results, which highlight that gcOSBP1 functions in the replication of GCRV via its interaction with essential viral proteins for forming VIBs and with host gcVAP-A/B, provide key molecular targets for obtaining anti-hemorrhagic disease grass carp via gene editing technology.


Assuntos
Carpas , Colesterol , Corpos de Inclusão Viral , Receptores de Esteroides , Reoviridae , Replicação Viral , Animais , Reoviridae/fisiologia , Carpas/virologia , Carpas/metabolismo , Corpos de Inclusão Viral/metabolismo , Colesterol/metabolismo , Receptores de Esteroides/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/imunologia , Interações Hospedeiro-Patógeno , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética
5.
Mar Biotechnol (NY) ; 26(4): 790-809, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39042324

RESUMO

Aeromonas veronii is one of the predominant pathogenic species that can imperil the survival of farmed fish. However, the interactive networks of immune regulation and metabolic response in A. veronii-infected fish are still unclear. In this investigation, we aimed to explore immunometabolic interplay in white crucian carp (WCC) after the A. veronii challenge. Elevated levels of immune-related genes were observed in various tissues after A. veronii infection, along with the sharp alteration of disease-related enzymatic activities. Besides, decreased levels of antioxidant status were observed in the liver, but most metabolic gene expressions increased dramatically. Multiomics analyses revealed that metabolic products of amino acids, such as formiminoglutamic acid (FIGLU), L-glutamate (L-Glu), and 4-hydroxyhippuric acid, were considered the crucial liver biomarkers in A. veronii-infected WCC. In addition, A. veronii infection may dysregulate endoplasmic reticulum (ER) function to affect the metabolic process of lipids, carbohydrates, and amino acids in the liver of WCC. These results may have a comprehensive implication for understanding immunometabolic response in WCC upon A. veronii infection.


Assuntos
Aeromonas veronii , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Fígado , Animais , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Carpas/microbiologia , Carpas/imunologia , Carpas/metabolismo , Carpas/genética , Fígado/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/metabolismo , Aminoácidos/metabolismo , Transcriptoma , Multiômica
6.
J Virol ; 98(7): e0020224, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38842318

RESUMO

Nucleoprotein (N) is well known for its function in the encapsidation of the genomic RNAs of negative-strand RNA viruses, which leads to the formation of ribonucleoproteins that serve as templates for viral transcription and replication. However, the function of the N protein in other aspects during viral infection is far from clear. In this study, the N protein of snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was proved to be ubiquitinated mainly via K63-linked ubiquitination. We identified nine host E3 ubiquitin ligases that interacted with SHVV N, among which seven E3 ubiquitin ligases facilitated ubiquitination of the N protein. Further investigation revealed that only two E3 ubiquitin ligases, Siah E3 ubiquitin protein ligase 2 (Siah2) and leucine-rich repeat and sterile alpha motif containing 1 (LRSAM1), mediated K63-linked ubiquitination of the N protein. SHVV infection upregulated the expression of Siah2 and LRSAM1, which maintained the stability of SHVV N. Besides, overexpression of Siah2 or LRSAM1 promoted SHVV replication, while knockdown of Siah2 or LRSAM1 inhibited SHVV replication. Deletion of the ligase domain of Siah2 or LRSAM1 did not affect their interactions with SHVV N but reduced the K63-linked ubiquitination of SHVV N and SHVV replication. In summary, Siah2 and LRSAM1 mediate K63-linked ubiquitination of SHVV N to facilitate SHVV replication, which provides novel insights into the role of the N proteins of negative-strand RNA viruses. IMPORTANCE: Ubiquitination of viral protein plays an important role in viral replication. However, the ubiquitination of the nucleoprotein (N) of negative-strand RNA viruses has rarely been investigated. This study aimed at investigating the ubiquitination of the N protein of a fish rhabdovirus SHVV (snakehead vesiculovirus), identifying the related host E3 ubiquitin ligases, and determining the role of SHVV N ubiquitination and host E3 ubiquitin ligases in viral replication. We found that SHVV N was ubiquitinated mainly via K63-linked ubiquitination, which was mediated by host E3 ubiquitin ligases Siah2 (Siah E3 ubiquitin protein ligase 2) and LRSAM1 (leucine-rich repeat and sterile alpha motif containing 1). The data suggested that Siah2 and LRSAM1 were hijacked by SHVV to ubiquitinate the N protein for viral replication, which exhibited novel anti-SHVV targets for drug design.


