Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.068
Filtrar
1.
J Neuroinflammation ; 21(1): 118, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715090

RESUMO

Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.


Assuntos
Encéfalo , Citocinas , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento , Placenta , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Feminino , Animais , Gravidez , Masculino , Citocinas/metabolismo , Citocinas/genética , Camundongos , Encéfalo/metabolismo , Encéfalo/imunologia , Encéfalo/embriologia , Placenta/metabolismo , Placenta/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/metabolismo , Poli I-C/toxicidade , Transcriptoma , Modelos Animais de Doenças , Feto/metabolismo
2.
Epigenetics Chromatin ; 17(1): 14, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715099

RESUMO

BACKGROUND: Prenatal nicotine exposure (PNE) has been documented to cause numerous deleterious effects on fetal development. However, the epigenetic changes promoted by nicotine exposure on germ cells are still not well understood. OBJECTIVES: In this study, we focused on elucidating the impact of prenatal nicotine exposure on regulatory epigenetic mechanisms important for germ cell development. METHODS: Sprague-Dawley rats were exposed to nicotine during pregnancy and male progeny was analyzed at 11 weeks of age. Testis morphology was analyzed using frozen testis sections and expression of germ cell markers was examined by RT-qPCR; histone modifications were assessed by Western Blot (WB). DNA methylation analysis was performed by methylation-specific PCR of bisulfite converted DNA. Genome-wide DNA methylation was analyzed using Methylated DNA immunoprecipitation (MeDIP)-seq. We also carried out transcriptomics analysis of pituitary glands by RNA-seq. RESULTS: We show that gestational exposure to nicotine reduces germ cell numbers, perturbs meiosis, affects the expression of germ line reprogramming responsive genes, and impacts the DNA methylation of nervous system genes in the testis. PNE also causes perturbation of gene expression in the pituitary gland of the brain. CONCLUSIONS: Our data demonstrate that PNE leads to perturbation of male spermatogenesis, and the observed effects are associated with changes of peripheral nervous system signaling pathways. Alterations in the expression of genes associated with diverse biological activities such as cell migration, cell adhesion and GABA signaling in the pituitary gland underscore the complexity of the effects of nicotine exposure during pregnancy.


Assuntos
Metilação de DNA , Epigênese Genética , Nicotina , Efeitos Tardios da Exposição Pré-Natal , Ratos Sprague-Dawley , Testículo , Animais , Masculino , Feminino , Gravidez , Ratos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Epigênese Genética/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Sistema Nervoso Periférico/efeitos dos fármacos , Sistema Nervoso Periférico/metabolismo
3.
BMJ ; 385: e076885, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777351

RESUMO

OBJECTIVE: To evaluate the association between antibiotic use during pregnancy or early infancy and the risk of neurodevelopmental disorders in children. DESIGN: Nationwide population based cohort study and sibling analysis. SETTING: Korea's National Health Insurance Service mother-child linked database, 2008-21. PARTICIPANTS: All children live born between 2009 and 2020, followed up until 2021 to compare those with and without antibiotic exposure during pregnancy or early infancy (first six months of life). MAIN OUTCOMES MEASURES: Autism spectrum disorder, intellectual disorder, language disorder, and epilepsy in children. After 1:1 propensity score matching based on many potential confounders, hazard ratios with 95% confidence interval were estimated using Cox proportional hazard models. A sibling analysis additionally accounted for unmeasured familial factors. RESULTS: After propensity score matching, 1 961 744 children were identified for the pregnancy analysis and 1 609 774 children were identified for the early infancy analysis. Although antibiotic exposure during pregnancy was associated with increased risks of all four neurodevelopmental disorders in the overall cohort, these estimates were attenuated towards the null in the sibling analyses (hazard ratio for autism spectrum disorder 1.06, 95% confidence interval 1.01 to 1.12; intellectual disorder 1.00, 0.93 to 1.07; language disorder 1.05, 1.02 to 1.09; and epilepsy 1.03, 0.98 to 1.08). Likewise, no association was observed between antibiotic exposure during early infancy and autism spectrum disorder (hazard ratio 1.00, 0.96 to 1.03), intellectual disorder (1.07, 0.98 to 1.15), and language disorder (1.04, 1.00 to 1.08) in the sibling analyses; however, a small increased risk of epilepsy was observed (1.13, 1.09 to 1.18). The results generally remained consistent across several subgroup and sensitivity analyses, except for slightly elevated risks observed among children who used antibiotics during very early life and those who used antibiotics for more than 15 days. CONCLUSIONS: In this large cohort study, antibiotic exposure during pregnancy or early infancy was not associated with an increased risk of autism spectrum disorder, intellectual disorder, or language disorder in children. However, elevated risks were observed in several subgroups such as children using antibiotics during very early life and those with long term antibiotic use, which warrants attention and further investigation. Moreover, antibiotic use during infancy was modestly associated with epilepsy, even after control for indications and familial factors. When prescribing antibiotics to pregnant women and infants, clinicians should carefully balance the benefits of use against potential risks.


