Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.850
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000185

RESUMO

Furofuran lignans have been identified as the main substances responsible for the biological activities of the plant genus Phryma. Here, four new phrymarolin-type leptolignans A-D (7-10) and eight previously known lignans were isolated from P. leptostachya. Of these, nine exhibited significant antifeedant activity against armyworm (Mythimna separata) through a dual-choice bioassay, with the EC50 values ranging from 0.58 to 10.08 µg/cm2. In particular, the newly identified lignan leptolignan A (7) showed strong antifeedant activity, with an EC50 value of 0.58 ± 0.34 µg/cm2. Further investigation found that leptolignan A can inhibit the growth and nutritional indicators in the armyworm M. separata. The concentrations of two molting hormones, 20-hydroxyecdysone and ecdysone, were also found to decrease significantly following the treatment of the armyworms with the lignan, implying that the target of the P. leptostachya lignan may be involved in 20-hydroxyecdysone and ecdysone synthesis. These results enrich our knowledge of P. leptostachya metabolite structural diversity, and provide a theoretical basis for the control of armyworm using lignans.


Assuntos
Lignanas , Animais , Lignanas/farmacologia , Lignanas/química , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Ecdisona/metabolismo , Muda/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
Gen Comp Endocrinol ; 355: 114548, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761872

RESUMO

Ecdysteroid molting hormones coordinate arthropod growth and development. Binding of 20-hydroxyecdysone (20E) to ecdysteroid receptor EcR/RXR activates a cascade of nuclear receptor transcription factors that mediate tissue responses to hormone. Insect ecdysteroid responsive and Forkhead box class O (FOXO) transcription factor gene sequences were used to extract orthologs from blackback land crab (Gecarcinus lateralis) Y-organ (YO) transcriptome: Gl-Ecdysone Receptor (EcR), Gl-Broad Complex (Br-C), Gl-E74, Gl-Hormone Receptor 3 (HR3), Gl-Hormone Receptor 4 (HR4), Gl-FOXO, and Gl-Fushi tarazu factor-1 (Ftz-f1). Quantitative polymerase chain reaction quantified mRNA levels in tissues from intermolt animals and in YO of animals induced to molt by multiple limb autotomy (MLA) or eyestalk ablation (ESA). Gl-EcR, Gl-Retinoid X Receptor (RXR), Gl-Br-C, Gl-HR3, Gl-HR4, Gl-E74, Gl-E75, Gl-Ftz-f1, and Gl-FOXO were expressed in all 10 tissues, with Gl-Br-C, Gl-E74, Gl-E75, and Gl-HR4 mRNA levels in the YO lower than those in most of the other tissues. In MLA animals, molting had no effect on Gl-Br-C, Gl-E74, and Gl-Ftz-f1 mRNA levels and little effect on Gl-EcR, Gl-E75, and Gl-HR4 mRNA levels. Gl-HR3 and Gl-FOXO mRNA levels were increased during premolt stages, while Gl-RXR mRNA level was highest during intermolt and premolt stages and lowest at postmolt stage. In ESA animals, YO mRNA levels were not correlated with hemolymph ecdysteroid titers. ESA had no effect on Gl-EcR, Gl-E74, Gl-HR3, Gl-HR4, Gl-Ftz-f1, and Gl-FOXO mRNA levels, while Gl-RXR, Gl-Br-C, and Gl-E75 mRNA levels were decreased at 3 days post-ESA. These data suggest that transcriptional up-regulation of Gl-FOXO and Gl-HR3 contributes to increased YO ecdysteroidogenesis during premolt. By contrast, transcriptional regulation of ecdysteroid responsive genes and ecdysteroidogenesis were uncoupled in the YO of ESA animals.


Assuntos
Ecdisteroides , Muda , Animais , Muda/genética , Ecdisteroides/metabolismo , Ecdisteroides/genética , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Ecdisterona/metabolismo , Braquiúros/genética , Braquiúros/metabolismo , Braquiúros/crescimento & desenvolvimento , Glândulas Endócrinas/metabolismo
3.
Dev Comp Immunol ; 157: 105194, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38754572

