Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.061
Filtrar
1.
PLoS Biol ; 22(10): e3002840, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39401257

RESUMO

The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited to sites in the 3' UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via 2 approaches. First, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes approximately 2,600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1,185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Previous work has shown that 60% of the maternal transcriptome is degraded in early embryos. We find that maternal mRNAs targeted by Upf1-Nos are hypoadenylated and inefficiently translated at the ovary-embryo transition; they are subsequently degraded in the early embryo, accounting for 59% of all destabilized maternal mRNAs. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors in the embryo.


Assuntos
Proteínas de Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA , Transcriptoma , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transcriptoma/genética , Feminino , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Embrião não Mamífero/metabolismo , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões 3' não Traduzidas/genética
2.
Elife ; 132024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221782

RESUMO

The initially homogeneous epithelium of the early Drosophila embryo differentiates into regional subpopulations with different behaviours and physical properties that are needed for morphogenesis. The factors at top of the genetic hierarchy that control these behaviours are known, but many of their targets are not. To understand how proteins work together to mediate differential cellular activities, we studied in an unbiased manner the proteomes and phosphoproteomes of the three main cell populations along the dorso-ventral axis during gastrulation using mutant embryos that represent the different populations. We detected 6111 protein groups and 6259 phosphosites of which 3398 and 3433 were differentially regulated, respectively. The changes in phosphosite abundance did not correlate with changes in host protein abundance, showing phosphorylation to be a regulatory step during gastrulation. Hierarchical clustering of protein groups and phosphosites identified clusters that contain known fate determinants such as Doc1, Sog, Snail, and Twist. The recovery of the appropriate known marker proteins in each of the different mutants we used validated the approach, but also revealed that two mutations that both interfere with the dorsal fate pathway, Toll10B and serpin27aex do this in very different manners. Diffused network analyses within each cluster point to microtubule components as one of the main groups of regulated proteins. Functional studies on the role of microtubules provide the proof of principle that microtubules have different functions in different domains along the DV axis of the embryo.


Assuntos
Proteínas de Drosophila , Fosfoproteínas , Proteoma , Animais , Proteoma/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Embrião não Mamífero/metabolismo , Drosophila/embriologia , Drosophila/metabolismo , Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Fosforilação , Gastrulação , Padronização Corporal/genética
3.
EMBO Rep ; 25(10): 4131-4152, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39285248

RESUMO

Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).


Assuntos
Cromatina , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Cromatina/metabolismo , Cromatina/genética , Zigoto/metabolismo , Desenvolvimento Embrionário/genética , Embrião não Mamífero/metabolismo , Drosophila/genética , Drosophila/embriologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
Biol Open ; 13(9)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39207258

RESUMO

In developing tissues, morphogen gradients are thought to initialize gene expression patterns. However, the relationship between the dynamics of morphogen-encoded signals and gene expression decisions is largely unknown. Here we examine the dynamics of the Bone Morphogenetic Protein (BMP) pathway in Drosophila blastoderm-stage embryos. In this tissue, the BMP pathway is highly dynamic: it begins as a broad and weak signal on the dorsal half of the embryo, then 20-30 min later refines into a narrow, intense peak centered on the dorsal midline. This dynamical progression of the BMP signal raises questions of how it stably activates target genes. Therefore, we performed live imaging of the BMP signal and found that dorsal-lateral cells experience only a short transient in BMP signaling, after which the signal is lost completely. Moreover, we measured the transcriptional response of the BMP target gene pannier in live embryos and found it to remain activated in dorsal-lateral cells, even after the BMP signal is lost. Our findings may suggest that the BMP pathway activates a memory, or 'ratchet' mechanism that may sustain gene expression.


Assuntos
Proteínas Morfogenéticas Ósseas , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Drosophila/embriologia , Drosophila/genética , Embrião não Mamífero/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
5.
Methods Mol Biol ; 2805: 137-151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008179

RESUMO

Transcription in developing metazoans is inherently stochastic, involving transient and dynamic interactions among transcriptional machinery. A fundamental challenge with traditional techniques, including fixed-tissue protein and RNA staining, is the lack of temporal resolution. Quantifying kinetic changes in transcription can elucidate underlying mechanisms of interaction among regulatory modules. In this protocol, we describe the successful implementation of a combination of MS2/MCP and PP7/PCP systems in living Drosophila embryos to further our understanding of transcriptional dynamics during development. Our technique can be extended to visualize transcriptional activities of multiple genes or alleles simultaneously, characterize allele-specific expression of a target gene, and quantitatively analyze RNA polymerase II activity in a single-cell resolution.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Animais , Desenvolvimento Embrionário/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Embrião não Mamífero/metabolismo , Drosophila/embriologia , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Transcrição Gênica , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
6.
Methods Mol Biol ; 2805: 153-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008180