Assuntos
Antibacterianos , Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Transtornos da Linguagem , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/induzido quimicamente , Gravidez , Epilepsia/tratamento farmacológico , Epilepsia/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Lactente , Antibacterianos/efeitos adversos , Masculino , Deficiência Intelectual/epidemiologia , Pré-Escolar , Transtornos da Linguagem/epidemiologia , Transtornos da Linguagem/induzido quimicamente , Estudos de Coortes , República da Coreia/epidemiologia , Fatores de Risco , Recém-Nascido , Modelos de Riscos Proporcionais , Criança , Pontuação de Propensão , Adulto
4.
Cell Biol Toxicol ; 40(1): 37, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777957

RESUMO

Bisphenol A (BPA) is a common component in the manufacture of daily plastic consumer goods. Recent studies have suggested that prenatal exposure to BPA can increase the susceptibility of offspring to mental illness, although the underlying mechanisms remain unclear. In this study, we performed transcriptomic and epigenomic profiling in the adult mouse brain following prenatal exposure to low-dose BPA. We observed a sex-specific transcriptional dysregulation in the cortex, with more significant differentially expressed genes was observed in adult cortex from male offspring. Moreover, the upregulated genes primarily influenced neuronal functions, while the downregulated genes were significantly associated with energy metabolism pathways. More evidence supporting impaired mitochondrial function included a decreased ATP level and a reduced number of mitochondria in the cortical neuron of the BPA group. We further investigated the higher-order chromatin regulatory patterns of DEGs by incorporating published Hi-C data. Interestingly, we found that upregulated genes exhibited more distal interactions with multiple enhancers, while downregulated genes displayed relatively short-range interactions among adjacent genes. Our data further revealed decreased H3K9me3 signal on the distal enhancers of upregulated genes, whereas increased DNA methylation and H3K27me3 signals on the promoters of downregulated genes. In summary, our study provides compelling evidence for the potential health risks associated with prenatal exposure to BPA, and uncovers sex-specific transcriptional changes with a complex interplay of multiple epigenetic mechanisms.


Assuntos
Compostos Benzidrílicos , Encéfalo , Metilação de DNA , Epigênese Genética , Fenóis , Efeitos Tardios da Exposição Pré-Natal , Animais , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Epigênese Genética/efeitos dos fármacos , Masculino , Camundongos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Camundongos Endogâmicos C57BL
5.
Environ Int ; 187: 108720, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718676

RESUMO

BACKGROUND: Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) influences neurodevelopment. Thyroid homeostasis disruption is thought to be a possible underlying mechanism. However, current epidemiological evidence remains inconclusive. OBJECTIVES: This study aimed to explore the effects of prenatal PFAS exposure on the intelligence quotient (IQ) of school-aged children and assess the potential mediating role of fetal thyroid function. METHODS: The study included 327 7-year-old children from the Sheyang Mini Birth Cohort Study (SMBCS). Cord serum samples were analyzed for 12 PFAS concentrations and 5 thyroid hormone (TH) levels. IQ was assessed using the Wechsler Intelligence Scale for Children-Chinese Revised (WISC-CR). Generalized linear models (GLM) and Bayesian Kernel Machine Regression (BKMR) were used to evaluate the individual and combined effects of prenatal PFAS exposure on IQ. Additionally, the impact on fetal thyroid function was examined using a GLM, and a mediation analysis was conducted to explore the potential mediating roles of this function. RESULTS: The molar sum concentration of perfluorinated carboxylic acids (ΣPFCA) in cord serum was significantly negatively associated with the performance IQ (PIQ) of 7-year-old children (ß = -6.21, 95 % confidence interval [CI]: -12.21, -0.21), with more pronounced associations observed among girls (ß = -9.57, 95 % CI: -18.33, -0.81) than in boys. Negative, albeit non-significant, cumulative effects were noted when considering PFAS mixture exposure. Prenatal exposure to perfluorooctanoic acid, perfluorononanoic acid, and perfluorooctanesulfonic acid was positively associated with the total thyroxine/triiodothyronine ratio. However, no evidence supported the mediating role of thyroid function in the link between PFAS exposure and IQ. CONCLUSIONS: Increased prenatal exposure to PFASs negatively affected the IQ of school-aged children, whereas fetal thyroid function did not serve as a mediator in this relationship.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Inteligência , Efeitos Tardios da Exposição Pré-Natal , Glândula Tireoide , Humanos , Feminino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Criança , Gravidez , Fluorocarbonos/toxicidade , Fluorocarbonos/sangue , Masculino , Inteligência/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Poluentes Ambientais/sangue , Poluentes Ambientais/toxicidade , Coorte de Nascimento , Estudos de Coortes , Hormônios Tireóideos/sangue , Testes de Inteligência , China , Exposição Materna/efeitos adversos , Sangue Fetal/química , Ácidos Alcanossulfônicos/sangue , Ácidos Alcanossulfônicos/toxicidade
6.
Biol Sex Differ ; 15(1): 40, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750585