RESUMO

In crustaceans, the steroid hormone 20-hydroxyecdysone (20E) initiates molting, and the molting process is also regulated by energy metabolism. AMPK is an energy sensor and plays a critical role in systemic energy balance. Here, the regulatory mechanism in the interaction between 20E and AMPK was investigated in Chinese mitten crab, Eriocheir sinensis. The results showed that the 20E concentration and the mRNA expression levels of 20E receptors in hepatopancreas were down-regulated post AMPK activator (AICAR) treatment, and were up-regulated after AMPK inhibitor (Compound C) injection in crabs. Besides, the molt-inhibiting hormone (MIH) gene expression in eyestalk showed the opposite patterns in response to the AICAR and Compound C treatment, respectively. Further investigation found that there was a significant reduction in 20E concentration post PI3K inhibitor (LY294002) treatment, and the phosphorylation level of PI3K was increased in hepatopancreas after AMPK inhibitor injection. On the other hand, the positive regulation of PI3K-mediated activation of AMPK was also observed, the phosphorylation levels of AMPKα, AMPKß and PI3K in hepatopancreas were significantly increased post 20E injection. In addition, the phosphorylation levels of AMPKα and AMPKß induced by 20E were decreased after the injection of PI3K inhibitor. Taken together, these results suggest that the regulatory cross-talk between 20E and AMPK is likely to act through PI3K pathway in E. sinensis, which appeared to be helpful for a better understanding in molting regulation.


Assuntos
Proteínas Quinases Ativadas por AMP , Braquiúros , Ecdisterona , Hepatopâncreas , Muda , Fosfatidilinositol 3-Quinases , Animais , Braquiúros/imunologia , Ecdisterona/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Hepatopâncreas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Hormônios de Invertebrado/metabolismo , Cromonas/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Ribonucleotídeos/farmacologia , Morfolinas/farmacologia , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética , Fosforilação , Metabolismo Energético
4.
Int J Biol Macromol ; 270(Pt 2): 132459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763254

RESUMO

Nuclear receptors (NRs) are ligand-regulated transcription factors that are important for the normal growth and development of insects. However, systematic function analysis of NRs in the molting process of Lasioderma serricorne has not been reported. In this study, we identified and characterized 16 NR genes from L. serricorne. Spatiotemporal expression analysis revealed that six NRs were mainly expressed in 3-d-old 4th-instar larvae; five NRs were primarily expressed in 5-d-old adults and four NRs were predominately expressed in prepupae. All the NRs were highly expressed in epidermis, fat body and foregut. RNA interference (RNAi) experiments revealed that knockdown of 15 NRs disrupted the larva-pupa-adult transitions and caused 64.44-100 % mortality. Hematoxylin-eosin staining showed that depletion of 12 NRs prevented the formation of new cuticle and disrupted apolysis of old cuticle. Silencing of LsHR96, LsSVP and LsE78 led to newly formed cuticle that was thinner than the controls. The 20E titer and chitin content significantly decreased by 17.67-95.12 % after 15 NR dsRNA injection and the gene expression levels of 20E synthesis genes and chitin metabolism genes were significantly reduced. These results demonstrated that 15 NR genes are essential for normal molting and metamorphosis of L. serricorne by regulating 20E synthesis and chitin metabolism.


Assuntos
Besouros , Regulação da Expressão Gênica no Desenvolvimento , Metamorfose Biológica , Muda , Receptores Citoplasmáticos e Nucleares , Animais , Muda/genética , Metamorfose Biológica/genética , Besouros/genética , Besouros/crescimento & desenvolvimento , Besouros/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Quitina/metabolismo , Interferência de RNA , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Ecdisterona/metabolismo
5.
Nutrients ; 16(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732627

RESUMO

The naturally occurring compounds ecdysterone and turkesterone, which are present in plants, including Rhaponticum carthamoides Willd. (Iljin), Spinacia oleracea L., Chenopodium quinoa Willd., and Ajuga turkestanica (Regel) Briq, are widely recognized due to their possible advantages for both general health and athletic performance. The current review investigates the beneficial biological effects of ecdysterone and turkesterone in nutrition, highlighting their roles not only in enhancing athletic performance but also in the management of various health problems. Plant-based diets, associated with various health benefits and environmental sustainability, often include sources rich in phytoecdysteroids. However, the therapeutic potential of phytoecdysteroid-rich extracts extends beyond sports nutrition, with promising applications in treating chronic fatigue, cardiovascular diseases, and neurodegenerative disorders.