Assuntos
Nucleoproteínas , Ubiquitina-Proteína Ligases , Ubiquitinação , Vesiculovirus , Replicação Viral , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Vesiculovirus/fisiologia , Vesiculovirus/metabolismo , Vesiculovirus/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células HEK293 , Proteínas Virais/metabolismo , Proteínas Virais/genética , Linhagem Celular , Infecções por Rhabdoviridae/virologia , Infecções por Rhabdoviridae/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo
7.
J Virol ; 98(7): e0069724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38916400

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is an important pathogen of largemouth bass. Despite extensive research, the functional receptors of MSRV remained unknown. This study identified the host protein, laminin receptor (LamR), as a cellular receptor facilitating MSRV entry into host cells. Our results demonstrated that LamR directly interacts with MSRV G protein, playing a pivotal role in the attachment and internalization processes of MSRV. Knockdown of LamR with siRNA, blocking cells with LamR antibody, or incubating MSRV virions with soluble LamR protein significantly reduced MSRV entry. Notably, we found that LamR mediated MSRV entry via clathrin-mediated endocytosis. Additionally, our findings revealed that MSRV G and LamR were internalized into cells and co-localized in the early and late endosomes. These findings highlight the significance of LamR as a cellular receptor facilitating MSRV binding and entry into target cells through interaction with the MSRV G protein. IMPORTANCE: Despite the serious epidemic caused by Micropterus salmoides rhabdovirus (MSRV) in largemouth bass, the precise mechanism by which it invades host cells remains unclear. Here, we determined that laminin receptor (LamR) is a novel target of MSRV, that interacts with its G protein and is involved in viral attachment and internalization, transporting with MSRV together in early and late endosomes. This is the first report demonstrating that LamR is a cellular receptor in the MSRV life cycle, thus contributing new insights into host-pathogen interactions.


Assuntos
Doenças dos Peixes , Receptores de Laminina , Rhabdoviridae , Internalização do Vírus , Animais , Receptores de Laminina/metabolismo , Rhabdoviridae/metabolismo , Rhabdoviridae/fisiologia , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Bass/virologia , Bass/metabolismo , Receptores Virais/metabolismo , Infecções por Rhabdoviridae/virologia , Infecções por Rhabdoviridae/metabolismo , Endocitose
8.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732232

RESUMO

C-type lectins in organisms play an important role in the process of innate immunity. In this study, a C-type lectin belonging to the DC-SIGN class of Micropterus salmoides was identified. MsDC-SIGN is classified as a type II transmembrane protein. The extracellular segment of MsDC-SIGN possesses a coiled-coil region and a carbohydrate recognition domain (CRD). The key amino acid motifs of the extracellular CRD of MsDC-SIGN in Ca2+-binding site 2 were EPN (Glu-Pro-Asn) and WYD (Trp-Tyr-Asp). MsDC-SIGN-CRD can bind to four pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), glucan, peptidoglycan (PGN), and mannan. Moreover, it can also bind to Gram-positive, Gram-negative bacteria, and fungi. Its CRD can agglutinate microbes and displays D-mannose and D-galactose binding specificity. MsDC-SIGN was distributed in seven tissues of the largemouth bass, among which the highest expression was observed in the liver, followed by the spleen and intestine. Additionally, MsDC-SIGN was present on the membrane of M. salmoides leukocytes, thereby augmenting the phagocytic activity against bacteria. In a subsequent investigation, the expression patterns of the MsDC-SIGN gene and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) exhibited an up-regulated expression response to the stimulation of Aeromonas hydrophila. Furthermore, through RNA interference of MsDC-SIGN, the expression level of the DC-SIGN signaling pathway-related gene (RAF1) and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) was decreased. Therefore, MsDC-SIGN plays a pivotal role in the immune defense against A. hydrophila by modulating the TLR signaling pathway.