RESUMO

BACKGROUND: Recent studies have shown that prenatal BPA exposure altered the transcriptome profiles of autism-related genes in the offspring's hippocampus, disrupting hippocampal neuritogenesis and causing male-specific deficits in learning. However, the sex differences in the effects of prenatal BPA exposure on the developing prefrontal cortex, which is another brain region highly implicated in autism spectrum disorder (ASD), have not been investigated. METHODS: We obtained transcriptome data from RNA sequencing analysis of the prefrontal cortex of male and female rat pups prenatally exposed to BPA or control and reanalyzed. BPA-responsive genes associated with cortical development and social behaviors were selected for confirmation by qRT-PCR analysis. Neuritogenesis of primary cells from the prefrontal cortex of pups prenatally exposed to BPA or control was examined. The social behaviors of the pups were assessed using the two-trial and three-chamber tests. The male-specific impact of the downregulation of a selected BPA-responsive gene (i.e., Sema5a) on cortical development in vivo was interrogated using siRNA-mediated knockdown by an in utero electroporation technique. RESULTS: Genes disrupted by prenatal BPA exposure were associated with ASD and showed sex-specific dysregulation. Sema5a and Slc9a9, which were involved in neuritogenesis and social behaviors, were downregulated only in males, while Anxa2 and Junb, which were also linked to neuritogenesis and social behaviors, were suppressed only in females. Neuritogenesis was increased in males and showed a strong inverse correlation with Sema5a and Slc9a9 expression levels, whereas, in the females, neuritogenesis was decreased and correlated with Anxa2 and Junb levels. The siRNA-mediated knockdown of Sema5a in males also impaired cortical development in utero. Consistent with Anxa2 and Junb downregulations, deficits in social novelty were observed only in female offspring but not in males. CONCLUSION: This is the first study to show that prenatal BPA exposure dysregulated the expression of ASD-related genes and functions, including cortical neuritogenesis and development and social behaviors, in a sex-dependent manner. Our findings suggest that, besides the hippocampus, BPA could also exert its adverse effects through sex-specific molecular mechanisms in the offspring's prefrontal cortex, which in turn would lead to sex differences in ASD-related neuropathology and clinical manifestations, which deserves further investigation.


Assuntos
Compostos Benzidrílicos , Fenóis , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Comportamento Social , Animais , Feminino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Fenóis/toxicidade , Fenóis/efeitos adversos , Masculino , Compostos Benzidrílicos/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transtorno Autístico/genética , Transtorno Autístico/induzido quimicamente , Ratos Sprague-Dawley , Ratos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética
7.
Sci Rep ; 14(1): 11435, 2024 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-38763939

RESUMO

Autism spectrum disorder (ASD) exhibits a gender bias, with boys more frequently affected than girls. Similarly, in mouse models induced by prenatal exposure to valproic acid (VPA), males typically display reduced sociability, while females are less affected. Although both males and females exhibit VPA effects on neuroinflammatory parameters, these effects are sex-specific. Notably, females exposed to VPA show increased microglia and astrocyte density during the juvenile period. We hypothesized that these distinct neuroinflammatory patterns contribute to the resilience of females to VPA. To investigate this hypothesis, we treated juvenile animals with intraperitoneal bacterial lipopolysaccharides (LPS), a treatment known to elicit brain neuroinflammation. We thus evaluated the impact of juvenile LPS-induced inflammation on adult sociability and neuroinflammation in female mice prenatally exposed to VPA. Our results demonstrate that VPA-LPS females exhibit social deficits in adulthood, overriding the resilience observed in VPA-saline littermates. Repetitive behavior and anxiety levels were not affected by either treatment. We also evaluated whether the effect on sociability was accompanied by heightened neuroinflammation in the cerebellum and hippocampus. Surprisingly, we observed reduced astrocyte and microglia density in the cerebellum of VPA-LPS animals. These findings shed light on the complex interactions between prenatal insults, juvenile inflammatory stimuli, and sex-specific vulnerability in ASD-related social deficits, providing insights into potential therapeutic interventions for ASD.