Assuntos
Ecdisterona , Humanos , Ecdisterona/farmacologia , Extratos Vegetais/farmacologia , Fenômenos Fisiológicos da Nutrição Esportiva , Dieta Saudável/métodos , Desempenho Atlético
6.
Arch Insect Biochem Physiol ; 115(4): e22111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628055

RESUMO

In insects, the expression of 20E response genes that initiate metamorphosis is triggered by a pulse of 20-hydroxyecdysone (20E). The 20E pulse is generated through two processes: synthesis, which increases its level, and inactivation, which decreases its titer. CYP18A1 functions as an ecdysteroid 26-hydroxylase and plays a role in 20E removal in several representative insects. However, applying 20E degradation activity of CYP18A1 to other insects remains a significant challenge. In this study, we discovered high levels of Hvcyp18a1 during the larval and late pupal stages, particularly in the larval epidermis and fat body of Henosepilachna vigintioctopunctata, a damaging Coleopteran pest of potatoes. RNA interference (RNAi) targeting Hvcyp18a1 disrupted the pupation. Approximately 75% of the Hvcyp18a1 RNAi larvae experienced developmental arrest and remained as stunted prepupae. Subsequently, they gradually turned black and eventually died. Among the Hvcyp18a1-depleted animals that successfully pupated, around half became malformed pupae with swollen elytra and hindwings. The emerged adults from these deformed pupae appeared misshapen, with shriveled elytra and hindwings, and were wrapped in the pupal exuviae. Furthermore, RNAi of Hvcyp18a1 increased the expression of a 20E receptor gene (HvEcR) and four 20E response transcripts (HvE75, HvHR3, HvBrC, and HvαFTZ-F1), while decreased the transcription of HvßFTZ-F1. Our findings confirm the vital role of CYP18A1 in the pupation, potentially involved in the degradation of 20E in H. vigintioctopunctata.


Assuntos
Besouros , Proteínas de Insetos , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Besouros/genética , Larva/genética , Larva/metabolismo , Insetos/metabolismo , Metamorfose Biológica , Ecdisterona/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Interferência de RNA , Pupa/genética , Pupa/metabolismo
7.
Front Biosci (Landmark Ed) ; 29(3): 109, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38538266

RESUMO

BACKGROUND: Severe neurological condition like Alzheimer's disease (AD) has a significantly negative impact on families and society, wherein there is no proven cure. As one of the principal active constituents of Achyranthes bidentata Blume, ecdysterone (ECR) has demonstrated antioxidant and cognitive dysfunction improvement effects. Nonetheless, the mechanism underlying the improvement of cognitive dysfunction by ECR remains unclear. This study sought to ascertain whether ECR may allebviate cognitive impairment by reducing oxidative stress via activation of the nuclear factor erythroid-2-related factor-2 (Nrf2) antioxidant system through Akt/GSK3ß pathway. METHODS: In terms of the experimental procedure, we determined the neuroprotective benefits of ECR in vivo via a cognitive impairment model of senescence-accelerated mouse prone 8 (SAMP8), we performed procedures such as behavioral testing, biochemical assaying, Nissl and TUNEL stainings, as well as flow cytometry, immunohistochemistry and western blotting. Furthermore, we investigated the underlying mechanistic action of ECR by activating PC12 cells with ß-amyloid peptide fragment 25-35 (Aß25-35). RESULTS: In vivo studies showed that ECR effectively improved cognitive impairment in SAMP8 via enhancement of learning and memory capabilities, but decreased oxidative stress, apoptosis and neuronal damage in the hippocampus. During the in vitro study, we observed that ECR dose-dependently reduced the oxidative stress and apoptosis that were induced in PC12 cells by Aß25-35. Additionally, the use of Akt inhibitors further established the potential of ECR to control Nrf2 through activation of the Akt/GSK3ß pathway and protect the PC12 cells from Aß25-35 induced damage. CONCLUSIONS: These findings offer proof that ECR reduces cognitive impairment by triggering the Nrf2 antioxidant system via the Akt/GSK3ß pathway and offer fresh information on ECR's potential as a promising therapeutic development candidate for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Fármacos Neuroprotetores , Humanos , Ratos , Camundongos , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Antioxidantes/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ecdisterona/farmacologia , Ecdisterona/uso terapêutico , Estresse Oxidativo , Transdução de Sinais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Cognição , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
8.
J Ethnopharmacol ; 328: 118003, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484957

