Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 6(2)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32108566

RESUMO

Edwardsiella ictaluri and Edwardsiella piscicida are important fish pathogens affecting cultured and wild fish worldwide. To investigate the genome-level differences and similarities between catfish-adapted strains in these two species, the complete E. ictaluri 93-146 and E. piscicida C07-087 genomes were evaluated by applying comparative genomics analysis. All available complete (10) and non-complete (19) genomes from five Edwardsiella species were also included in a systematic analysis. Average nucleotide identity and core-genome phylogenetic tree analyses indicated that the five Edwardsiella species were separated from each other. Pan-/core-genome analyses for the 29 strains from the five species showed that genus Edwardsiella members have 9474 genes in their pan genome, while the core genome consists of 1421 genes. Orthology cluster analysis showed that E. ictaluri and E. piscicida genomes have the greatest number of shared clusters. However, E. ictaluri and E. piscicida also have unique features; for example, the E. ictaluri genome encodes urease enzymes and cytochrome o ubiquinol oxidase subunits, whereas E. piscicida genomes encode tetrathionate reductase operons, capsular polysaccharide synthesis enzymes and vibrioferrin-related genes. Additionally, we report for what is believed to be the first time that E. ictaluri 93-146 and three other E. ictaluri genomes encode a type IV secretion system (T4SS), whereas none of the E. piscicida genomes encode this system. Additionally, the E. piscicida C07-087 genome encodes two different type VI secretion systems. E. ictaluri genomes tend to encode more insertion elements, phage regions and genomic islands than E. piscicida. We speculate that the T4SS could contribute to the increased number of mobilome elements in E. ictaluri compared to E. piscicida. Two of the E. piscicida genomes encode full CRISPR-Cas regions, whereas none of the E. ictaluri genomes encode Cas proteins. Overall, comparison of the E. ictaluri and E. piscicida genomes reveals unique features and provides new insights on pathogenicity that may reflect the host adaptation of the two species.


Assuntos
Edwardsiella ictaluri/genética , Edwardsiella/genética , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Genoma Bacteriano , Animais , Peixes-Gato/microbiologia , Edwardsiella/isolamento & purificação , Edwardsiella/metabolismo , Edwardsiella ictaluri/isolamento & purificação , Edwardsiella ictaluri/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Genômica , Filogenia
2.
J Fish Dis ; 42(6): 835-850, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851008

RESUMO

The genus Edwardsiella is one of the major causes of fish diseases globally. Herein, we examined 37 isolates from ten different fish species from India, South Korea and Taiwan to gain insight into their phenotypic and genotypic properties, of which 30 were characterized as E. tarda with phenotypic homology estimated at 85.71% based on API-20E biochemical tests. Genotyping using 16S rRNA put all isolates together with E. anguillarum, E. hoshinae, E. tarda, E. piscicida and E. ictaluri reference strains in a monophyletic group. In contrast, the gyrB phylogenetic tree clearly separated E. ictaluri, E. tarda and E. hoshinae reference strains from our isolates and put our isolates into two groups with group I being homologous with the E. anguillarum reference strain while group II was homologous with the E. piscicida reference strain. Hence, our findings point to E. piscicida and E. anguillarum as species infecting different fish species in Asia. Homology of the ompW protein suggested that strains with broad protective coverage could be identified as vaccine candidates. This study underscores the importance of combining genotyping with phenotyping for valid species classification. In addition, it accentuates the importance of phylogenetic comparison of bacterial antigens for identification of potential vaccine candidates.