Assuntos
Transtorno do Espectro Autista , Lipopolissacarídeos , Efeitos Tardios da Exposição Pré-Natal , Comportamento Social , Ácido Valproico , Animais , Feminino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Gravidez , Camundongos , Ácido Valproico/efeitos adversos , Masculino , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/etiologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Animais de Doenças , Comportamento Animal/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Camundongos Endogâmicos C57BL
8.
Toxicol Ind Health ; 40(7): 376-386, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38717040

RESUMO

Earlier research has demonstrated that developmental exposure to bisphenol A (BPA) has persistent impacts on both adult brain growth and actions. It has been suggested that BPA might obstruct the methylation coding of the genes in the brain. In this study, the methylation changes in the hippocampus tissue of male rat pups were examined following prenatal BPA exposure. Pregnant Sprague-Dawley rats were treated with either vehicle (tocopherol-stripped corn oil) or BPA (4, 40, or 400 µg/kg·body weight/day) throughout the entire duration of gestation and lactation. At 3 weeks of age, the male rat offspring were euthanized, and the hippocampus were dissected out for analysis. The expression levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) and DNA demethylases (TET1, Gadd45a, Gadd45b, and Apobec1) were analyzed in the hippocampus by means of quantitative real-time polymerase chain reaction and Western blotting, respectively. The results showed that prenatal exposure to BPA upregulated the expression of enzymes associated with DNA methylation and demethylation processes in the hippocampus of male rat offspring. These findings suggest that prenatal exposure to a low dose of BPA could potentially disrupt the balance of methylation and demethylation in the hippocampus, thereby perturbing epigenetic modifications. This may represent a neurotoxicity mechanism of BPA.


Assuntos
Compostos Benzidrílicos , Metilação de DNA , Hipocampo , Fenóis , Efeitos Tardios da Exposição Pré-Natal , Ratos Sprague-Dawley , Animais , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Gravidez , Masculino , Metilação de DNA/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos
9.
JAMA Netw Open ; 7(5): e2412040, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780942

RESUMO

Importance: Prenatal exposure to ubiquitous endocrine-disrupting chemicals (EDCs) may increase the risk of metabolic syndrome (MetS) in children, but few studies have studied chemical mixtures or explored underlying protein and metabolic signatures. Objective: To investigate associations of prenatal exposure to EDC mixtures with MetS risk score in children and identify associated proteins and metabolites. Design, Setting, and Participants: This population-based, birth cohort study used data collected between April 1, 2003, and February 26, 2016, from the Human Early Life Exposome cohort based in France, Greece, Lithuania, Norway, Spain, and the UK. Eligible participants included mother-child pairs with measured prenatal EDC exposures and complete data on childhood MetS risk factors, proteins, and metabolites. Data were analyzed between October 2022 and July 2023. Exposures: Nine metals, 3 organochlorine pesticides, 5 polychlorinated biphenyls, 2 polybrominated diphenyl ethers (PBDEs), 5 perfluoroalkyl substances (PFAS), 10 phthalate metabolites, 3 phenols, 4 parabens, and 4 organophosphate pesticide metabolites measured in urine and blood samples collected during pregnancy. Main Outcomes and Measures: At 6 to 11 years of age, a composite MetS risk score was constructed using z scores of waist circumference, systolic and diastolic blood pressures, triglycerides, high-density lipoprotein cholesterol, and insulin levels. Childhood levels of 44 urinary metabolites, 177 serum metabolites, and 35 plasma proteins were quantified using targeted methods. Associations were assessed using bayesian weighted quantile sum regressions applied to mixtures for each chemical group. Results: The study included 1134 mothers (mean [SD] age at birth, 30.7 [4.9] years) and their children (mean [SD] age, 7.8 [1.5] years; 617 male children [54.4%] and 517 female children [45.6%]; mean [SD] MetS risk score, -0.1 [2.3]). MetS score increased per 1-quartile increase of the mixture for metals (ß = 0.44; 95% credible interval [CrI], 0.30 to 0.59), organochlorine pesticides (ß = 0.22; 95% CrI, 0.15 to 0.29), PBDEs (ß = 0.17; 95% CrI, 0.06 to 0.27), and PFAS (ß = 0.19; 95% CrI, 0.14 to 0.24). High-molecular weight phthalate mixtures (ß = -0.07; 95% CrI, -0.10 to -0.04) and low-molecular weight phthalate mixtures (ß = -0.13; 95% CrI, -0.18 to -0.08) were associated with a decreased MetS score. Most EDC mixtures were associated with elevated proinflammatory proteins, amino acids, and altered glycerophospholipids, which in turn were associated with increased MetS score. Conclusions and Relevance: This cohort study suggests that prenatal exposure to EDC mixtures may be associated with adverse metabolic health in children. Given the pervasive nature of EDCs and the increase in MetS, these findings hold substantial public health implications.