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pfaffia glomerata (Spreng.) Pedersen, Amaranthaceae, is found in South America, mainly in Brazil, where it is considered a species of great medicinal interest owing to its popular use as a tonic, aphrodisiac, anti-inflammatory, and analgesic. These properties can be attributed to the presence of the phytosteroid, 20-Hydroxyecdysone (ß-ecdysone), the main compound found in its roots. AIM OF THE REVIEW: This review aims to provide information about the botanical characteristics, ethnomedicinal uses, the phytochemistry, the biological activities, and the biotechnology of P. glomerata, an important species to local communities and groups researching medicinal plants of South America. MATERIALS AND METHODS: The information available on P. glomerata was collected from scientific databases (ScienceDirect, PubMed/MEDLINE, SciELO, and Scopus) until June 7, 2023, using the search terms "Pfaffia glomerata", "Pfaffia glomerata (Spreng.) Pedersen", and "Brazilian ginseng". The review includes studies that evaluated the botanical, ethnopharmacological, and phytochemical aspects, biological properties, nutraceutical uses, and the application of biotechnology for improving the biosynthesis of metabolites of interest. RESULTS: A total of 207 studies were identified, with 81 articles read in full. Seventy-six studies were included for qualitative synthesis. Overall, 40 compounds belonging to different classes are presented in this review, including ecdysteroids, triterpenes, saponins, flavonoids, anthraquinones, tannins, coumarins, alkaloids, and polysaccharides. Among them, flavonoids, anthraquinones, tannins, coumarins, and alkaloids were only putatively identified. ß-Ecdysone, triterpenes, saponins, and polysaccharides are the chemical components most frequently identified and isolated from P. glomerata and possibly responsible for ethnopharmacological use and the biological activities of this species, with important in vitro and in vivo activities, such as anti-inflammatory, antidepressant, aphrodisiac, analgesic, gastroprotective, antioxidant, and prebiotic. CONCLUSIONS: This review summarizes discussions about the P. glomerata species, highlighting its ethnopharmacological, chemical, biotechnological, and nutraceutical importance. New scientific studies on this species are encouraged in the search for new therapeutic molecules with pharmaceutical potential and nutraceutical applications.


Assuntos
Alcaloides , Amaranthaceae , Afrodisíacos , Botânica , Saponinas , Triterpenos , Etnofarmacologia , Ecdisterona , Taninos , Amaranthaceae/química , Brasil , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Prebióticos , Analgésicos , Antraquinonas , Anti-Inflamatórios , Cumarínicos , Flavonoides , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fitoterapia
9.
Artigo em Inglês | MEDLINE | ID: mdl-38521445

RESUMO

The MARK2 gene, coding microtubule affinity-regulating kinase or serine/threonine protein kinase, is an important modulator in organism microtubule generation and cell polarity. However, its role in the metamorphosis of insects remains unknown. In this study, we found a conserved miRNA, miR-7-5p, which targets MARK2 to participate in the regulation of the larval-pupal metamorphosis in Galeruca daurica. The dual luciferase reporter assay showed that miR-7-5p interacted with the 3' UTR of MARK2 and repressed its expression. The expression profiling of miR-7-5p and MARK2 displayed an opposite trend during the larval-adult development process. In in-vivo experiments, overexpression of miR-7-5p by injecting miR-7-5p agomir in the final instar larvae down-regulated MARK2 and up-regulated main ecdysone signaling pathway genes including E74, E75, ECR, FTZ-F1 and HR3, which was similar to the results from knockdown of MARK2 by RNAi. In contrast, repression of miR-7-5p by injecting miR-7-5p antagomir obtained opposite effects. Notably, both overexpression and repression of miR-7-5p in the final instar larvae caused abnormal molting and high mortality during the larval-pupal transition, and high mortality during the pupal-adult transition. The 20-hydroxyecdysone (20E) injection experiment showed that 20E up-regulated miR-7-5p whereas down-regulated MARK2. This study reveals that the accurate regulation of miRNAs and their target genes is indispensable for insect metamorphosis.


Assuntos
Besouros , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Besouros/genética , Metamorfose Biológica/genética , Ecdisterona/farmacologia , Larva/metabolismo
10.
Arch Insect Biochem Physiol ; 115(2): e22089, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409869