Assuntos
Edwardsiella/genética , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Animais , Aquicultura , Ásia/epidemiologia , Vacinas Bacterianas , DNA Bacteriano/genética , Surtos de Doenças , Edwardsiella/isolamento & purificação , Edwardsiella tarda/genética , Infecções por Enterobacteriaceae/epidemiologia , Doenças dos Peixes/epidemiologia , Genótipo , Geografia , Índia/epidemiologia , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Alimentos Marinhos/microbiologia , Análise de Sequência de DNA
4.
J Fish Dis ; 41(11): 1613-1623, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30039873

RESUMO

A total of 127 wild eels caught in the L'Albufera Lake (Spain) and 24 samples of lagoon freshwater were analysed for 1-year period. Edwardsiella strains were isolated from liver/kidney on TSA-1 plates in 31.9% of total diseased specimens, and the edwardsiellosis prevalence in the fishery was of 11.8%. The use of double-strength Salmonella-Shigella (DSSS) broth and SS agar yielded Edwardsiella isolation from intestine in 100% of those edwardsiellosis-diseased eels, but also in 40.4% of other sick fish with vibriosis or aeromonosis and in 28.8% of healthy eels, as well as from freshwater in 8.3% of samples. Pure cultures were isolated on SS agar from the former, but motile Aeromonas, Plesiomonas shigelloides and Hafnia alvei were recovered along with Edwardsiella in the other samples. Edwardsiella isolates identification at species level revealed that E. piscicida was distributed between wild eels and freshwater but E. tarda only did in freshwater. All E. piscicida strains were virulent for eels (LD  < 1.0 × 106 CFU/fish) but that of E. tarda was not. This is the first report of E. piscicida in wild eel intestines and natural freshwater, highlighting its role as potential reservoirs for the bacterium. A seasonal recovery was found for E. piscicida at water temperature above 20°C.


Assuntos
Anguilla , Edwardsiella/isolamento & purificação , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/epidemiologia , Lagos/microbiologia , Animais , Edwardsiella/patogenicidade , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Incidência , Prevalência , Espanha/epidemiologia , Virulência
5.
Syst Appl Microbiol ; 41(1): 30-37, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29150173

RESUMO

Until 2012, the genus Edwardsiella was composed by three species Edwardsiella tarda, Edwardsiella hoshinae and Edwardsiella ictaluri. In 2013, Edwardsiella piscicida, compiling fish pathogenic strains previously identified as E. tarda was described, and more recently a new species isolated from diseased eel was reported, namely Edwardsiella anguillarum. The incorporation of these species into the genus makes necessary a revision of the taxonomic position of the isolates previously identified as E. tarda. Using AFLP technique, MLSA studies and in silico DNA-DNA hybridization, 46 of 49 E. tarda isolates were re-assigned as E. piscicida and 2 as E. anguillarum, whereas it was confirmed previous classification of the Edwardsiella types and reference strains used. The study of the taxonomic resolution of the genes 16S rRNA, adk, atpD, dnaJ, glnA, hsp60, tuf as well as the possible combinations among housekeeping genes, showed that the gene dnaJ was the more resolutive. In conclusion, the use of molecular techniques is necessary to accurately identify Edwardsiella isolates, especially when differentiating new species from E. tarda.


Assuntos
Edwardsiella/classificação , Edwardsiella/isolamento & purificação , Peixes/microbiologia , Filogenia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Edwardsiella/genética , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Dis Aquat Organ ; 121(2): 141-148, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27667811

RESUMO

An Edwardsiella sp. was isolated from the kidney of diseased groupers (Epinephelus aeneus and E. marginatus) cultured in Eilat (Israel, Red Sea). Affected fish presented a severe suppurative nephritis with large abscesses occasionally spreading into the surrounding musculature. Biochemical profiles and phenotypic comparisons failed to provide a clear identification to the species level, and genetic analysis of the 16S subunit failed to discriminate between Edwardsiella piscicida, E. tarda and E. ictaluri. Analysis of the gyrB gene, however, placed the grouper isolates into the E. piscicida-like group, a newly recognized taxon which also encompasses the non-motile strains previously classified as atypical E. tarda. Initial genomic analysis revealed the presence of the Edwardsiella type 3 secretion system (T3SS) but also revealed a pathogenicity island encoding a second T3SS with homology to the locus of enterocyte effacement of Escherichia coli. Further analysis revealed 3 different type 6 secretion systems that were also present in all sequenced isolates of Edwardsiella piscicida-like strains. Based on estimated DNA-DNA hybridization values and the average nucleotide index, the grouper strain fits into the E. piscicida-like phylogroup described as E. anguillarum sp. nov. The peculiarities associated with this isolate and the association of other conspecific piscine isolates from multiple marine and brackish water species suggest a link of the entire E. piscicida-like phylogroup to the marine environment.


Assuntos
Edwardsiella/isolamento & purificação , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Perciformes/fisiologia , Animais , Aquicultura , Infecções por Enterobacteriaceae/microbiologia
7.
J Vet Diagn Invest ; 28(3): 338-44, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26951328

RESUMO

The genus Edwardsiella is composed of a diverse group of facultative anaerobic, gram-negative bacteria that can produce disease in a wide variety of hosts, including birds, reptiles, mammals, and fish. Our report describes the isolation and identification of Edwardsiella piscicida associated with chronic mortality events in 2 separate captive largemouth bass (Micropterus salmoides) populations in New York and Florida. Wet-mount biopsies of skin mucus, gill, kidney, and spleen from several affected largemouth bass contained significant numbers of motile bacteria. Histologic examination revealed multifocal areas of necrosis scattered throughout the heart, liver, anterior kidney, posterior kidney, and spleen. Many of the necrotic foci were encapsulated or replaced by discrete granulomas and associated with colonies of gram-negative bacteria. Initial phenotypic and matrix-assisted laser desorption ionization-time of flight mass spectrometric analysis against existing spectral databases of recovered isolates identified these bacteria as Edwardsiella tarda Subsequent molecular analysis using repetitive sequence mediated and species-specific PCR, as well as 16S rRNA, rpoB, and gyrB sequences, classified these isolates as E. piscicida As a newly designated taxon, E. piscicida should be considered as a differential for multiorgan necrosis and granulomas in largemouth bass.


Assuntos
Bass , Edwardsiella/isolamento & purificação , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/epidemiologia , Animais , Edwardsiella/genética , Infecções por Enterobacteriaceae/epidemiologia , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/microbiologia , Florida/epidemiologia , New York/epidemiologia , Reação em Cadeia da Polimerase/veterinária , RNA Ribossômico 16S/análise , Especificidade da Espécie
8.
J Vet Diagn Invest ; 27(2): 130-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25613040

RESUMO

Researchers have proposed the adoption of 3 distinct genetic taxa among bacteria previously classified as Edwardsiella tarda; namely E. tarda, E. piscicida, and a taxon presently termed E. piscicida-like. Individual real-time polymerase chain reaction (qPCR) assays were developed, based on published primers, for E. tarda, E. piscicida, and E. piscicida-like sp. to provide rapid quantitative confirmatory tests for these phenotypically ambiguous bacteria. The qPCR assays were shown to be repeatable and reproducible, with high degrees of sensitivity and specificity. Each assay showed a linear dynamic range covering 8 orders of magnitude and a sensitivity limit of 5 copies of target DNA in a 15-µL reaction. In addition, each assay was found specific to their respective targets with no observed amplification from nontarget organisms, including the closely related E. ictaluri and E. hoshinae. Under the conditions used in this study, the 3 assays had a quantifiable limit ranging from 10(3) (E. piscicida) to 10(2) (E. piscicida-like and E. tarda) colony forming units in kidney tissue biopsies (approximately 25 mg), pond water samples (35 mL), and broth culture (20 µL). In experimental challenges, the assays were able to detect their respective targets in both clinically and subclinically infected channel catfish (Ictalurus punctatus) fingerlings. In addition to quantifying target bacteria from various substrates, the assays provide rapid identification, differentiation, and confirmation of the phenotypically indistinguishable E. tarda, E. piscicida, and E. piscicida-like sp., a valuable tool for diagnostic assessments.


Assuntos
Edwardsiella/isolamento & purificação , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Ictaluridae , Animais , Primers do DNA , DNA Bacteriano/análise , Edwardsiella/genética , Edwardsiella tarda/genética , Edwardsiella tarda/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Lagoas , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Sensibilidade e Especificidade , Microbiologia da Água
9.
Lett Appl Microbiol ; 59(5): 471-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25041355

RESUMO

UNLABELLED: Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This mPCR assay provides a rapid, specific and sensitive tool for the detection or identification of common fish pathogenic bacteria in aquaculture practice.


Assuntos
Bactérias/isolamento & purificação , Peixes/microbiologia , Reação em Cadeia da Polimerase Multiplex/métodos , Aeromonas/genética , Aeromonas/isolamento & purificação , Animais , Primers do DNA , Edwardsiella/genética , Edwardsiella/isolamento & purificação , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Streptococcus/genética , Streptococcus/isolamento & purificação , Vibrio/genética , Vibrio/isolamento & purificação
10.
Reprod Domest Anim ; 49(4): 641-647, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24889379

RESUMO

Canine pyometra is a dioestrus period disease in which systemic inflammatory response syndrome (SIRS) is a common outcome due to the response of the body to the bacterial infection. The purpose of this study was i) to differentiate canine pyometra and cystic endometrial hyperplasia (CEH)/mucometra by measuring serum C-reactive protein (CRP) and prostaglandin F2α metabolite (PGFM) concentrations in blood and ii) to compare serum concentrations of CRP and PGFM in bitches with a pathological uterus (pyometra or CEH/mucometra) to concentrations in bitches with a healthy uterus. Mean CRP concentrations were found significantly higher (p < 0.001) in dogs with pyometra compared to those with CEH/mucometra or healthy uterus. However, no statistical difference could be detected between the groups for mean PGFM concentrations. Mean white blood cell count (WBC), alkaline phosphatase (ALP) and total protein concentrations were found significantly higher (p < 0.001) in dogs with pyometra. Escherichia coli was the most frequently isolated microorganism from dogs with pyometra (64.3%). Edwardsiella spp. was detected in a single case of pyometra for the first time. In conclusion, our results demonstrate that serum CRP concentrations were increased in dogs with pyometra and thus we conclude that serum CRP concentration but not PGFM might be useful as a marker to differentiate a case of CEH/mucometra from pyometra in female dogs. To the authors' knowledge, this is the first report in which Edwardsiella spp. has been isolated in the canine uterus.


Assuntos
Proteína C-Reativa/análise , Dinoprosta/análogos & derivados , Doenças do Cão/sangue , Hiperplasia Endometrial/veterinária , Piometra/veterinária , Fosfatase Alcalina/sangue , Animais , Proteínas Sanguíneas/análise , Diagnóstico Diferencial , Dinoprosta/sangue , Doenças do Cão/patologia , Cães , Edwardsiella/isolamento & purificação , Hiperplasia Endometrial/sangue , Feminino , Contagem de Leucócitos/veterinária , Piometra/sangue , Piometra/microbiologia , Especificidade da Espécie , Útero/patologia
11.
Dis Aquat Organ ; 108(1): 23-35, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24492051