Assuntos
Disruptores Endócrinos , Síndrome Metabólica , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/induzido quimicamente , Criança , Masculino , Disruptores Endócrinos/efeitos adversos , Disruptores Endócrinos/urina , Fatores de Risco , Poluentes Ambientais/urina , Poluentes Ambientais/sangue , Poluentes Ambientais/efeitos adversos , Adulto , Exposição Materna/efeitos adversos , Exposição Materna/estatística & dados numéricos , Estudos de Coortes , Coorte de Nascimento
10.
J Trace Elem Med Biol ; 84: 127460, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703538

RESUMO

BACKGROUND: Exposure to metals during pregnancy can potentially influence blood pressure (BP) in children, but few studies have examined the mixed effects of prenatal metal exposure on childhood BP. We aimed to assess the individual and combined effects of prenatal metal and metalloid exposure on BP in preschool children. METHODS: A total of 217 mother-child pairs were selected from the Zhuang Birth Cohort in Guangxi, China. The maternal plasma concentrations of 20 metals [e.g. lead (Pb), rubidium (Rb), cesium (Cs), and zinc (Zn)] in early pregnancy were measured by inductively coupled plasmamass spectrometry. Childhood BP was measured in August 2021. The effects of prenatal metal exposure on childhood BP were explored by generalized linear models, restricted cubic spline and Bayesian kernel machine regression (BKMR) models. RESULTS: In total children, each unit increase in the log10-transformed maternal Rb concentration was associated with a 10.82-mmHg decrease (95% CI: -19.40, -2.24) in childhood diastolic BP (DBP), and each unit increase in the log10-transformed maternal Cs and Zn concentrations was associated with a 9.67-mmHg (95% CI: -16.72, -2.61) and 4.37-mmHg (95% CI: -8.68, -0.062) decrease in childhood pulse pressure (PP), respectively. The log10-transformed Rb and Cs concentrations were linearly related to DBP (P nonlinear=0.603) and PP (P nonlinear=0.962), respectively. Furthermore, an inverse association was observed between the log10-transformed Cs concentration and PP (ß =-12.18; 95% CI: -22.82, -1.54) in girls, and between the log10-transformed Rb concentration and DBP (ß =-12.54; 95% CI: -23.87, -1.21) in boys, while there was an increasing association between the log10-transformed Pb concentration and DBP there was an increasing in boys (ß =6.06; 95% CI: 0.36, 11.77). Additionally, a U-shaped relationship was observed between the log10-transformed Pb concentration and SBP (P nonlinear=0.015) and DBP (P nonlinear=0.041) in boys. Although there was no statistically signiffcant difference, there was an inverse trend in the combined effect of maternal metal mixture exposure on childhood BP among both the total children and girls in BKMR. CONCLUSIONS: Prenatal exposure to both individual and mixtures of metals and metalloids influences BP in preschool children, potentially leading to nonlinear and sex-specific effects.


Assuntos
Pressão Sanguínea , Exposição Materna , Metaloides , Metais , Humanos , Feminino , Pressão Sanguínea/efeitos dos fármacos , Pré-Escolar , Gravidez , Exposição Materna/efeitos adversos , Masculino , Metaloides/sangue , Metais/sangue , Adulto , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Chumbo/sangue , China , Zinco/sangue , Teorema de Bayes
11.
Proc Natl Acad Sci U S A ; 121(21): e2313207121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753512

RESUMO

Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.