RESUMO

Microfluidic devices support developmental and mechanobiology studies by enabling the precise control of electrical, chemical, and mechanical stimuli at the microscale. Here, we describe the fabrication of customizable microfluidic devices and demonstrate their efficacy in applying mechanical loads to micro-organs and whole organisms, such as Drosophila embryos. The fabrication technique consists in the use of xurography to define channels and chambers using thin layers of thermoplastics and glass. The superposition of layers followed by thermal lamination produces robust and reproducible devices that are easily adapted for a variety of experiments. The integration of deformable layers and glass in these devices facilitates the imaging of cellular and molecular dynamics in biological specimens under mechanical loads. The method is highly adaptable for studies in mechanobiology.


Assuntos
Embrião não Mamífero , Dispositivos Lab-On-A-Chip , Animais , Drosophila/embriologia , Fenômenos Biomecânicos , Estresse Mecânico , Drosophila melanogaster/embriologia , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Desenho de Equipamento
7.
J Bioinform Comput Biol ; 22(3): 2450011, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39036846

RESUMO

Recent computational modeling of early fruit fly (Drosophila) development has characterized the degree to which gene regulation networks can be robust to natural variability. In the first few hours of development, broad spatial gradients of maternally derived transcription factors activate embryonic gap genes. These gap patterns determine the subsequent segmented insect body plan through pair-rule gene expression. Gap genes are expressed with greater spatial precision than the maternal patterns. Computational modeling of the gap-gap regulatory interactions provides a mechanistic understanding for this robustness to maternal variability in wild-type (WT) patterning. A long-standing question in evolutionary biology has been how a system which is robust, such as the developmental program creating any particular species' body plan, is also evolvable, i.e. how can a system evolve or speciate, if the WT form is strongly buffered and protected? In the present work, we use the WT model to explore the breakdown of such Waddington-type 'canalization'. What levels of variability will push the system out of the WT form; are there particular pathways in the gene regulatory mechanism which are more susceptible to losing the WT form; and when robustness is lost, what types of forms are most likely to occur (i.e. what forms lie near the WT)? Manipulating maternal effects in several different pathways, we find a common gap 'peak-to-step' pattern transition in the loss of WT. We discuss these results in terms of the evolvability of insect segmentation, and in terms of experimental perturbations and mutations which could test the model predictions. We conclude by discussing the prospects for using continuum models of pattern dynamics to investigate a wider range of evo-devo problems.


Assuntos
Redes Reguladoras de Genes , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Genéticos , Drosophila/genética , Drosophila/embriologia , Simulação por Computador , Evolução Molecular , Evolução Biológica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Vis Exp ; (208)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38912770

RESUMO

Transgenesis in Drosophila is an essential approach to studying gene function at the organism level. Embryo microinjection is a crucial step for the construction of transgenic flies. Microinjection requires some types of equipment, including a microinjector, a micromanipulator, an inverted microscope, and a stereo microscope. Plasmids isolated with a plasmid miniprep kit are qualified for microinjection. Embryos at the pre-blastoderm or syncytial blastoderm stage, where nuclei share a common cytoplasm, are subjected to microinjection. A cell strainer eases the process of dechorionating embryos. The optimal time for dechorionation and desiccation of embryos needs to be determined experimentally. To increase the efficiency of embryo microinjection, needles prepared by a puller need to be beveled by a needle grinder. In the process of grinding needles, we utilize a foot air pump with a pressure gauge to avoid the capillary effect of the needle tip. We routinely inject 120-140 embryos for each plasmid and obtain at least one transgenic line for around 85% of plasmids. This article takes the phiC31 integrase-mediated transgenesis in Drosophila as an example and presents a detailed protocol for embryo microinjection for transgenesis in Drosophila.