RESUMO

A new Edwardsiella taxon was recently described from fishes of Europe and Asia. Phenotypically similar to E. tarda, extensive genetic and phenotypic characterization determined this new strain does not belong to any established Edwardsiella taxa, leading to the adoption of a new taxon, E. piscicida. Concurrent research in the USA also identified 2 genetically distinct taxa within the group of organisms traditionally classified as E. tarda. Comparisons of gyrB sequences between US isolates and E. piscicida from Europe and Asia identified several US isolates with >99.6% similarity to the gyrB sequence of the E. piscicida type strain (ET883) but <87% similarity to the E. tarda type strain (ATCC #15947). A discriminatory PCR was developed for the identification of E. tarda and 2 genetic variants of E. piscicida (E. piscicida and E. piscicida-like species). Using these PCR assays, a survey was conducted of 44 archived bacterial specimens from disease case submissions to the Aquatic Research and Diagnostic Laboratory (Stoneville, MS, USA) between 2007 and 2012. All 44 isolates, originally identified phenotypically and biochemically as E. tarda, were identified as E. piscicida by PCR. Repetitive sequence-mediated PCR (rep-PCR) analysis of these archived specimens suggests they are largely homogenous, similar to what has been observed for E. ictaluri. The gyrB sequence data, coupled with the E. piscicida specific-PCR and rep-PCR data, confirms that E. piscicida has been isolated from fish disease cases in the southeastern USA. Moreover, our survey data suggests E. piscicida may be more prevalent in catfish aquaculture than E. tarda.


Assuntos
DNA Girase/metabolismo , Edwardsiella/genética , Reação em Cadeia da Polimerase/veterinária , Animais , DNA Girase/genética , DNA Bacteriano/genética , Edwardsiella/classificação , Edwardsiella/isolamento & purificação , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Peixes , Filogenia , Reação em Cadeia da Polimerase/métodos , Sudeste dos Estados Unidos/epidemiologia , Especificidade da Espécie
12.
J Appl Microbiol ; 99(3): 657-69, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16108808

RESUMO

AIMS: To analyse interspecies and intraspecies differences based on the 16S-23S rRNA intergenic spacer region (ISR) sequences of the fish pathogens Edwardsiella ictaluri and Edwardsiella tarda. METHODS AND RESULTS: The 16S-23S rRNA spacer regions of 19 Edw. ictaluri and four Edw. tarda isolates from four geographical regions were amplified by PCR with primers complementary to conserved sequences within the flanking 16S-23S rRNA coding sequences. Two products were generated from all isolates, without interspecies or intraspecific size polymorphisms. Sequence analysis of the amplified fragments revealed a smaller ISR of 350 bp, which contained a gene for tRNA(Glu), and a larger ISR of 441 bp, which contained genes for tRNA(Ile) and tRNA(Ala). The sequences of the smaller ISR of different Edw. ictaluri isolates were essentially identical to each other. Partial sequences of larger ISR from several Edw. ictaluri isolates also revealed no differences from the one complete Edw. ictaluri large ISR sequence obtained. The sequences of the smaller ISR of Edw. tarda were 97% identical to the Edw. ictaluri smaller ISR and the larger ISR were 96-98% identical to the Edw. ictaluri larger ISR sequence. The Edw. tarda isolates displayed limited ISR sequence heterogeneity, with > or =97% sequence identity among isolates for both small and large ISR. CONCLUSIONS: There is a high degree of size and sequence similarity of 16S-23S ISR both among isolates within Edw. ictaluri and Edw. tarda species and between the two species. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results confirm a close genetic relationship between Edw. ictaluri and Edw. tarda and the relative homogeneity of Edw. ictaluri isolates compared with Edw. tarda isolates. Because no differences were found in ISR sequences among Edw. ictaluri isolates, sequence analysis of the ISR will not be useful to distinguish isolates of Edw. ictaluri. However, we identified restriction sites that differ between ISR sequences of Edw. ictaluri and Edw. tarda, which will be useful in distinguishing the two species.


Assuntos
DNA Espaçador Ribossômico/genética , Edwardsiella/genética , Peixes/microbiologia , RNA Bacteriano/genética , RNA Ribossômico/genética , Animais , Sequência de Bases , DNA Bacteriano/genética , Edwardsiella/isolamento & purificação , Edwardsiella ictaluri/genética , Edwardsiella ictaluri/isolamento & purificação , Edwardsiella tarda/genética , Edwardsiella tarda/isolamento & purificação , Enterobacteriaceae/genética , Óperon/genética , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de DNA/métodos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...