Assuntos
Compostos Benzidrílicos , Neurônios , Fenóis , Diferenciação Sexual , Animais , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Feminino , Masculino , Camundongos , Diferenciação Sexual/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Arginina Vasopressina/metabolismo , Vasopressinas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Camundongos Endogâmicos C57BL , Estrogênios/metabolismo , Estrogênios/farmacologia
12.
Environ Health Perspect ; 132(4): 47010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630604

RESUMO

BACKGROUND: Polyunsaturated fatty acids (PUFAs) have been shown to protect against fine particulate matter <2.5µm in aerodynamic diameter (PM2.5)-induced hazards. However, limited evidence is available for respiratory health, particularly in pregnant women and their offspring. OBJECTIVES: We aimed to investigate the association of prenatal exposure to PM2.5 and its chemical components with allergic rhinitis (AR) in children and explore effect modification by maternal erythrocyte PUFAs. METHODS: This prospective birth cohort study involved 657 mother-child pairs from Guangzhou, China. Prenatal exposure to residential PM2.5 mass and its components [black carbon (BC), organic matter (OM), sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+)] were estimated by an established spatiotemporal model. Maternal erythrocyte PUFAs during pregnancy were measured using gas chromatography. The diagnosis of AR and report of AR symptoms in children were assessed up to 2 years of age. We used Cox regression with the quantile-based g-computation approach to assess the individual and joint effects of PM2.5 components and examine the modification effects of maternal PUFA levels. RESULTS: Approximately 5.33% and 8.07% of children had AR and related symptoms, respectively. The average concentration of prenatal PM2.5 was 35.50±5.31 µg/m3. PM2.5 was positively associated with the risk of developing AR [hazard ratio (HR)=1.85; 95% confidence interval (CI): 1.16, 2.96 per 5 µg/m3] and its symptoms (HR=1.79; 95% CI: 1.22, 2.62 per 5 µg/m3) after adjustment for confounders. Similar associations were observed between individual PM2.5 components and AR outcomes. Each quintile change in a mixture of components was associated with an adjusted HR of 3.73 (95% CI: 1.80, 7.73) and 2.69 (95% CI: 1.55, 4.67) for AR and AR symptoms, with BC accounting for the largest contribution. Higher levels of n-3 docosapentaenoic acid and lower levels of n-6 linoleic acid showed alleviating effects on AR symptoms risk associated with exposure to PM2.5 and its components. CONCLUSION: Prenatal exposure to PM2.5 and its chemical components, particularly BC, was associated with AR/symptoms in early childhood. We highlight that PUFA biomarkers could modify the adverse effects of PM2.5 on respiratory allergy. https://doi.org/10.1289/EHP13524.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Tardios da Exposição Pré-Natal , Rinite Alérgica , Humanos , Feminino , Pré-Escolar , Gravidez , Material Particulado/análise , Estudos de Coortes , Poluentes Atmosféricos/análise , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Estudos Prospectivos , Ácidos Graxos Insaturados/análise , Rinite Alérgica/induzido quimicamente , China , Poluição do Ar/análise , Exposição Ambiental/análise
13.
Trends Neurosci ; 47(5): 367-382, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614891

RESUMO

Neonatal opioid withdrawal syndrome (NOWS) is a growing public health concern. The complexity of in utero opioid exposure in clinical studies makes it difficult to investigate underlying mechanisms that could ultimately inform early diagnosis and treatments. Clinical studies are unable to dissociate the influence of maternal polypharmacy or the environment from direct effects of in utero opioid exposure, highlighting the need for effective animal models. Early animal models of prenatal opioid exposure primarily used the prototypical opioid, morphine, and opioid exposure that was often limited to a narrow period during gestation. In recent years, the number of preclinical studies has grown rapidly. Newer models utilize both prescription and nonprescription opioids and vary the onset and duration of opioid exposure. In this review, we summarize novel prenatal opioid exposure models developed in recent years and attempt to reconcile results between studies while critically identifying gaps within the current literature.