Assuntos
Drosophila , Técnicas de Transferência de Genes , Microinjeções , Animais , Microinjeções/métodos , Técnicas de Transferência de Genes/instrumentação , Drosophila/genética , Drosophila/embriologia , Plasmídeos/genética , Plasmídeos/administração & dosagem , Embrião não Mamífero , Animais Geneticamente Modificados , Integrases/genética
9.
Elife ; 132024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869942

RESUMO

Movement is a key feature of animal systems, yet its embryonic origins are not fully understood. Here, we investigate the genetic basis underlying the embryonic onset of movement in Drosophila focusing on the role played by small non-coding RNAs (microRNAs, miRNAs). To this end, we first develop a quantitative behavioural pipeline capable of tracking embryonic movement in large populations of fly embryos, and using this system, discover that the Drosophila miRNA miR-2b-1 plays a role in the emergence of movement. Through the combination of spectral analysis of embryonic motor patterns, cell sorting and RNA in situs, genetic reconstitution tests, and neural optical imaging we define that miR-2b-1 influences the emergence of embryonic movement by exerting actions in the developing nervous system. Furthermore, through the combination of bioinformatics coupled to genetic manipulation of miRNA expression and phenocopy tests we identify a previously uncharacterised (but evolutionarily conserved) chloride channel encoding gene - which we term Movement Modulator (Motor) - as a genetic target that mechanistically links miR-2b-1 to the onset of movement. Cell-specific genetic reconstitution of miR-2b-1 expression in a null miRNA mutant background, followed by behavioural assays and target gene analyses, suggest that miR-2b-1 affects the emergence of movement through effects in sensory elements of the embryonic circuitry, rather than in the motor domain. Our work thus reports the first miRNA system capable of regulating embryonic movement, suggesting that other miRNAs are likely to play a role in this key developmental process in Drosophila as well as in other species.


Assuntos
MicroRNAs , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Movimento , Embrião não Mamífero/metabolismo , Drosophila/genética , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
10.
Dev Biol ; 514: 37-49, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38885804

RESUMO

The conserved bazooka (baz/par3) gene acts as a key regulator of asymmetrical cell divisions across the animal kingdom. Associated Par3/Baz-Par6-aPKC protein complexes are also well known for their role in the establishment of apical/basal cell polarity in epithelial cells. Here we define a novel, positive function of Baz/Par3 in the Notch pathway. Using Drosophila wing and eye development, we demonstrate that Baz is required for Notch signaling activity and optimal transcriptional activation of Notch target genes. Baz appears to act independently of aPKC in these contexts, as knockdown of aPKC does not cause Notch loss-of-function phenotypes. Using transgenic Notch constructs, our data positions Baz activity downstream of activating Notch cleavage steps and upstream of Su(H)/CSL transcription factor complex activity on Notch target genes. We demonstrate a biochemical interaction between NICD and Baz, suggesting that Baz is required for NICD activity before NICD binds to Su(H). Taken together, our data define a novel role of the polarity protein Baz/Par3, as a positive and direct regulator of Notch signaling through its interaction with NICD.


Assuntos
Proteínas de Drosophila , Receptores Notch , Transdução de Sinais , Asas de Animais , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Notch/metabolismo , Asas de Animais/metabolismo , Asas de Animais/embriologia , Asas de Animais/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Ligação Proteica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Olho/embriologia , Olho/metabolismo , Olho/crescimento & desenvolvimento , Drosophila/metabolismo , Drosophila/embriologia , Polaridade Celular , Peptídeos e Proteínas de Sinalização Intracelular
11.
STAR Protoc ; 5(2): 103099, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38824639

RESUMO

The MS2-PP7 two-color live-imaging system provides insights into the spatiotemporal dynamics of nascent transcripts at tagged loci. Here, we present a protocol to quantitatively measure the rate of RNA polymerase II elongation for each actively transcribing nucleus in living Drosophila embryos. The elongation rate is calculated by measuring the effective distance and the time elapsed between MS2 and PP7 trajectories. We describe steps for preparing embryo samples, performing live imaging, and measuring the elongation rate. For complete details on the use and execution of this protocol, please refer to Keller et al.1.