Assuntos
Aeromonas hydrophila , Bass , Moléculas de Adesão Celular , Doenças dos Peixes , Transdução de Sinais , Animais , Aeromonas hydrophila/imunologia , Bass/imunologia , Bass/metabolismo , Bass/microbiologia , Bass/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Imunidade Inata , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética
9.
J Virol ; 98(6): e0015824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38695539

RESUMO

Tripartite motif (TRIM) proteins are involved in different cellular functions, including regulating virus infection. In teleosts, two orthologous genes of mammalian TRIM2 are identified. However, the functions and molecular mechanisms of piscine TRIM2 remain unclear. Here, we show that trim2b-knockout zebrafish are more susceptible to spring viremia of carp virus (SVCV) infection than wild-type zebrafish. Transcriptomic analysis demonstrates that NOD-like receptor (NLR), but not RIG-I-like receptor (RLR), signaling pathway is significantly enriched in the trim2b-knockout zebrafish. In vitro, overexpression of Trim2b fails to degrade RLRs and those key proteins involved in the RLR signaling pathway but does for negative regulators NLRP12-like proteins. Zebrafish Trim2b degrades NLRP12-like proteins through its NHL_TRIM2_like and IG_FLMN domains in a ubiquitin-proteasome degradation pathway. SVCV-N and SVCV-G proteins are also degraded by NHL_TRIM2_like domains, and the degradation pathway is an autophagy lysosomal pathway. Moreover, zebrafish Trim2b can interfere with the binding between NLRP12-like protein and SVCV viral RNA and can completely block the negative regulation of NLRP12-like protein on SVCV infection. Taken together, our data demonstrate that the mechanism of action of zebrafish trim2b against SVCV infection is through targeting the degradation of host-negative regulators NLRP12-like receptors and viral SVCV-N/SVCV-G genes.IMPORTANCESpring viremia of carp virus (SVCV) is a lethal freshwater pathogen that causes high mortality in cyprinid fish. In the present study, we identified zebrafish trim2b, NLRP12-L1, and NLRP12-L2 as potential pattern recognition receptors (PRRs) for sensing and binding viral RNA. Zebrafish trim2b functions as a positive regulator; however, NLRP12-L1 and NLRP12-L2 function as negative regulators during SVCV infection. Furthermore, we find that zebrafish trim2b decreases host lethality in two manners. First, zebrafish Trim2b promotes protein degradations of negative regulators NLRP12-L1 and NLRP12-L2 by enhancing K48-linked ubiquitination and decreasing K63-linked ubiquitination. Second, zebrafish trim2b targets viral RNAs for degradation. Therefore, this study reveals a special antiviral mechanism in lower vertebrates.


Assuntos
Carpas , Proteólise , Receptores de Reconhecimento de Padrão , Rhabdoviridae , Proteínas com Motivo Tripartido , Proteínas Virais , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Carpas/virologia , Proteína DEAD-box 58/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Imunidade Inata , Receptores de Reconhecimento de Padrão/metabolismo , Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Transdução de Sinais , Proteínas com Motivo Tripartido/deficiência , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitinação , Proteínas Virais/metabolismo , Viremia/veterinária , Viremia/virologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/virologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Mar Biotechnol (NY) ; 26(3): 526-538, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647909

RESUMO

High-temperature stress poses a significant environmental challenge for aquatic organisms, including tsinling lenok trout (Brachymystax lenok tsinlingensis). This study aimed to investigate the role of microRNAs (miRNAs) in inducing liver inflammation in tsinling lenok trout under high-temperature stress. Tsinling lenok trout were exposed to high-temperature conditions (24 °C) for 8 h, and liver samples were collected for analysis. Through small RNA sequencing, we identified differentially expressed miRNAs in the liver of high-temperature-stressed tsinling lenok trout compared to the control group (maintained at 16 °C). Several miRNAs, including novel-m0105-5p and miR-8159-x, showed significant changes in expression levels. Additionally, we conducted bioinformatics analysis to explore the potential target genes of these differentially expressed miRNAs. Our findings revealed that these miRNA target genes are involved in inflammatory response pathways, such as NFKB1 and MAP3K5. The downregulation of novel-m0105-5p and miR-8159-x in the liver of high-temperature-stressed tsinling lenok trout suggests their role in regulating liver inflammatory responses. To validate this, we performed a dual-luciferase reporter assay to confirm the regulatory relationship between miRNAs and target genes. Our results demonstrated that novel-m0105-5p and miR-8159-x enhance the inflammatory response of hepatocytes by promoting the expression of NFKB1 and MAP3K5, respectively. In conclusion, our study provides evidence that high-temperature stress induces liver inflammation in tsinling lenok trout through dysregulation of miRNAs. Understanding the molecular mechanisms underlying the inflammatory response in tsinling lenok trout under high-temperature stress is crucial for developing strategies to mitigate the negative impacts of environmental stressors on fish health and aquaculture production.


Assuntos
Fígado , MicroRNAs , Truta , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado/metabolismo , Truta/genética , Temperatura Alta , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Inflamação/genética , Inflamação/metabolismo , Regulação da Expressão Gênica , Estresse Fisiológico
11.
Zool Res ; 45(3): 520-534, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38682434

RESUMO

Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate; however, the molecular mechanisms underpinning its pathogenesis are not well elucidated. Here, a multi-omics approach was applied to groupers infected with Singapore grouper iridovirus (SGIV), focusing on the roles of key metabolites. Results showed that SGIV induced obvious histopathological damage and changes in metabolic enzymes within the liver. Furthermore, SGIV significantly reduced the contents of lipid droplets, triglycerides, cholesterol, and lipoproteins. Metabolomic analysis indicated that the altered metabolites were enriched in 19 pathways, with a notable down-regulation of lipid metabolites such as glycerophosphates and alpha-linolenic acid (ALA), consistent with disturbed lipid homeostasis in the liver. Integration of transcriptomic and metabolomic data revealed that the top enriched pathways were related to cell growth and death and nucleotide, carbohydrate, amino acid, and lipid metabolism, supporting the conclusion that SGIV infection induced liver metabolic reprogramming. Further integrative transcriptomic and proteomic analysis indicated that SGIV infection activated crucial molecular events in a phagosome-immune depression-metabolism dysregulation-necrosis signaling cascade. Of note, integrative multi-omics analysis demonstrated the consumption of ALA and linoleic acid (LA) metabolites, and the accumulation of L-glutamic acid (GA), accompanied by alterations in immune, inflammation, and cell death-related genes. Further experimental data showed that ALA, but not GA, suppressed SGIV replication by activating antioxidant and anti-inflammatory responses in the host. Collectively, these findings provide a comprehensive resource for understanding host response dynamics during fish iridovirus infection and highlight the antiviral potential of ALA in the prevention and treatment of iridoviral diseases.


Assuntos
Doenças dos Peixes , Iridovirus , Fígado , Ácido alfa-Linolênico , Animais , Ácido alfa-Linolênico/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Fígado/metabolismo , Fígado/virologia , Iridovirus/fisiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Metabolômica , Antivirais/farmacologia , Transcriptoma , Reprogramação Metabólica , Multiômica
12.
Artigo em Inglês | MEDLINE | ID: mdl-38430708

RESUMO

Edwardsiella tarda (Et) is a zoonotic gram-negative pathogen with a diverse host range, including fish. However, the in-depth molecular mechanisms underlying the response of Labeo rohita (rohu) kidney to Et are poorly understood. A proteomic and histopathological analysis was performed for the rohu kidney after Et infection. The histopathology of the infected rohu kidney showed vacuolation and necrosis. After LC-MS/MS analysis, ~1240 proteins were identified with ≥2 unique peptides. A total of 96 differentially abundant proteins (DAPs) were observed between the control and Et infected group (ET). Metascape and STRING analysis were used for the gene ontology (GO), and protein-protein interaction network (PPI) for the significant pathways of DAPs. In PPI, low-abundant proteins were mapped to metabolic pathways and oxidative phosphorylation (cox5ab, uqcrfs1). High-abundance proteins were mapped to ribosomes (rplp2), protein process in the ER (hspa8), and immune system (ptgdsb.1, muc2). Our label-free proteomic approach in the rohu kidney revealed abundant enriched proteins involved in vesicle coat (ehd4), complement activation (c3a.1, c9, c7a), phagosome (thbs4, mapk1), metabolic reprogramming (hao1, glud1a), wound healing (vim, alox5), and the immune system (psap) after Et infection. A targeted proteomics approach of multiple reaction monitoring (MRM) validated the DAPs (nprl3, ambp, vmo1a, hspg2, muc2, hao1 and glud1a) between control and ET. Overall, the current analysis of histology and proteome in the rohu kidney provides comprehensive data on pathogenicity and the potential immune proteins against Et.


Assuntos
Edwardsiella tarda , Infecções por Enterobacteriaceae , Doenças dos Peixes , Proteínas de Peixes , Rim , Proteômica , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Rim/microbiologia , Rim/metabolismo , Proteínas de Peixes/metabolismo , Cyprinidae/metabolismo , Cyprinidae/microbiologia , Proteoma/análise , Mapas de Interação de Proteínas , Espectrometria de Massas em Tandem
13.
Mar Biotechnol (NY) ; 26(2): 261-275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353762

RESUMO

The role of hepcidins, antimicrobial peptides involved in iron metabolism, immunity, and inflammation, is studied. First, gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs) were incubated with λ-carrageenin to study the expression of hepcidin and iron metabolism-related genes. While the expression of most of the genes studied was upregulated, the expression of ferroportin gene (slc40a) was downregulated. In the second part of the study, seabream specimens were injected intramuscularly with λ-carrageenin or buffer (control). The expression of the same genes was evaluated in the head kidney, liver, and skin at different time points after injection. The expression of Hamp1m, ferritin b, and ferroportin genes (hamp1, fthb, and slc40a) was upregulated in the head kidney of fish from the λ-carrageenin-injected group, while the expression of Hamp2C and Hamp2E genes (hamp2.3 and hamp2.7) was downregulated. In the liver, the expression of hamp1, ferritin a (ftha), slc40a, Hamp2J, and Hamp2D (hamp2.5/6) genes was downregulated in the λ-carrageenin-injected group. In the skin, the expression of hamp1 and (Hamp2A Hamp2C) hamp2.1/3/4 genes was upregulated in the λ-carrageenin-injected group. A bioinformatic analysis was performed to predict the presence of transcription factor binding sites in the promoter region of hepcidins. The primary sequence of hepcidin was conserved among the different mature peptides, although changes in specific amino acid residues were identified. These changes affected the charge, hydrophobicity, and probability of hepcidins being antimicrobial peptides. This study sheds light on the poorly understood roles of hepcidins in fish. The results provide insight into the regulatory mechanisms of inflammation in fish and could contribute to the development of new strategies for treat inflammation in farm animals.


Assuntos
Proteínas de Peixes , Hepcidinas , Inflamação , Dourada , Animais , Dourada/genética , Dourada/metabolismo , Dourada/imunologia , Hepcidinas/genética , Hepcidinas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Inflamação/genética , Inflamação/metabolismo , Fígado/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Rim Cefálico/metabolismo , Ferro/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/efeitos dos fármacos , Pele/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Regiões Promotoras Genéticas
14.
J Virol ; 98(3): e0146923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38345385

RESUMO

Grass carp reovirus (GCRV), particularly the highly prevalent type II GCRV (GCRV-II), causes huge losses in the aquaculture industry. However, little is known about the mechanisms by which GCRV-II invades grass carp and further disseminates among tissues. In the present study, monocytes/macrophages (Mo/Mφs) were isolated from the peripheral blood of grass carp and infected with GCRV-II. The results of indirect immunofluorescent microscopy, transmission electron microscopy, real-time quantitative RT-PCR (qRT-PCR), western blot (WB), and flow cytometry analysis collectively demonstrated that GCRV-II invaded Mo/Mφs and replicated in them. Additionally, we observed that GCRV-II induced different types (M1 and M2) of polarization of Mo/Mφs in multiple tissues, especially in the brain, head kidney, and intestine. To assess the impact of different types of polarization on GCRV-II replication, we recombinantly expressed and purified the intact cytokines CiIFN-γ2, CiIL-4/13A, and CiIL-4/13B and successfully induced M1 and M2 type polarization of macrophages using these cytokines through in vitro experiments. qRT-PCR, WB, and flow cytometry analyses showed that M2 macrophages had higher susceptibility to GCRV-II infection than other types of Mo/Mφs. In addition, we found GCRV-II induced apoptosis of Mo/Mφs to facilitate virus replication and dissemination and also detected the presence of GCRV-II virus in plasma. Collectively, our findings indicated that GCRV-II could invade immune cells Mo/Mφs and induce apoptosis and polarization of Mo/Mφs for efficient infection and dissemination, emphasizing the crucial role of Mo/Mφs as a vector for GCRV-II infection.IMPORTANCEType II grass carp reovirus (GCRV) is a prevalent viral strain and causes huge losses in aquaculture. However, the related dissemination pathway and mechanism remain largely unclear. Here, our study focused on phagocytic immune cells, monocytes/macrophages (Mo/Mφs) in blood and tissues, and explored whether GCRV-II can invade Mo/Mφs and replicate and disseminate via Mo/Mφs with their differentiated type M1 and M2 macrophages. Our findings demonstrated that GCRV-II infected Mo/Mφs and replicated in them. Furthermore, GCRV-II infection induces an increased number of M1 and M2 macrophages in grass carp tissues and a higher viral load in M2 macrophages. Furthermore, GCRV-II induced Mo/Mφs apoptosis to release viruses, eventually infecting more cells. Our study identified Mo/Mφs as crucial components in the pathway of GCRV-II dissemination and provides a solid foundation for the development of treatment strategies for GCRV-II infection.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Animais , Apoptose , Citocinas , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Monócitos/metabolismo , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/patologia , Infecções por Reoviridae/veterinária , Replicação Viral
15.
Int J Biol Macromol ; 256(Pt 1): 128336, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013078

RESUMO

Iridoviruses are large DNA viruses that infect a wide range of invertebrates and lower vertebrates, causing serious threats to ecological security and aquaculture industry worldwide. However, the mechanisms underlying intracellular transport of iridovirus remain unknown. In this study, the transport of Singapore grouper iridovirus (SGIV) in early endosomes (EEs) and late endosomes (LEs) was explored by single-particle tracking technology. SGIV employs EEs to move rapidly from the cell membrane to the nucleus, and this long-range transport is divided into "slow-fast-slow" stages. SGIV within LEs mainly underwent oscillatory movements near the nucleus. Furthermore, SGIV entered newly formed EEs and LEs, respectively, possibly based on the interaction between the viral major capsid protein and Rab5/Rab7. Importantly, interruption of EEs and LEs by the dominant negative mutants of Rab5 and Rab7 significantly inhibited the movement of SGIV, suggesting the important roles of Rab5 and Rab7 in virus transport. In addition, it seems that SGIV needs to enter clathrin-coated vesicles to move from actin to microtubules before EEs carry the virus moving along microtubules. Together, our results for the first time provide a model whereby iridovirus transport depending on EEs and LEs, helping to clarify the mechanism underlying iridovirus infection, and provide a convenient tactic to investigate the dynamic infection of large DNA virus.


Assuntos
Bass , Doenças dos Peixes , Iridovirus , Animais , Iridovirus/genética , Singapura , Endossomos/metabolismo , Membrana Celular , Doenças dos Peixes/metabolismo
16.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 163-173, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37609860

RESUMO

Edwardsiella tarda is one of the most common causes of fish diseases that hinder aquaculture. Oxidative stress in farm animals can induce a number of pathological disorders, production and general animal welfare. The use of exogenous dietary nonenzymatic antioxidants such as alpha-lipoic acid (ALA) can stop a pro-oxidant state and thus appears to have the potential to modulate the immune system and protect fish from bacterial infection. Thus, this study investigates the stimulatory effect of dietary ALA on growth performance, antioxidant capacity, liver enzymes, immunity and protection of African catfish, Clarias gariepinus (B.), against an infection with E. tarda. Five isonitrogenous and isocaloric diets (400 g/kg of crude protein) containing ALA at doses of 0.0 (control), 500, 1000, 1500 or 2000 mg/kg diet were served to 300 juveniles of African catfish (mean weight = 8.2 ± 0.2 g) adequately thrice per day for 12 weeks. Thereafter, 0.1 mL of E. tarda (ATCC 15947; 1.0 × 108 CFU/mL) was intraperitoneally injected into 10 fish from each tank and was monitored for 14 days. The results showed that ALA-fortified diets significantly boosted the fish growth, feed consumption and utilization and feed conversion ratio but no did not affect fish survival rate. The highest final fish weight (g), weight growth (g) and weight gain (%) were all considerably higher in fish fed with ALA-fortified diets (p < 0.05), especially from 1000 to 200 mg/kg ALA than the control group. Also, an enhanced hemato-biochemical, antioxidant and immune indices were noticed in African catfish-fed ALA-enriched diets. In a dose-dependent order, the levels of haematological indices such Ht, Hb, RBCs, WBCs and platelets were markedly increased (p < 0.05). Additionally, fish fed with ALA-based diets showed substantial (p < 0.05) declines in aspartate and alanine aminotransferase values, with the lowest values being found in the 2000 mg/kg diet while control group had highest values. Further, African catfish fed the feed fortified with 2000 mg ALA/kg diet showed the highest levels of lysozyme, respiratory burst, proteases and esterase activities (p < 0.05). Following exposure of fish to E. tarda infection, a significant reduction in the mortality was obtained in African catfish fed with ALA-based diets, especially from 1500 to 2000 mg ALA/kg diet (3.3%); while fish fed with the control diet had highest mortality (86.7%). Therefore, diets supplemented with ALA evoked fish growth performance, antioxidants and nonspecific immunity of African catfish. Also, resistance of African catfish to E. Tarda infection were raised when fed ALA-fortified diets at optimum inclusion rate of 1300 mg ALA/kg diet.


Assuntos
Peixes-Gato , Doenças dos Peixes , Ácido Tióctico , Animais , Antioxidantes/metabolismo , Ácido Tióctico/farmacologia , Edwardsiella tarda/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Fígado/metabolismo , Ração Animal/análise , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/metabolismo
17.
J Virol ; 98(1): e0117623, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38054609

RESUMO

The ubiquitin-proteasome system is one of the most important protein stability regulation systems. It can precisely regulate host immune responses by targeting signaling proteins. TRAF6 is a crucial E3 ubiquitin ligase in host antiviral signaling pathway. Here, we discovered that EF-hand domain-containing protein D2 (EFHD2) collaborated with the E3 ubiquitin ligase Smurf1 to potentiate the degradation of TRAF6, hence facilitating RNA virus Siniperca chuatsi rhabdovirus infection. The mechanism analysis revealed that EFHD2 interacted with Smurf1 and enhanced its protein stability by impairing K48-linked polyubiquitination of Smurf1, thereby promoting Smurf1-catalyzed degradation of TRAF6. This study initially demonstrated a novel mechanism by which viruses utilize host EFHD2 to achieve immune escape and provided a new perspective on the exploration of mammalian innate immunity.IMPORTANCEViruses induce host cells to activate several antiviral signaling pathways. TNF receptor-associated factor 6 (TRAF6) plays an essential role in these pathways. Numerous studies have been done on the mechanisms of TRAF6-mediated resistance to viral invasion. However, little is known about the strategies that viruses employ to antagonize TRAF6-mediated antiviral signaling pathway. Here, we discovered that EFHD2 functions as a host factor to promote viral replication. Mechanistically, EFHD2 potentiates Smurf1 to catalyze the ubiquitin-proteasomal degradation of TRAF6 by promoting the deubiquitination and stability of Smurf1, which in turn inhibits the production of proinflammatory cytokines and interferons. Our study also provides a new perspective on mammalian resistance to viral invasion.


Assuntos
Proteínas de Ligação ao Cálcio , Doenças dos Peixes , Rhabdoviridae , Fator 6 Associado a Receptor de TNF , Ubiquitina-Proteína Ligases , Viroses , Animais , Antivirais , Mamíferos , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Viroses/metabolismo , Viroses/virologia , Rhabdoviridae/metabolismo , Peixes , Doenças dos Peixes/metabolismo , Doenças dos Peixes/virologia , Proteínas de Ligação ao Cálcio/metabolismo
18.
J Virol ; 97(11): e0088623, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37843373

RESUMO

IMPORTANCE: The expression of circVPS13D was upregulated with SCRV invasion, which proved that circVPS13D was involved in the regulation of the antiviral immune response. Our study revealed that the existence of circVPS13D promoted the replication of SCRV. Functionally, circVPS13D negatively regulates the antiviral responses of fish. Mechanistically, we confirmed that circVPS13D inhibited RLRs antiviral signaling pathway via the encoded protein VPS13D-170aa by targeting MAVS. Our study provided novel insights into the roles of protein-coding circRNAs and supported VPS13D-170aa as a negative regulator in the antiviral immune responses of teleost fish.


Assuntos
Proteínas de Peixes , RNA Circular , Proteínas de Transporte Vesicular , Viroses , Animais , Proteínas de Peixes/genética , Peixes/imunologia , Peixes/virologia , Imunidade Inata , RNA Circular/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/genética , Viroses/imunologia , Viroses/metabolismo , Viroses/veterinária , Viroses/virologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/virologia
19.
J Virol ; 97(11): e0122623, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37861337

RESUMO

IMPORTANCE: Although a virus can regulate many cellular responses to facilitate its replication by interacting with host proteins, the host can also restrict virus infection through these interactions. In the present study, we showed that the host eukaryotic translation elongation factor 1 alpha (eEF1A), an essential protein in the translation machinery, interacted with two proteins of a fish rhabdovirus, Siniperca chuatsi rhabdovirus (SCRV), and inhibited virus infection via two different mechanisms: (i) inhibiting the formation of crucial viral protein complexes required for virus transcription and replication and (ii) promoting the ubiquitin-proteasome degradation of viral protein. We also revealed the functional regions of eEF1A that are involved in the two processes. Such a host protein inhibiting a rhabdovirus infection in two ways is rarely reported. These findings provided new information for the interactions between host and fish rhabdovirus.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Fator 1 de Elongação de Peptídeos , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Peixes , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/veterinária , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas de Peixes/metabolismo , Doenças dos Peixes/metabolismo
20.
Int J Biol Macromol ; 247: 125734, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37423436

RESUMO

Molecular dissection of disease resistance against Vibrio harveyi infection in yellow drum at the genome-wide level uncovered a C-type lectin-like receptor cluster of differentiation CD302 (named as YdCD302) in our previous study. Here, the gene expression pattern of YdCD302 and its function in mediating the defense response to V. harveyi attack were investigated. Gene expression analysis demonstrated that YdCD302 was ubiquitously distributed in various tissues with the highest transcript abundance in liver. The YdCD302 protein exhibited agglutination and antibacterial activity against V. harveyi cells. Binding assay indicated that YdCD302 can physically interact with V. harveyi cells in a Ca2+-independent manner, and the interaction can activate reactive oxygen species (ROS) production in the bacterial cells to induce RecA/LexA-mediated cell death. After infection with V. harveyi, the expression of YdCD302 can be up-regulated significantly in the main immune organs of yellow drum and potentially further trigger the cytokines involved innate immunity. These findings provide insight into the genetic basis of the disease resistance trait in yellow drum and shed light on the functioning of the CD302 C-type lectin-like receptor in host-pathogen interactions. The molecular and functional characterization of YdCD302 is a significant step towards a better understanding of disease resistance mechanisms and the development of new strategies for disease control.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Lectinas Tipo C , Perciformes , Vibrioses , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Animais , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/metabolismo , Vibrioses/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Clonagem Molecular , Sequência de Aminoácidos , Sequência de Bases , Interações Hospedeiro-Patógeno , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...