RESUMO

Insecticide mode of action studies provide insights into how new insecticidal actives function and contribute to assessing safety to humans and nontarget organisms. Insect cell lines that express potential target sites can serve as valuable tools in this effort. In this paper, we report on the influence of two signaling molecules on protein expression in a nervous system cell line established from Spodoptera frugiperda (Bayer/BCIRL-SfNS2-0714-TR). We selected this line because we established it in our laboratory and we are experienced in using it. Cells were exposed to the insect developmental hormone (1 µg/mL 20-hydroxyecdysone, 20E) and/or a cyclooxygenase (COX) inhibitor (25 µM indomethacin, INDO; inhibits prostaglandin [PG] biosynthesis) for 24 h (Day 2), 72 h (Day 4), or 120 h (Day 6). We selected a PG biosynthesis inhibitor because PGs act in many aspects of insect biology, such as embryonic development, immunity, and protein phosphorylation. We selected the developmental hormone, 20E, because it also acts in fundamental aspects of insect biology. We identified specific proteins via in silico analysis. Changes in protein expression levels were determined using liquid chromatography-mass spectrometry (MS) + MS-MS. The largest number of changes in protein expression occurred on Day 2. The combination of 20E plus INDO led to 222 differentially expressed proteins, which documents the deep significance of PGs and 20E in insect biology. 20E and, separately, INDO led to changes in 30 proteins each (p value < 0.01; >2X or <0.5X-fold changes). We recorded changes in the expression of 9 or 12 proteins (20E), 10 or 6 proteins (INDO), and 21 or 20 proteins (20E + INDO) on D4 and D6, respectively. While the cell line was established from neuronal tissue, the differentially expressed proteins act in a variety of fundamental cell processes. In this paper, we moved beyond a list of proteins by providing detailed, Gene Ontology term analyses and enrichment, which offers an in-depth understanding of the influence of these treatments on the SfNS2 cells. Because proteins are active components of cell physiology in their roles as enzymes, receptors, elements of signaling transduction pathways, and cellular structures, changes in their expression levels under the influence of signaling molecules provide insights into their function in insect cell physiology.


Assuntos
Ecdisterona , Indometacina , Humanos , Animais , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Spodoptera/metabolismo , Insetos/metabolismo , Linhagem Celular , Hormônios , Sistema Nervoso/metabolismo , Proteínas de Insetos/metabolismo
11.
J Biol Chem ; 300(3): 105704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309506

RESUMO

Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.


Assuntos
Autofagia , Ecdisterona , Helicoverpa armigera , Histona Acetiltransferases , Histonas , Processamento de Proteína Pós-Traducional , Acetilação , Autofagia/genética , Ecdisterona/metabolismo , Regiões Promotoras Genéticas , Helicoverpa armigera/genética , Helicoverpa armigera/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo
12.
Folia Neuropathol ; 62(1): 83-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38174686

RESUMO

Oxidative stress is a pivotal stimulating factor in neurocyte apoptosis and has been involved in the pathogenesis of Parkinson's disease (PD). In this study, we have demonstrated that the improvement in the motor disorder of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/Pro-induced mice caused by b-Ecdysterone (b-Ecd) treatment is due to its antioxidant properties. Using open field, rotarod, and pole climbing tests, we have found that b-Ecd alleviates motor disorder in MPTP/Pro-induced mice and ultimately reduces the impairment of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra (SN). Notably, these effects of b-Ecd were not observed in Nrf2-KO mice. In addition, b-Ecd significantly reduced the formation of ROS and the level of MDA, blocked the increase of LPO, and partially reversed the GSH/GSSG ratio in MPTP/Pro-induced WT mice; however, these results were also not observed in MPTP/Pro-induced Nrf2-KO mice. Mechanistically, b-Ecd enhanced the expression levels of heme oxygenase 1 (HO-1) and GCLc, but not NQO1 (NAD(P)H quinone dehydrogenase 1) and GCLm expression. Interestingly, b-Ecd failed to increase the protein and mRNA levels of HO-1 and GCLc in Nrf2-KO mice, suggesting that b-Ecd attenuates oxidative stress through an Nrf2-dependent mechanism. Furthermore, b-Ecd promoted the expressions of PI3K/Akt phosphorylation (activity) and GSK-3b phosphorylation (inactivity). Conversely, administration of b-Ecd markedly decreased Fyn phosphorylation levels. Collectively, our findings suggest that b-Ecd focuses on Nrf2 in reducing MPTP/Pro-induced oxidative stress and subsequent motor deficits by inhibiting its nuclear export through PI3K/Akt/GSK-3b/Fyn pathway regulation. These further indicate that b-Ecd may be an absorbing therapeutic agent for PD.


Assuntos
Ecdisterona , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transtornos Parkinsonianos , Animais , Camundongos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Ecdisterona/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
13.
Arch Insect Biochem Physiol ; 115(1): e22076, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288490

RESUMO

In the present study, we tried to clarify when and how pupal commitment (PT) better to use PC occurs and what is involved in the PT of Bombyx mori. To clarify this, we examined the responsiveness of a wing disc to ecdysone, referring to metamorphosis-related BR-C, development-related Myc and Wnt, and chromatin remodeling-related genes at around the predicted PT stage of the Bombyx wing disc. Wing disc responsiveness to juvenile hormone (JH) and ecdysone was examined using Methoprene and 20-hydroxyecdysone (20E) in vitro. The body weight of B. mori increased after the last larval ecdysis, peaked at Day 5 of the fifth larval instar (D5L5), and then decreased. The responsiveness of the wing disc to JH decreased after the last larval ecdysis up to D3L5. Bmbr-c (the Broad Complex of B. mori) showed enhanced expression in D4L5 wing discs with 20E treatment. Some chromatin remodeler and histone modifier genes (Bmsnr1, Bmutx, and Bmtip60) showed upregulation after being cultured with 20E in D4L5 wing discs. A low concentration of 20E is suggested to induce responsiveness to 20E in D4L5 wing discs. Bmbr-c, Bmsnr1, Bmutx, and Bmtip60 were upregulated after being cultured with a low concentration of 20E in D4L5 wing discs. The expression of Bmmyc and Bmwnt1 did not show a change after being cultured with or without 20E in D4L5 wing discs, while enhanced expression was observed with 20E in D5L5 wing discs. From the present results, we concluded that PT of the wing disc of B. mori occurred beginning on D4L5 with the secretion of low concentrations of ecdysteroids. Bmsnr1, Bmutx, Bmtip60, and BR-C are also involved.


Assuntos
Bombyx , Ecdisona , Animais , Bombyx/metabolismo , Montagem e Desmontagem da Cromatina , Pupa/genética , Pupa/metabolismo , Código das Histonas , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Metamorfose Biológica/fisiologia , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Larva/genética , Larva/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
14.
Insect Mol Biol ; 33(3): 206-217, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38180144

RESUMO

Parasitoids are important components of the natural enemy guild in the biological control of insect pests. They depend on host resources to complete the development of a specific stage or whole life cycle and thus have evolved towards optimal host exploitation strategies. In the present study, we report a specific survival strategy of a fly parasitoid Exorista sorbillans (Diptera: Tachinidae), which is a potential biological control agent for agricultural pests and a pest in sericulture. We found that the expression levels of nitric oxide synthase (NOS) and nitric oxide (NO) production in host Bombyx mori (Lepidoptera: Bombycidae) were increased after E. sorbillans infection. Reducing NOS expression and NO production with an NOS inhibitor (NG-nitro-L-arginine methyl ester hydrochloride) in infected B. mori significantly impeded the growth of E. sorbillans larvae. Moreover, the biosynthesis of 20-hydroxyecdysone (20E) in infected hosts was elevated with increasing NO production, and inhibiting NOS expression lowered 20E biosynthesis. More importantly, induced NO synthesis was required to eliminate intracellular bacterial pathogens that presumably competed for shared host resources. Inhibiting NOS expression down-regulated the transcription of antimicrobial peptide genes and increased the number of bacteria in parasitized hosts. Collectively, this study revealed a new perspective on the role of NO in host-parasitoid interactions and a novel mechanism for parasitoid regulation of host physiology to support its development.


Assuntos
Bombyx , Dípteros , Ecdisterona , Interações Hospedeiro-Parasita , Óxido Nítrico , Animais , Bombyx/genética , Bombyx/microbiologia , Bombyx/parasitologia , Dípteros/fisiologia , Ecdisterona/metabolismo , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/genética
15.
BMC Genomics ; 25(1): 35, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183039

RESUMO

BACKGROUND: Macrobrachium nipponense is a freshwater prawn of economic importance in China. Its reproductive molt is crucial for seedling rearing and directly impacts the industry's economic efficiency. 20-hydroxyecdysone (20E) controls various physiological behaviors in crustaceans, among which is the initiation of molt. Previous studies have shown that 20E plays a vital role in regulating molt and oviposition in M. nipponense. However, research on the molecular mechanisms underlying the reproductive molt and role of 20E in M. nipponense is still limited. RESULTS: A total of 240.24 Gb of data was obtained from 18 tissue samples by transcriptome sequencing, with > 6 Gb of clean reads per sample. The efficiency of comparison with the reference transcriptome ranged from 87.05 to 92.48%. A total of 2532 differentially expressed genes (DEGs) were identified. Eighty-seven DEGs associated with molt or 20E were screened in the transcriptomes of the different tissues sampled in both the experimental and control groups. The reliability of the RNA sequencing data was confirmed using Quantitative Real-Time PCR. The expression levels of the eight strong candidate genes showed significant variation at the different stages of molt. CONCLUSION: This study established the first transcriptome library for the different tissues of M. nipponense in response to 20E and demonstrated the dominant role of 20E in the molting process of this species. The discovery of a large number of 20E-regulated strong candidate DEGs further confirms the extensive regulatory role of 20E and provides a foundation for the deeper understanding of its molecular regulatory mechanisms.