Assuntos
Analgésicos Opioides , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal , Animais , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Gravidez , Feminino , Analgésicos Opioides/efeitos adversos , Humanos , Síndrome de Abstinência Neonatal , Transtornos Relacionados ao Uso de Opioides
15.
Ecotoxicol Environ Saf ; 277: 116391, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678792

RESUMO

Prenatal exposure to diethylhexyl phthalate (DEHP) has been linked with a decline in testosterone levels in adult male rats, but the underlying mechanism remains unclear. We investigated the potential epigenetic regulation, particularly focusing on N6-methyladenosine (m6A) modification, as a possible mechanism. Dams were gavaged with DEHP (0, 10, 100, and 750 mg/kg/day) from gestational day 14 to day 21. The male offspring were examined at the age of 56 days. Prenatal DEHP administration at 750 mg/kg/day caused a decline in testosterone concentrations, an elevation in follicle-stimulating hormone, a downregulated expression of CYP11A1 HSD3B2, without affecting Leydig cell numbers. Interestingly, Methyltransferase Like 4 (METTL4), an m6A methyltransferase, was downregulated, while there were no changes in METTL3 and METTL14. Moreover, CYP11A1 showed m6A reduction in response to prenatal DEHP exposure. Additionally, METTL4 expression increased postnatally, peaking in adulthood. Knockdown of METTL4 resulted in the downregulation of CYP11A1 and HSD3B2 and an increase in SCARB1 expression. Furthermore, the increase in autophagy protection in adult Leydig cells induced by prenatal DEHP exposure was not affected by 3-methyladenosine (3MA) treatment, indicating a potential protective role of autophagy in response to DEHP exposure. In conclusion, prenatal DEHP exposure reduces testosterone by downregulating CYP11A1 and HSD3B2 via m6A epigenetic regulation and induction of autophagy protection in adult Leydig cells as a response to DEHP exposure.


Assuntos
Dietilexilftalato , Regulação para Baixo , Epigênese Genética , Células Intersticiais do Testículo , Metiltransferases , Efeitos Tardios da Exposição Pré-Natal , Testosterona , Animais , Feminino , Masculino , Gravidez , Ratos , Adenosina/análogos & derivados , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Dietilexilftalato/toxicidade , Dietilexilftalato/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Metiltransferases/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos Sprague-Dawley , Testosterona/sangue
16.
BMJ ; 385: e077664, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658035

RESUMO

OBJECTIVE: To investigate the potential association between prenatal opioid exposure and the risk of neuropsychiatric disorders in children. DESIGN: Nationwide birth cohort study. SETTING: From 1 January 2009 to 31 December 2020, birth cohort data of pregnant women in South Korea linked to their liveborn infants from the National Health Insurance Service of South Korea were collected. PARTICIPANTS: All 3 251 594 infants (paired mothers, n=2 369 322; age 32.1 years (standard deviation 4.2)) in South Korea from the start of 2010 to the end of 2017, with follow-up from the date of birth until the date of death or 31 December 2020, were included. MAIN OUTCOME MEASURES: Diagnosis of neuropsychiatric disorders in liveborn infants with mental and behaviour disorders (International Classification of Diseases 10th edition codes F00-99). Follow-up continued until the first diagnosis of neuropsychiatric disorder, 31 December 2020 (end of the study period), or the date of death, whichever occurred first. Eight cohorts were created: three cohorts (full unmatched, propensity score matched, and child screening cohorts) were formed, all of which were paired with sibling comparison cohorts, in addition to two more propensity score groups. Multiple subgroup analyses were performed. RESULTS: Of the 3 128 571 infants included (from 2 299 664 mothers), we identified 2 912 559 (51.3% male, 48.7% female) infants with no prenatal opioid exposure and 216 012 (51.2% male, 48.8% female) infants with prenatal opioid exposure. The risk of neuropsychiatric disorders in the child with prenatal opioid exposure was 1.07 (95% confidence interval 1.05 to 1.10) for fully adjusted hazard ratio in the matched cohort, but no significant association was noted in the sibling comparison cohort (hazard ratio 1.00 (0.93 to 1.07)). Prenatal opioid exposure during the first trimester (1.11 (1.07 to 1.15)), higher opioid doses (1.15 (1.09 to 1.21)), and long term opioid use of 60 days or more (1.95 (1.24 to 3.06)) were associated with an increased risk of neuropsychiatric disorders in the child. Prenatal opioid exposure modestly increased the risk of severe neuropsychiatric disorders (1.30 (1.15 to 1.46)), mood disorders, attention deficit hyperactivity disorder, and intellectual disability in the child. CONCLUSIONS: Opioid use during pregnancy was not associated with a substantial increase in the risk of neuropsychiatric disorders in the offspring. A slightly increased risk of neuropsychiatric disorders was observed, but this should not be considered clinically meaningful given the observational nature of the study, and limited to high opioid dose, more than one opioid used, longer duration of exposure, opioid exposure during early pregnancy, and only to some neuropsychiatric disorders.