Assuntos
Embrião não Mamífero , RNA Polimerase II , Animais , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Embrião não Mamífero/metabolismo , Drosophila/embriologia , Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
12.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38864272

RESUMO

Tissue morphogenesis is often controlled by actomyosin networks pulling on adherens junctions (AJs), but junctional myosin levels vary. At an extreme, the Drosophila embryo amnioserosa forms a horseshoe-shaped strip of aligned, spindle-shaped cells lacking junctional myosin. What are the bases of amnioserosal cell interactions and alignment? Compared with surrounding tissue, we find that amnioserosal AJ continuity has lesser dependence on α-catenin, the mediator of AJ-actomyosin association, and greater dependence on Bazooka/Par-3, a junction-associated scaffold protein. Microtubule bundles also run along amnioserosal AJs and support their long-range curvilinearity. Amnioserosal confinement is apparent from partial overlap of its spindle-shaped cells, its outward bulging from surrounding tissue and from compressive stress detected within the amnioserosa. Genetic manipulations that alter amnioserosal confinement by surrounding tissue also result in amnioserosal cells losing alignment and gaining topological defects characteristic of nematically ordered systems. With Bazooka depletion, confinement by surrounding tissue appears to be relatively normal and amnioserosal cells align despite their AJ fragmentation. Overall, the fully elongated amnioserosa appears to form through tissue-autonomous generation of spindle-shaped cells that nematically align in response to confinement by surrounding tissue.


Assuntos
Junções Aderentes , Proteínas de Drosophila , Desenvolvimento Embrionário , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Junções Aderentes/metabolismo , Microtúbulos/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , alfa Catenina/metabolismo , Actomiosina/metabolismo , Morfogênese , Drosophila/embriologia , Forma Celular , Peptídeos e Proteínas de Sinalização Intracelular
13.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38757779

RESUMO

Collective migration of caudal visceral mesoderm (CVM) cells in Drosophila embryos helps form the longitudinal muscles of the larval gut. In their study, Angelike Stathopoulos and colleagues reveal that cell division coordinates two gene expression programmes in migrating CVM cells. To know more about their work, we spoke to the first author, Jingjing Sun, and the corresponding author, Angelike Stathopoulos, Professor in the Division of Biology at the California Institute of Technology, USA.


Assuntos
Biologia do Desenvolvimento , Animais , Biologia do Desenvolvimento/história , História do Século XX , História do Século XXI , Mesoderma/metabolismo , Drosophila/embriologia , Movimento Celular , Humanos
14.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738602

RESUMO

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Assuntos
Proteínas de Drosophila , Morfogênese , Proteínas do Tecido Nervoso , Neurópilo , Lobo Óptico de Animais não Mamíferos , Receptores de Superfície Celular , Semaforinas , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Semaforinas/metabolismo , Semaforinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Morfogênese/genética , Neurópilo/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/embriologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Neurônios/metabolismo , Drosophila/metabolismo , Drosophila/embriologia , Mutação/genética
15.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819456

RESUMO

Drosophila nervous system development progresses through a series of well-characterized steps in which homeodomain transcription factors (HDTFs) play key roles during most, if not all, phases. Strikingly, although some HDTFs have only one role, many others are involved in multiple steps of the developmental process. Most Drosophila HDTFs engaged in nervous system development are conserved in vertebrates and often play similar roles during vertebrate development. In this Spotlight, we focus on the role of HDTFs during embryogenesis, where they were first characterized.


Assuntos
Proteínas de Drosophila , Proteínas de Homeodomínio , Sistema Nervoso , Fatores de Transcrição , Animais , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Sistema Nervoso/metabolismo , Sistema Nervoso/embriologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
16.
Nat Commun ; 15(1): 4551, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811562

RESUMO

Although the effects of genetic and environmental perturbations on multicellular organisms are rarely restricted to single phenotypic layers, our current understanding of how developmental programs react to these challenges remains limited. Here, we have examined the phenotypic consequences of disturbing the bicoid regulatory network in early Drosophila embryos. We generated flies with two extra copies of bicoid, which causes a posterior shift of the network's regulatory outputs and a decrease in fitness. We subjected these flies to EMS mutagenesis, followed by experimental evolution. After only 8-15 generations, experimental populations have normalized patterns of gene expression and increased survival. Using a phenomics approach, we find that populations were normalized through rapid increases in embryo size driven by maternal changes in metabolism and ovariole development. We extend our results to additional populations of flies, demonstrating predictability. Together, our results necessitate a broader view of regulatory network evolution at the systems level.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/embriologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fenótipo , Masculino , Embrião não Mamífero/metabolismo , Drosophila/genética , Drosophila/embriologia , Drosophila/metabolismo , Mutagênese , Transativadores
17.
PLoS Biol ; 22(4): e3002611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683880

RESUMO

As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.


Assuntos
Drosophila melanogaster , Ectoderma , Gastrulação , Mesoderma , Miosina Tipo II , Animais , Mesoderma/embriologia , Mesoderma/citologia , Gastrulação/fisiologia , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Miosina Tipo II/metabolismo , Drosophila melanogaster/embriologia , Polaridade Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero , Morfogênese , Padronização Corporal/fisiologia , Drosophila/embriologia
18.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38646822

RESUMO

The precise assembly of tissues and organs relies on spatiotemporal regulation of gene expression to coordinate the collective behavior of cells. In Drosophila embryos, the midgut musculature is formed through collective migration of caudal visceral mesoderm (CVM) cells, but how gene expression changes as cells migrate is not well understood. Here, we have focused on ten genes expressed in the CVM and the cis-regulatory sequences controlling their expression. Although some genes are continuously expressed, others are expressed only early or late during migration. Late expression relates to cell cycle progression, as driving string/Cdc25 causes earlier division of CVM cells and accelerates the transition to late gene expression. In particular, we found that the cell cycle effector transcription factor E2F1 is a required input for the late gene CG5080. Furthermore, whereas late genes are broadly expressed in all CVM cells, early gene transcripts are polarized to the anterior or posterior ends of the migrating collective. We show this polarization requires transcription factors Snail, Zfh1 and Dorsocross. Collectively, these results identify two sequential gene expression programs bridged by cell division that support long-distance directional migration of CVM cells.


Assuntos
Divisão Celular , Movimento Celular , Proteínas de Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Animais , Movimento Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Divisão Celular/genética , Mesoderma/metabolismo , Mesoderma/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriologia , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriologia , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética
19.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955925

RESUMO

The cell cortex of syncytial Drosophila embryos is patterned into cap and intercap regions by centrosomes, specific sets of proteins that are restricted to their respective regions by unknown mechanisms. Here, we found that Kinesin-1 is required for the restriction of plus- and minus-ends of centrosomal and non-centrosomal microtubules to the cap region, marked by EB1 and Patronin/Shot, respectively. Kinesin-1 also directly or indirectly restricts proteins and Rho signaling to the intercap, including the RhoGEF Pebble, Dia, Myosin II, Capping protein-α, and the polarity protein Par-1. Furthermore, we found that Par-1 is required for cap restriction of Patronin/Shot, and vice versa Patronin, for Par-1 enrichment at the intercap. In summary, our data support a model that Kinesin-1 would mediate the restriction of centrosomal and non-centrosomal microtubules to a region close to the centrosomes and exclude Rho signaling and Par-1. In addition, mutual antagonistic interactions would refine and maintain the boundary between cap and intercap and thus generate a distinct cortical pattern.


Assuntos
Proteínas de Drosophila , Drosophila , Quinase 3 da Glicogênio Sintase , Cinesinas , Proteínas de Membrana , Animais , Centrossomo , Proteínas do Citoesqueleto , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Quinase 3 da Glicogênio Sintase/genética , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Transdução de Sinais , Proteínas de Membrana/genética
20.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38126997

RESUMO

Lattice cells (LCs) in the developing Drosophila retina change shape before attaining final form. Previously, we showed that repeated contraction and expansion of apical cell contacts affect these dynamics. Here, we describe another factor, the assembly of a Rho1-dependent medioapical actomyosin ring formed by nodes linked by filaments that contract the apical cell area. Cell area contraction alternates with relaxation, generating pulsatile changes in cell area that exert force on neighboring LCs. Moreover, Rho1 signaling is sensitive to mechanical changes, becoming active when tension decreases and cells expand, while the negative regulator RhoGAP71E accumulates when tension increases and cells contract. This results in cycles of cell area contraction and relaxation that are reciprocally synchronized between adjacent LCs. Thus, mechanically sensitive Rho1 signaling controls pulsatile medioapical actomyosin contraction and coordinates cell behavior across the epithelium. Disrupting the kinetics of pulsing can lead to developmental errors, suggesting this process controls cell shape and tissue integrity during epithelial morphogenesis of the retina.


Assuntos
Actomiosina , Drosophila , Olho , Animais , Citoesqueleto de Actina/fisiologia , Actomiosina/fisiologia , Citocinese , Drosophila/embriologia , Morfogênese , Olho/embriologia , Proteínas rho de Ligação ao GTP/fisiologia , Proteínas de Drosophila/fisiologia , Retina/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...