Assuntos
Palaemonidae , Transcriptoma , Feminino , Animais , Ecdisterona/farmacologia , Palaemonidae/genética , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica
16.
Artigo em Inglês | MEDLINE | ID: mdl-38193341

RESUMO

Ecdysone-induced protein 93 (E93) is a metamorphic determinant involved in crosstalk between 20-hydroxyecdysone (20E) and juvenile hormone (JH) during the insect molting process. The present study identified the E93 gene from the swimming crab, P. trituberculatus, and found it was widely distributed in adult tissues. PtE93 mRNA levels in Y-organ and epidermis fluctuated during the molt cycle, suggesting its involvement in juvenile molting. In vitro and in vivo treatments with 20E led to an induction of PtE93 expression in Y-organ and epidermis, while we found the opposite effect for methyl farnesoate (MF) treatments, a crustacean equivalent of insect JH. We also observed that two genes for ecdysteroid biosynthesis, Spook (Spo) and Shadow (Sad), were suppressed by 20E and induced by MF, showing a negative correlation between PtE93 and ecdysteroid biosynthesis. PtE93 RNA interference (RNAi) induced Spo and Sad expression levels, elevated ecdysteroid content in culture medium, and relieved the 20E inhibitory effect on ecdysteroid synthesis, indicating an inhibitory role of PtE93 on ecdysteroid synthesis. Overall, our results suggest that E93 may be involved in the crosstalk between 20E and MF during crustacean molting, and its presence in Y-organ is closely related to ecdysteroid synthesis.


Assuntos
Braquiúros , Animais , Braquiúros/genética , Ecdisteroides , Ecdisterona/farmacologia , Hormônios Juvenis
17.
Insect Sci ; 31(1): 47-58, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37368860

RESUMO

Metamorphosis is a complex developmental process involving multiple pathways and a large number of genes that are regulated by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Despite important progress in understanding various aspects of silkworm biology, the hormone signaling pathway in the silkworm remains poorly understood. Genome-wide screening using clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9)-based libraries has recently emerged as a novel method for analyzing genome function, enabling further research into essential genes, drug targets, and virus-host interaction. Previously, we constructed a genome-wide CRISPR/Cas9-based library of the silkworm (Bombyx mori) and successfully revealed the genes involved in biotic or abiotic stress factor responses. In this study, we used our silkworm CRISPR library and large-scale genome-wide screening to analyze the key genes in the silkworm 20E signaling pathway and their mechanisms of action. Functional annotation showed that 20E regulates key proteins in processes that mainly occur in the cytoplasm and nucleus. Pathway enrichment analysis showed that 20E can activate phosphorylation and may affect innate immunity, interfere with intracellular nutrition and energy metabolism, and eventually cause cell apoptosis. The screening results were experimentally validated by generating cells with knockout alleles of the relevant genes, which had increased tolerance to 20E. Our findings provide a panoramic overview of signaling in response to 20E in the silkworm, underscoring the utility of genome-wide CRISPR mutant libraries in deciphering hormone signaling pathways and the mechanisms that regulate metamorphosis in insects.


Assuntos
Bombyx , Ecdisterona , Animais , Ecdisterona/metabolismo , Bombyx/metabolismo , Metamorfose Biológica/genética , Hormônios Juvenis/metabolismo , Transdução de Sinais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
18.
Pest Manag Sci ; 80(3): 1137-1144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37872844

RESUMO

BACKGROUND: To control subterranean termite pests, chitin synthesis inhibitor (CSI) baits have been widely applied. Despite CSI baits having low impacts on the environment, they require a lengthy time period to eliminate colonies. 20-hydroxyecdysone (20E) was proposed to speed up the baiting process as it showed faster mortality than CSI baits. However, the efficacy of 20E has previously not been tested at the colony level prior to applying in the field. RESULTS: We compared the effect of 20E, 20E + noviflumuron, noviflumuron and untreated control using colonies of Coptotermes formosanus. Our result revealed that both 20E and 20E + noviflumuron did not accelerate colony elimination and termite activity remained relatively stable during the observation periods. To determine the limited effects of 20E, we further investigated feeding duration and consumption amount of 20E with different concentrations (control, 100 and 1000 ppm) for 10 days. Termites ceased feeding after 1 day in 100 and 1000 ppm treatment and 100% mortality was observed within 10 days in 1000 ppm 20E, while mortality in the 100 ppm 20E treated group was much lower than that in the 1000 ppm group. Furthermore, no termites molted in the control and termites died from hyperecdysonism in 1000 ppm 20E treatment, whereas about 20% of termites molted in 100 ppm 20E. CONCLUSION: This study demonstrated that 20E may not be suitable as a sole active ingredient to accelerate elimination of a subterranean termite colony, while CSI baits and lower concentrations of 20E may reduce the lengthy time period in colony elimination. © 2023 Society of Chemical Industry.


Assuntos
Benzamidas , Fluorocarbonos , Inseticidas , Isópteros , Animais , Ecdisterona , Controle de Insetos , Hidrocarbonetos Fluorados
19.
Pestic Biochem Physiol ; 197: 105706, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072559

RESUMO

The Dpp signaling, as one of the branches within the TGF-ß superfamily, plays a crucial role in regulating various biological processes in insects. However, its impact on female reproduction through vitellogenesis remains unclear. In this study, the expression profiles implied that the Dpp signaling genes, including Dpp, Punt, Mad, and Medea, were up-regulated during reproductive development in the ovary of Colaphellus bowringi. Knockdown of these five Dpp signaling genes revealed significant effects of Dpp, Tkv, Mad, and Medea on ovarian development through vitellogenesis in the fat body. Our finding further indicated that Dpp signaling influences the expression of 20-hydroxyecdysone (20E) receptor and responsive genes in the fat body. Additionally, knockdown of 20E receptor EcR resulted in similar phenotypes as observed in the Dpp pathway genes knockdown, implying a regulatory role for Dpp signaling via EcR in vitellogenesis. Furthermore, knocking down Dpp, Tkv, and EcR in female adults led to a reduction in total dry weight and protein content, as well as the expression of mTOR, a factor linked to protein intake. These results suggest that the Dpp signaling pathway modulates vitellogenesis by impacting the AA/TOR-mediated 20E pathway in the fat body, providing novel insights into the network governing insect reproduction and offering potential targets for controlling female pest reproduction.


Assuntos
Brassica , Besouros , Animais , Feminino , Besouros/genética , Besouros/metabolismo , Ecdisterona/metabolismo , Brassica/metabolismo , Vitelogênese , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Insetos/metabolismo
20.
Environ Sci Pollut Res Int ; 30(60): 126104-126115, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010540

RESUMO

In Daphnia magna, 20-hydroecdysone (20E) is the main molting hormone and its metabolism is of interest to identify new biomarkers of exposure to contaminants. The present study aimed to (i) assess baseline levels of 20E and transcription levels of four related-genes (shade, neverland, ultraspiracle, and ecdysteroid receptor); and (ii) evaluate effects in D. magna after 21 days of exposure to fenarimol (anti-ecdysteroid) and a mixture of gemfibrozil and clofibric acid (lipid-lowering drugs) at sublethal concentrations. Endpoints included transcription of the target genes and quantification of 20E, mortality, and reproduction of daphnids. Baseline results showed that average responses were relatively similar and did not vary more than 2-fold. However, intra-day variation was generally high and could be explained by sampling individuals with slightly different stages of their development. Exposure tests indicated a significant decrease in daphnid reproduction following chronic exposure to a concentration of 565 µg/L of fenarimol. However, no difference was observed between the control and exposed groups for any of the investigated genes, nor for the levels of 20E after 21 days of exposure. Following exposition to gemfibrozil and clofibric acid at 1 µg/L, no changes were observed for the measured parameters. These results suggest that changes in transcription levels of the target genes and concentrations of 20E may not be sensitive endpoints that can be used as biomarkers of sublethal exposure to the target compounds in D. magna. Measuring multiple time points instead of a single measure as well as additional molecular endpoints obtained from transcriptomic and metabolomic studies could afford more insights on the changes occurring in exposed daphnids to lipid-altering compounds and identify efficient biomarkers of sublethal exposure.


Assuntos
Ecdisterona , Poluentes Químicos da Água , Humanos , Animais , Ecdisterona/metabolismo , Ecdisterona/farmacologia , Muda/genética , Genfibrozila/toxicidade , Reprodução , Biomarcadores/metabolismo , Ácido Clofíbrico/metabolismo , Ácido Clofíbrico/farmacologia , Daphnia , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...