Assuntos
Analgésicos Opioides , Transtornos Mentais , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Gravidez , República da Coreia/epidemiologia , Masculino , Adulto , Analgésicos Opioides/efeitos adversos , Transtornos Mentais/epidemiologia , Lactente , Pré-Escolar , Coorte de Nascimento , Fatores de Risco , Recém-Nascido , Estudos de Coortes , Criança
17.
Physiol Behav ; 280: 114548, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615729

RESUMO

Corn and soybean oils are among the most frequently used vehicles for water-insoluble compounds in toxicological studies. These two vegetable oils are nutrients and may induce some biological effects on animals that might interfere with the experimental results. However, their chronic effects on a developing brain have not been reported. This study aims to evaluate the neurobehavioral and brain biochemical effects of both oils on male and female Swiss albino mice. Pregnant female mice were exposed to 1 µl/g/d of either tap water, corn oil (CO), or soybean oil (SO) from early gestation (GD1) until weaning then offspring mice were exposed to the same treatment regimen until adulthood (PND70). Our results showed that developmental exposure to both oils induced body weight changes in offspring mice. In addition, we detected some behavioral abnormalities where both oil-treated groups showed a significant decrease in locomotor activity and greater levels of anxiety behavior. Moreover, our results suggest that continuous exposure to these oils may alter motor coordination, spatial memory and induce depression-like behavior in adult mice. These alterations were accompanied by increased malondialdehyde, superoxide dismutase, and glutathione peroxidase activities in specific brain regions. Together, these data suggest that exposure to CO and SO as vehicles in developmental studies may interfere with the behavioral response and brain redox homeostasis in offspring mice.


Assuntos
Encéfalo , Óleo de Milho , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal , Óleo de Soja , Animais , Feminino , Óleo de Milho/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Gravidez , Masculino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Glutationa Peroxidase/metabolismo , Peso Corporal/efeitos dos fármacos , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Atividade Motora/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ansiedade/induzido quimicamente , Aprendizagem em Labirinto/efeitos dos fármacos , Veículos Farmacêuticos
19.
Neuropharmacology ; 253: 109963, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657945

RESUMO

Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was partially reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions.


Assuntos
Animais Recém-Nascidos , Efeitos Tardios da Exposição Pré-Natal , Ácido Valproico , Vocalização Animal , Animais , Ácido Valproico/farmacologia , Ácido Valproico/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Feminino , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia , Camundongos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Cateninas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo
20.
Ecotoxicol Environ Saf ; 278: 116360, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678690

RESUMO

Methylmercury (MeHg) is a neurotoxin associated with foetal neurodevelopmental and adult cognitive deficits. Neurons are highly dependent on the tricarboxylic acid cycle and oxidative phosphorylation to produce ATP and meet their high energy demands. Therefore, mitochondrial quality control (MQC) is critical for neuronal homeostasis. While existing studies have generated a wealth of data on the toxicity of MeHg, the complex cascades and molecular pathways governing the mitochondrial network remain to be elucidated. Here, 0.6, 1.2 and 2.4 mg/kg body weight of MeHg were administered intragastrically to pregnant Sprague Dawley rats to model maternal MeHg exposure. The results of the in vivo study revealed that MeHg-treated rats tended to perform more directionless repetitive strategies in the Morris Water Maze and fewer target-orientation strategies than control offspring. Moreover, pathological injury and synaptic toxicity were observed in the hippocampus. Transmission electron microscopy (TEM) demonstrated that the autophagosomes encapsulated damaged mitochondria, while showing a typical mitochondrial fission phenotype, which was supported by the activation of PINK1-dependent key regulators of mitophagy. Moreover, there was upregulation of DRP1 and FIS1. Additionally, MeHg compensation promoted mitochondrial biogenesis, as evidenced by the activation of the mitochondrial PGC1-α-NRF1-TFAM signalling pathway. Notably, SIRT3/AMPK was activated by MeHg, and the expression and activity of p-AMPK, p-LKB1 and SIRT3 were consistently coordinated. Collectively, these findings provide new insights into the potential molecular mechanisms regulating MeHg-induced cognitive deficits through SIRT3/AMPK MQC network coordination.


Assuntos
Disfunção Cognitiva , Compostos de Metilmercúrio , Mitocôndrias , Ratos Sprague-Dawley , Compostos de Metilmercúrio/toxicidade , Animais , Mitocôndrias/efeitos dos fármacos , Ratos , Feminino , Disfunção Cognitiva/induzido quimicamente , Gravidez , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA