Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 367, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363355

RESUMO

BACKGROUND: Gene therapy is currently in development for several monogenetic diseases including lysosomal storage disorders. Limited evidence is available on patient preferences for gene therapy in this population. In this study, we compare gene therapy-related risk tolerance between people affected by three lysosomal storage diseases currently faced with different therapeutic options and prognoses. METHODS: A survey including the probabilistic threshold technique was developed in which respondents were asked to choose between gene therapy and the current standard of care. The attributes included to establish participants' risk tolerance were previously identified in focus groups of affected people or their representatives, namely: risk of mild side effects, severe side effects, the need for additional medication, and the likelihood of long-term effectiveness. The survey was distributed among people receiving outpatient care for type 1 Gaucher disease (good prognosis with current treatment options), Fabry disease (varying prognosis with current treatment options, XY-genotype on average more severely affected than XX), and parents representing people with severe forms of mucopolysaccharidosis type III A/B (poor prognosis, no disease-specific therapy available). RESULTS: A total of 85 surveys were completed (15 Gaucher disease respondents, 62 Fabry disease respondents (17 self-identifying male), eight parents of ten people with mucopolysaccharidosis type III). Disease groups with higher disease severity trended towards higher risk tolerance: Gaucher disease respondents were most cautious and predominantly preferred the current standard of care as opposed to MPS III representatives who were more risk tolerant. Respondents with Fabry disease were most heterogeneous in their risk tolerance, with male participants being more risk tolerant than female participants. Long-term effectiveness was the attribute in which respondents tolerated the least risk. CONCLUSIONS: People affected by a lysosomal storage disease associated with a poorer prognosis and less effective current treatment options trended towards more risk tolerance when choosing between gene therapy and the current standard of care. This study shows the importance of involvement of patient preferences before and during the development process of new treatment modalities such as gene therapy for rare diseases, to ensure that innovative therapies align with the wishes and needs of people affected by these diseases.


Assuntos
Terapia Genética , Doenças por Armazenamento dos Lisossomos , Preferência do Paciente , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Masculino , Feminino , Doença de Gaucher/genética , Doença de Gaucher/terapia , Doença de Fabry/genética , Doença de Fabry/terapia , Adulto , Inquéritos e Questionários
2.
Handb Clin Neurol ; 204: 147-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39322377

RESUMO

Lysosomal storage disorders (LSDs) are a group of inherited metabolic diseases caused by dysfunction of the lysosomal system, with subsequent progressive accumulation of macromolecules, activation of inflammatory response, and cell death. Neurologic damage is almost always present, and it is usually degenerative. White matter (WM) involvement may be primary or secondary. Diseases with primary WM involvement are leukodystrophies, demyelinating (Krabbe disease and metachromatic leukodystrophy), and hypomyelinating leukodystrophies (free sialic acid storage disease, fucosidosis, and mucolipidosis type IV). LSDs with secondary WM involvement are classified as leukoencephalopathies and include gangliosidosis, mucopolysaccharidosis (MPS), ceroid neuronal lipofuscinosis, multiple sulfatase deficiency, alpha-mannosidosis, Pompe disease, and Fabry disease. Neurologic manifestations may overlap among LSDs and include developmental delays, motor, cognitive and speech impairments, seizures, visual failure, ataxia, and extrapyramidal signs. Most of LSDs are typically present in early or late infancy, but juvenile and adult forms also exist and are associated with predominantly neuropsychiatric and behavioral symptoms. The outcome of these disorders is generally poor and specific treatments (enzyme replacement therapy, hematopoietic stem cell transplantation, or gene therapy) are only available in a small number of them.


Assuntos
Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/patologia
3.
BioDrugs ; 38(5): 657-680, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39177875

RESUMO

BACKGROUND: Genetic substrate reduction therapy (gSRT), which involves the use of nucleic acids to downregulate the genes involved in the biosynthesis of storage substances, has been investigated in the treatment of lysosomal storage diseases (LSDs). OBJECTIVE: To analyze the application of gSRT to the treatment of LSDs, identifying the silencing tools and delivery systems used, and the main challenges for its development and clinical translation, highlighting the contribution of nanotechnology to overcome them. METHODS: A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines was performed. PubMed, Scopus, and Web of Science databases were used for searching terms related to LSDs and gene-silencing strategies and tools. RESULTS: Fabry, Gaucher, and Pompe diseases and mucopolysaccharidoses I and III are the only LSDs for which gSRT has been studied, siRNA and lipid nanoparticles being the silencing strategy and the delivery system most frequently employed, respectively. Only in one recently published study was CRISPR/Cas9 applied to treat Fabry disease. Specific tissue targeting, availability of relevant cell and animal LSD models, and the rare disease condition are the main challenges with gSRT for the treatment of these diseases. Out of the 11 studies identified, only two gSRT studies were evaluated in animal models. CONCLUSIONS: Nucleic acid therapies are expanding the clinical tools and therapies currently available for LSDs. Recent advances in CRISPR/Cas9 technology and the growing impact of nanotechnology are expected to boost the clinical translation of gSRT in the near future, and not only for LSDs.


Assuntos
Terapia Genética , Doenças por Armazenamento dos Lisossomos , Nanopartículas , Humanos , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/genética , Terapia Genética/métodos , Animais , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Sistemas CRISPR-Cas , Inativação Gênica , Sistemas de Liberação de Medicamentos , Lipossomos
4.
Mol Ther ; 32(9): 2930-2938, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850023

RESUMO

Lysosomal storage disorders (LSDs) are multisystemic progressive disorders caused by defects in proteins involved in lysosomal function. Different gene therapy strategies are under clinical investigation in several LSDs to overcome the limitations of available treatments. However, LSDs are slowly progressive diseases that require long-term studies to establish the efficacy of experimental treatments. Biomarkers can be reliable substitutes for clinical responses and improve the efficiency of clinical trials, especially when long-term disease interventions are evaluated. In this review, we summarize both available and future biomarkers for LSDs and discuss their strengths and weaknesses.


Assuntos
Biomarcadores , Ensaios Clínicos como Assunto , Terapia Genética , Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/genética , Terapia Genética/métodos , Animais , Lisossomos/metabolismo
5.
Indian J Pediatr ; 91(8): 830-838, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38639861

RESUMO

Storage disorders are a group of inborn errors of metabolism caused by the defective activity of lysosomal enzymes or transporters. All of these disorders have multisystem involvement with variable degrees of neurological features. Neurological manifestations are one of the most difficult aspects of treatment concerning these diseases. The available treatment modalities for some of these disorders include enzyme replacement therapy, substrate reduction therapy, hematopoietic stem cell transplantation (HSCT) and the upcoming gene therapies. As a one-time intervention, the economic feasibility of HSCT makes it an attractive option for treating these disorders, especially in lower and middle-income countries. Further, improvements in peri-transplantation medical care, better conditioning regimens and better supportive care have improved the outcomes of patients undergoing HSCT. In this review, we discuss the current evidence for HSCT in various storage disorders and its suitability as a mode of therapy for the developing world.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/terapia
6.
Paediatr Drugs ; 26(3): 287-308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664313

RESUMO

Inborn errors of metabolism (IEMs) are a group of genetic diseases that occur due to the either deficiency of an enzyme involved in a metabolic/biochemical pathway or other disturbances in the metabolic pathway including transport protein or activator protein deficiencies, cofactor deficiencies, organelle biogenesis, maturation or trafficking problems. These disorders are collectively significant due to their substantial impact on both the well-being and survival of affected individuals. In the quest for effective treatments, enzyme replacement therapy (ERT) has emerged as a viable strategy for patients with many of the lysosomal storage disorders (LSD) and enzyme substitution therapy in the rare form of the other inborn errors of metabolism including phenylketonuria and hypophosphatasia. However, a major challenge associated with enzyme infusion in patients with these disorders, mainly LSD, is the development of high antibody titres. Strategies focusing on immunomodulation have shown promise in inducing immune tolerance to ERT, leading to improved overall survival rates. The implementation of immunomodulation concurrent with ERT administration has also resulted in a decreased occurrence of IgG antibody development compared with cases treated solely with ERT. By incorporating the knowledge gained from current approaches and analysing the outcomes of immune tolerance induction (ITI) modalities from clinical and preclinical trials have demonstrated significant improvement in the efficacy of ERT. In this comprehensive review, the progress in ITI modalities is assessed, drawing insights from both clinical and preclinical trials. The focus is on evaluating the advancements in ITI within the context of IEM, specifically addressing LSDs managed through ERT.


Assuntos
Terapia de Reposição de Enzimas , Tolerância Imunológica , Humanos , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/imunologia , Doenças por Armazenamento dos Lisossomos/terapia , Erros Inatos do Metabolismo/imunologia , Erros Inatos do Metabolismo/tratamento farmacológico , Erros Inatos do Metabolismo/terapia , Animais
7.
Nat Commun ; 15(1): 2553, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519472

RESUMO

Lysosomal Storage Disorders (LSDs), which share common phenotypes, including enlarged lysosomes and defective lysosomal storage, are caused by mutations in lysosome-related genes. Although gene therapies and enzyme replacement therapies have been explored, there are currently no effective routine therapies against LSDs. During lysosome reformation, which occurs when the functional lysosome pool is reduced, lysosomal lipids and proteins are recycled to restore lysosome functions. Here we report that the sorting nexin protein SNX8 promotes lysosome tubulation, a process that is required for lysosome reformation, and that loss of SNX8 leads to phenotypes characteristic of LSDs in human cells. SNX8 overexpression rescued features of LSDs in cells, and AAV-based delivery of SNX8 to the brain rescued LSD phenotypes in mice. Importantly, by screening a natural compound library, we identified three small molecules that enhanced SNX8-lysosome binding and reversed LSD phenotypes in human cells and in mice. Altogether, our results provide a potential solution for the treatment of LSDs.


Assuntos
Doenças por Armazenamento dos Lisossomos , Camundongos , Animais , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/metabolismo , Proteínas/metabolismo , Encéfalo/metabolismo , Mutação , Lisossomos/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
8.
J Postgrad Med ; 70(1): 23-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38197333

RESUMO

Introduction: Management of lysosomal storage disorders (LSDs) requires periodic visits for medical surveillance and hospitalizations. Management of LSDs may have been adversely impacted during the COVID-19 pandemic. Objective: To identify the factors impacting health care for patients with LSDs during the COVID-19 pandemic. Methods: An observational study was conducted in Mumbai comparing infusion practices and reasons for missed infusions for 15 months before March 2020 versus two phases during the pandemic (April 2020-March 2021 and April 2021-March 2022) in patients receiving intravenous enzyme replacement therapy (ERT) and on oral substrate reduction therapy (SRT). Results: Fifteen patients with LSDs were enrolled. Before the pandemic, 6/13 (46%) were receiving ERT at the study site, 4/13 (31%) at a local hospital, and 3/13 (23%) at home; two were on SRT. The median distance traveled for receiving ERT was 37 km, and 4.4 infusions/patient were missed. From April 2020 to March 2021, two more patients opted for home ERT infusions. The median distance traveled for receiving ERT was 37 km, and 11.6 infusions/patient were missed. From April 2021 to March 2022, one more patient opted for home ERT infusions. The median distance traveled for receiving ERT was 7 km, and 5.6 infusions/patient were missed. The pandemic also affected SRT compliance adversely. For all patients, the cause of disrupted treatment was travel curbs (69%) and fear of getting COVID-19 infection (38%). Conclusions: Treatment of LSDs was disrupted during the pandemic, with an increase in missed ERT infusions and SRT doses.


Assuntos
COVID-19 , Doenças por Armazenamento dos Lisossomos , Humanos , Pandemias , Atenção Terciária à Saúde , Doenças por Armazenamento dos Lisossomos/terapia , Hospitais Públicos , Lisossomos
9.
Prenat Diagn ; 43(13): 1638-1649, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37955580

RESUMO

Lysosomal storage disorders (LSDs) are a group of monogenic condition, with many characterized by an enzyme deficiency leading to the accumulation of an undegraded substrate within the lysosomes. For those LSDs, postnatal enzyme replacement therapy (ERT) represents the standard of care, but this treatment has limitations when administered only postnatally because, at that point, prenatal disease sequelae may be irreversible. Furthermore, most forms of ERT, specifically those administered systemically, are currently unable to access certain tissues, such as the central nervous system (CNS), and furthermore, may initiate an immune response. In utero enzyme replacement therapy (IUERT) is a novel approach to address these challenges evaluated in a first-in-human clinical trial for IUERT in LSDs (NCT04532047). IUERT has numerous advantages: in-utero intervention may prevent early pathology; the CNS can be accessed before the blood-brain barrier forms; and the unique fetal immune system enables exposure to new proteins with the potential to prevent an immune response and may induce sustained tolerance. However, there are challenges and limitations for any fetal procedure that involves two patients. This article reviews the current state of IUERT for LSDs, including its advantages, limitations, and potential future directions for definitive therapies.


Assuntos
Terapia de Reposição de Enzimas , Doenças por Armazenamento dos Lisossomos , Gravidez , Feminino , Humanos , Terapia de Reposição de Enzimas/métodos , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/complicações , Sistema Nervoso Central , Lisossomos
10.
Mol Genet Metab ; 140(4): 107729, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951057

RESUMO

Historically, the clinical manifestations of lysosomal storage diseases offered an early glimpse into the essential digestive functions of the lysosome. However, it was only recently that the more subtle role of this organelle in the dynamic regulation of multiple cellular processes was appreciated. With the need for precise interrogation of lysosomal interplay in health and disease comes the demand for more sophisticated functional tools. This demand has recently been met with 1) induced pluripotent stem cell-derived models that recapitulate the disease phenotype in vitro, 2) methods for lysosome affinity purification coupled with downstream omics analysis that provide a high-resolution snapshot of lysosomal alterations, and 3) gene editing and CRISPR/Cas9-based functional genomic strategies that enable screening for genetic modifiers of the disease phenotype. These emerging methods have garnered much interest in the field of neurodegeneration, and their use in the field of metabolic disorders is now also steadily gaining momentum. Looking forward, these robust tools should accelerate basic science efforts to understand lysosomal dysfunction distal to substrate accumulation and provide translational opportunities to identify disease-modifying therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Fenótipo , Edição de Genes , Lisossomos/genética , Lisossomos/metabolismo
11.
Mol Ther ; 31(10): 2962-2974, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37644722

RESUMO

A deficiency of human arylsulfatase A (hASA) causes metachromatic leukodystrophy (MLD), a lysosomal storage disease characterized by sulfatide accumulation and central nervous system (CNS) demyelination. Efficacy of enzyme replacement therapy (ERT) is increased by genetic engineering of hASA to elevate its activity and transfer across the blood-brain barrier (BBB), respectively. To further improve the enzyme's bioavailability in the CNS, we mutated a cathepsin cleavage hot spot and obtained hASAs with substantially increased half-lives. We then combined the superstabilizing exchange E424A with the activity-promoting triple substitution M202V/T286L/R291N and the ApoEII-tag for BBB transfer in a trimodal modified neoenzyme called SuPerTurbo-ASA. Compared with wild-type hASA, half-life, activity, and M6P-independent uptake were increased more than 7-fold, about 3-fold, and more than 100-fold, respectively. ERT of an MLD-mouse model with immune tolerance to wild-type hASA did not induce antibody formation, indicating absence of novel epitopes. Compared with wild-type hASA, SuPerTurbo-ASA was 8- and 12-fold more efficient in diminishing sulfatide storage of brain and spinal cord. In both tissues, storage was reduced by ∼60%, roughly doubling clearance achieved with a 65-fold higher cumulative dose of wild-type hASA previously. Due to its enhanced therapeutic potential, SuPerTurbo-ASA might be a decisive advancement for ERT and gene therapy of MLD.


Assuntos
Leucodistrofia Metacromática , Doenças por Armazenamento dos Lisossomos , Camundongos , Animais , Humanos , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/tratamento farmacológico , Cerebrosídeo Sulfatase/genética , Cerebrosídeo Sulfatase/metabolismo , Sulfoglicoesfingolipídeos/uso terapêutico , Encéfalo/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia
12.
Mol Genet Metab ; 140(3): 107648, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37598508

RESUMO

Lysosomal storage diseases (LSDs) are caused by monogenic mutations in genes encoding for proteins related to the lysosomal function. Lysosome plays critical roles in molecule degradation and cell signaling through interplay with many other cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes. Even though several strategies (i.e., protein replacement and gene therapy) have been attempted for LSDs with promising results, there are still some challenges when hard-to-treat tissues such as bone (i.e., cartilages, ligaments, meniscus, etc.), the central nervous system (mostly neurons), and the eye (i.e., cornea, retina) are affected. Consistently, searching for novel strategies to reach those tissues remains a priority. Molecular Trojan Horses have been well-recognized as a potential alternative in several pathological scenarios for drug delivery, including LSDs. Even though molecular Trojan Horses refer to genetically engineered proteins to overcome the blood-brain barrier, such strategy can be extended to strategies able to transport and deliver drugs to specific tissues or cells using cell-penetrating peptides, monoclonal antibodies, vesicles, extracellular vesicles, and patient-derived cells. Only some of those platforms have been attempted in LSDs. In this paper, we review the most recent efforts to develop molecular Trojan Horses and discuss how this strategy could be implemented to enhance the current efficacy of strategies such as protein replacement and gene therapy in the context of LSDs.


Assuntos
Barreira Hematoencefálica , Doenças por Armazenamento dos Lisossomos , Humanos , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Sistema Nervoso Central , Terapia Genética/métodos
13.
Handb Clin Neurol ; 196: 557-567, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37620090

RESUMO

The lysosomal storage disorders are hereditary metabolic disorders characterized by autosomal recessive inheritance, mainly caused by deficiency of an enzyme responsible for the intra-lysosomal breakdown of various substrates and products of cellular metabolism. This chapter examines the underlying defects, clinical manifestations, and provides context for the expected clinical outcome of various available therapy options employing enzyme replacement therapy, hematopoietic stem cell transplantation, substrate reduction, and enzyme enhancement therapies.


Assuntos
Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/terapia
14.
Adv Exp Med Biol ; 1429: 127-155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486520

RESUMO

Genome editing has multiple applications in the biomedical field. They can be used to modify genomes at specific locations, being able to either delete, reduce, or even enhance gene transcription and protein expression. Here, we summarize applications of genome editing used in the field of lysosomal disorders. We focus on the development of cell lines for study of disease pathogenesis, drug discovery, and pathogenicity of specific variants. Furthermore, we highlight the main studies that use gene editing as a gene therapy platform for these disorders, both in preclinical and clinical studies. We conclude that gene editing has been able to change quickly the scenario of these disorders, allowing the development of new therapies and improving the knowledge on disease pathogenesis. Should they confirm their hype, the first gene editing-based products for lysosomal disorders could be available in the next years.


Assuntos
Edição de Genes , Doenças por Armazenamento dos Lisossomos , Humanos , Terapia Genética , Genoma , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Sistemas CRISPR-Cas/genética
15.
Pediatr Allergy Immunol ; 34(6): e13981, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37366214

RESUMO

Lysosomal storage diseases (LSDs) are rare genetic metabolic disorders that cause the accumulation of glycosaminoglycans in lysosomes due to enzyme deficiency or reduced function. Enzyme replacement therapy (ERT) represents the gold standard treatment, but hypersensitivity reaction can occur resulting in treatment discontinuation. Thus, desensitization procedures for different culprit recombinant enzymes can be performed to restore ERT. We searched desensitization procedures performed in LSDs and focused on skin test results, protocols and premedication performed, and breakthrough reactions occurred during infusions. Fifty-two patients have been subjected to desensitization procedures successfully. Skin tests, with the culprit recombinant enzyme, deemed positive in 29 cases, doubtful in two cases, and not performed in four patients. Moreover, 29 of the 52 desensitization protocols used at the first infusion were breakthrough reaction free. Different desensitization strategies have proved safe and effective in restoring ERT in patients with previous hypersensitivity reactions. Most of these events seem to be Type I hypersensitivity reactions (IgE-mediated). Standardized in vivo and in vitro testing is necessary to better estimate the risk of the procedure and find the safest individualized desensitization protocol.


Assuntos
Hipersensibilidade a Drogas , Hipersensibilidade , Doenças por Armazenamento dos Lisossomos , Humanos , Terapia de Reposição de Enzimas/efeitos adversos , Dessensibilização Imunológica/métodos , Hipersensibilidade/terapia , Hipersensibilidade/etiologia , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/etiologia , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/terapia , Hipersensibilidade a Drogas/etiologia
16.
Arch Pediatr ; 30(7): 450-454, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37331832

RESUMO

AIM: In many countries, adult clinics specifically dedicated to adult patients with lysosomal storage diseases (LSDs) do not exist. In Turkey, these patients are managed either by pediatric metabolic specialists or adult physicians who do not specifically specialize in LSDs. In this study, we aimed to identify the unmet clinical needs of these adult patients and their suggestions. METHODS: The focus group participants were 24 adult LSD patients. Interviews were conducted in person. RESULTS: A total of 23 LSD patients and parents of a patient with mucopolysaccharidosis type-3b with intellectual deficit were interviewed, with 84.6% of patients diagnosed after the age of 18 years and 18% of patients diagnosed before the age of 18 years desiring management by adult physicians. Patients with particular physical characteristics or severe intellectual deficit declined the transition. Patients reported structural problems in the hospital and social problems associated with pediatric clinics. They made suggestions to facilitate the possible transition. CONCLUSION: With improved care, more patients with LSDs survive into adulthood or receive the diagnosis in adulthood. Children with chronic diseases need to transition to the care of adult physicians when they reach adulthood. Thus, there is an increasing need for adult physicians to manage these patients. In this study, most LSD patients accepted a well-planned and organized transition. Problems were related to stigmatization and social isolation in the pediatric clinic or adult issues with which pediatricians are not familiar. There is a need for adult metabolic physicians. Thus, health authorities should adopt necessary regulations for training of physicians in this field.


Assuntos
Doenças por Armazenamento dos Lisossomos , Humanos , Criança , Adulto , Adolescente , Turquia , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/terapia , Atenção à Saúde , Pais , Pediatras
17.
J Inherit Metab Dis ; 46(5): 874-905, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37078180

RESUMO

Lysosomal Storage Disorders (LSDs) are a diverse group of inherited, monogenic diseases caused by functional defects in specific lysosomal proteins. The lysosome is a cellular organelle that plays a critical role in catabolism of waste products and recycling of macromolecules in the body. Disruption to the normal function of the lysosome can result in the toxic accumulation of storage products, often leading to irreparable cellular damage and organ dysfunction followed by premature death. The majority of LSDs have no curative treatment, with many clinical subtypes presenting in early infancy and childhood. Over two-thirds of LSDs present with progressive neurodegeneration, often in combination with other debilitating peripheral symptoms. Consequently, there is a pressing unmet clinical need to develop new therapeutic interventions to treat these conditions. The blood-brain barrier is a crucial hurdle that needs to be overcome in order to effectively treat the central nervous system (CNS), adding considerable complexity to therapeutic design and delivery. Enzyme replacement therapy (ERT) treatments aimed at either direct injection into the brain, or using blood-brain barrier constructs are discussed, alongside more conventional substrate reduction and other drug-related therapies. Other promising strategies developed in recent years, include gene therapy technologies specifically tailored for more effectively targeting treatment to the CNS. Here, we discuss the most recent advances in CNS-targeted treatments for neurological LSDs with a particular emphasis on gene therapy-based modalities, such as Adeno-Associated Virus and haematopoietic stem cell gene therapy approaches that encouragingly, at the time of writing are being evaluated in LSD clinical trials in increasing numbers. If safety, efficacy and improved quality of life can be demonstrated, these therapies have the potential to be the new standard of care treatments for LSD patients.


Assuntos
Doenças por Armazenamento dos Lisossomos , Qualidade de Vida , Humanos , Criança , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/metabolismo , Terapia Genética , Encéfalo/metabolismo , Lisossomos , Terapia de Reposição de Enzimas
18.
Expert Opin Biol Ther ; 23(4): 353-364, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36920351

RESUMO

INTRODUCTION: Lysosomal storage disorders (LSD) are a group of monogenic rare diseases caused by pathogenic variants in genes that encode proteins related to lysosomal function. These disorders are good candidates for gene therapy for different reasons: they are monogenic, most of lysosomal proteins are enzymes that can be secreted and cross-correct neighboring cells, and small quantities of these proteins are able to produce clinical benefits in many cases. Ex vivo gene therapy allows for autologous transplant of modified cells from different sources, including stem cells and hematopoietic precursors. AREAS COVERED: Here, we summarize the main gene therapy and genome editing strategies that are currently being used as ex vivo gene therapy approaches for lysosomal disorders, highlighting important characteristics, such as vectors used, strategies, types of cells that are modified and main results in different disorders. EXPERT OPINION: Clinical trials are already ongoing, and soon approved therapies for LSD based on ex vivo gene therapy approaches should reach the market.


Assuntos
Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Vetores Genéticos , Terapia Genética/métodos , Lisossomos
19.
Front Public Health ; 11: 1092895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794069

RESUMO

This expert-opinion-based document was prepared by a group of specialists in pediatric inherited metabolic diseases and infectious diseases including administrative board members of Turkish Society for Pediatric Nutrition and Metabolism to provide guidance for the care of children with lysosomal storage disorders (LSDs) during the COVID-19 pandemic in Turkey. The experts reached consensus on key areas of focus regarding COVID-19-based risk status in relation to intersecting immune-inflammatory mechanisms and disease patterns in children with LSDs, diagnostic virus testing, particularly preventive measures and priorities during the pandemic, routine screening and diagnostic interventions for LSDs, psychological and socioeconomic impact of confinement measures and quarantines and optimal practice patterns in managing LSDs and/or COVID-19. The participating experts agreed on the intersecting characteristics of immune-inflammatory mechanisms, end-organ damage and prognostic biomarkers in LSD and COVID-19 populations, emphasizing the likelihood of enhanced clinical care when their interaction is clarified via further studies addressing certain aspects related to immunity, lysosomal dysfunction and disease pathogenesis. In the context of the current global COVID-19 pandemic, this expert-opinion-based document provides guidance for the care of children with LSDs during the COVID-19 pandemic based on the recent experience in Turkey.


Assuntos
COVID-19 , Doenças por Armazenamento dos Lisossomos , Humanos , Criança , COVID-19/epidemiologia , Pandemias , Turquia/epidemiologia , Doenças por Armazenamento dos Lisossomos/epidemiologia , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/diagnóstico
20.
Mol Ther ; 31(1): 7-23, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36196048

RESUMO

Krabbe disease (KD) is a lysosomal storage disease (LSD) caused by mutations in the galc gene. There are over 50 monogenetic LSDs, which largely impede the normal development of children and often lead to premature death. At present, there are no cures for LSDs and the available treatments are generally insufficient, short acting, and not without co-morbidities or long-term side effects. The last 30 years have seen significant advances in our understanding of LSD pathology as well as treatment options. Two gene therapy-based clinical trials, NCT04693598 and NCT04771416, for KD were recently started based on those advances. This review will discuss how our knowledge of KD got to where it is today, focusing on preclinical investigations, and how what was discovered may prove beneficial for the treatment of other LSDs.


Assuntos
Leucodistrofia de Células Globoides , Doenças por Armazenamento dos Lisossomos , Criança , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Leucodistrofia de Células Globoides/patologia , Terapia Combinada , Mutação , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...