Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 960
Filtrar
1.
J Biol Chem ; 300(1): 105562, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097189

RESUMO

Extensive epigenetic reprogramming occurs during preimplantation embryonic development. However, the impact of DNA methylation in plateau yak preimplantation embryos and how epigenetic reprogramming contributes to transcriptional regulatory networks are unclear. In this study, we quantified gene expression and DNA methylation in oocytes and a series of yak embryos at different developmental stages and at single-cell resolution using single-cell bisulfite-sequencing and RNA-seq. We characterized embryonic genome activation and maternal transcript degradation and mapped epigenetic reprogramming events critical for embryonic development. Through cross-species transcriptome analysis, we identified 31 conserved maternal hub genes and 39 conserved zygotic hub genes, including SIN3A, PRC1, HDAC1/2, and HSPD1. Notably, by combining single-cell DNA methylation and transcriptome analysis, we identified 43 candidate methylation driver genes, such as AURKA, NUSAP1, CENPF, and PLK1, that may be associated with embryonic development. Finally, using functional approaches, we further determined that the epigenetic modifications associated with the histone deacetylases HDAC1/2 are essential for embryonic development and that the deubiquitinating enzyme USP7 may affect embryonic development by regulating DNA methylation. Our data represent an extensive resource on the transcriptional dynamics of yak embryonic development and DNA methylation remodeling, and provide new insights into strategies for the conservation of germplasm resources, as well as a better understanding of mammalian early embryonic development that can be applied to investigate the causes of early developmental disorders.


Assuntos
Blastocisto , Metilação de DNA , Embrião de Mamíferos , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Análise da Expressão Gênica de Célula Única , Sulfitos , Animais , Bovinos , Feminino , Gravidez , Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Epigênese Genética , Perfilação da Expressão Gênica , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Sulfitos/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/enzimologia
2.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047751

RESUMO

After fertilization, remodeling of the oocyte and sperm genome is essential for the successful initiation of mitotic activity in the fertilized oocyte and subsequent proliferative activity of the early embryo. Despite the fact that the molecular mechanisms of cell cycle control in early mammalian embryos are in principle comparable to those in somatic cells, there are differences resulting from the specific nature of the gene totipotency of the blastomeres of early cleavage embryos. In this review, we focus on the Chk1 kinase as a key transduction factor in monitoring the integrity of DNA molecules during early embryogenesis.


Assuntos
Quinase 1 do Ponto de Checagem , Dano ao DNA , Desenvolvimento Embrionário , Animais , Quinase 1 do Ponto de Checagem/metabolismo , Embrião de Mamíferos/enzimologia , Desenvolvimento Embrionário/genética
3.
J Mol Histol ; 53(1): 63-74, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34741214

RESUMO

The effects of culture media on DNA methylation process, which is one of the epigenetic mechanisms, have not been clearly elucidated although it is known that in vitro culture conditions alter epigenetic mechanisms. This study was designed to address the question: does embryo culture media approach, sequential or single step, differentially affect DNA methylating enzymes and global DNA methylation. Mouse zygotes were cultured either in single step or sequential culture media until the blastocyst stage and in vivo developed blastocyst were utilized as control. Similarly, GV stage oocytes were in vitro matured either in single step or first step of sequential culture media. In vivo matured MII oocytes were used as control. The expression levels and cellular localization of Dnmt1 and 3a enzymes were analyzed by immunofluorescence and western blot analysis while global DNA methylation was evaluated by immunofluorescence. We found that signal intensities of Dnmt1 and Dnmt3a enzymes were significantly low in embryos or oocytes cultured in sequential media compared to single step media and control, which were comparable amongst themself. Similarly, global DNA methylation level in single step media and control groups was comparable but both was higher than the sequential media. This study demonstrated that composition of culture media may differentially affect DNA methylation levels in mouse embryos and oocytes. Since abnormal DNA methylation may cause aberrant oocyte or embryo development, we think that further studies are needed to test human embryos and oocyte, and to explain molecular mechanisms.


Assuntos
Meios de Cultura/farmacologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , DNA Metiltransferase 3A/metabolismo , Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos/enzimologia , Oócitos/enzimologia , Animais , Blastocisto/citologia , Blastocisto/enzimologia , Western Blotting , Desenvolvimento Embrionário/fisiologia , Feminino , Imunofluorescência , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oócitos/citologia , Gravidez
4.
Elife ; 102021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34569938

RESUMO

Apico-basal polarization of cells within the embryo is critical for the segregation of distinct lineages during mammalian development. Polarized cells become the trophectoderm (TE), which forms the placenta, and apolar cells become the inner cell mass (ICM), the founding population of the fetus. The cellular and molecular mechanisms leading to polarization of the human embryo and its timing during embryogenesis have remained unknown. Here, we show that human embryo polarization occurs in two steps: it begins with the apical enrichment of F-actin and is followed by the apical accumulation of the PAR complex. This two-step polarization process leads to the formation of an apical domain at the 8-16 cell stage. Using RNA interference, we show that apical domain formation requires Phospholipase C (PLC) signaling, specifically the enzymes PLCB1 and PLCE1, from the eight-cell stage onwards. Finally, we show that although expression of the critical TE differentiation marker GATA3 can be initiated independently of embryo polarization, downregulation of PLCB1 and PLCE1 decreases GATA3 expression through a reduction in the number of polarized cells. Therefore, apical domain formation reinforces a TE fate. The results we present here demonstrate how polarization is triggered to regulate the first lineage segregation in human embryos.


Assuntos
Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Polaridade Celular , Embrião de Mamíferos/enzimologia , Actinas/metabolismo , Adulto , Técnicas de Cultura Embrionária , Feminino , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Fosfoinositídeo Fosfolipase C , Fosfolipase C beta , Gravidez , Transdução de Sinais , Fatores de Tempo , Adulto Jovem
5.
Biol Reprod ; 105(5): 1104-1113, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34453429

RESUMO

Elongation of pig conceptuses is a dynamic process, requiring adequate nutrient provisions. Glutamine is used as an energy substrate and is involved in the activation of mechanistic target of rapamycin complex 1 (mTORC1) during porcine preimplantation development. However, the roles of glutamine have not been extensively studied past the blastocyst stage. Therefore, the objective of the current study was to determine if glutaminase (GLS), which is the rate-limiting enzyme in glutamine metabolism, was necessary for conceptus elongation to proceed and was involved in mTORC1 activation. The CRISPR/Cas9 system was used to induce loss-of-function mutations in the GLS gene of porcine fetal fibroblasts. Wild type (GLS+/+) and knockout (GLS-/-) fibroblasts were used as donor cells for somatic cell nuclear transfer, and GLS+/+ and GLS-/- blastocyst-stage embryos were transferred into surrogates. On day 14 of gestation, GLS+/+ conceptuses primarily demonstrated filamentous morphologies, and GLS-/- conceptuses exhibited spherical, ovoid, tubular, and filamentous morphologies. Thus, GLS-/- embryos were able to elongate despite the absence of GLS protein and minimal enzyme activity. Furthermore, spherical GLS-/- conceptuses had increased abundance of transcripts related to glutamine and glutamate metabolism and transport compared to filamentous conceptuses of either genotype. Differences in phosphorylation of mTORC1 components and targets were not detected regarding conceptus genotype or morphology, but abundance of two transcriptional targets of mTORC1, cyclin D1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha was increased in spherical conceptuses. Therefore, porcine GLS is not essential for conceptus elongation and is not required for mTORC1 activation at this developmental timepoint.


Assuntos
Blastocisto/metabolismo , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/genética , Glutaminase/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Sus scrofa/embriologia , Animais , Transferência Embrionária , Embrião de Mamíferos/enzimologia , Feminino , Glutaminase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
6.
Cell Reprogram ; 23(4): 221-238, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34227846

RESUMO

Porcine embryonic stem cells (pESCs) would provide potentials for agricultural- and biotechnological-related applications. However, authentic pESCs have not been established yet because standards for porcine stem cell-specific markers and culture conditions are not clear. Therefore, the present study reports attempts to derive pluripotent epiblast stem cells either from in vitro or in vivo derived porcine embryos. Nine epiblast cell lines (seven lines from Berkshire and two lines from Duroc) could only be isolated from day 9- to 9.5-old in vivo derived early conceptuses. Pluripotency features were analyzed in relation to the presence or absence of alkaline phosphatase (AP) activity. Interestingly, the mRNA expression of several marker genes for pluripotency or epiblast was different between putative epiblast stem cells of the two groups [AP-positive (+) pEpiSC-like cell 2 line and AP-negative (-) pEpiSC-like cell 8 line]. For example, expressions of OCT-3/4, NANOG, SOX2, c-MYC, FGF2, and NODAL in AP-negative (-) porcine epiblast stem cell (pEpiSC)-like cells were higher than those in AP-positive (+) pEpiSC-like cells. Expression of surface markers differed between the two groups to some extent. SSEA-1 was strongly expressed only in AP-negative (-) pEpiSC-like cells, whereas AP-positive (+) pEpiSC-like cells did not express. In addition, we report to have some differences in the in vitro differentiation capacity between AP-positive (+) and AP-negative (-) epiblast cell lines. Primary embryonic germ layer markers (cardiac actin, nestin, and GATA 6) and primordial germ cell markers (Dazl and Vasa) were strongly expressed in embryoid bodies (EBs) aggregated from AP-negative (-) pEpiSC-like cells, whereas EBs aggregated from AP-positive (+) pEpiSCs did not show expression of primary embryonic germ layers and primordial germ cell markers except GATA 6. These results indicate that pEpiSC-like cells display different pluripotency characteristics in relation to AP activity.


Assuntos
Fosfatase Alcalina/metabolismo , Diferenciação Celular , Embrião de Mamíferos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Camadas Germinativas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Embrião de Mamíferos/enzimologia , Corpos Embrioides/citologia , Corpos Embrioides/enzimologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/enzimologia , Feminino , Camadas Germinativas/enzimologia , Células-Tronco Pluripotentes/enzimologia , Suínos
7.
Acta Biochim Biophys Sin (Shanghai) ; 53(7): 925-932, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34041522

RESUMO

Human embryos of in vitro fertilization (IVF) are often susceptible to developmental arrest, which greatly reduces the efficiency of IVF treatment. In recent years, it has been found that protein arginine methyltransferase 7 (PRMT7) plays an important role in the process of early embryonic development. However, not much is known about the relationship between PRMT7 and developmentally arrested embryos. The role of PRMT7 in developmentally arrested embryos was thus investigated in this study. Discarded human embryos from IVF were collected for experimental materials. Quantitative real-time polymerase chain reaction (qRT-PCR) and confocal analyses were used to identify PRMT7 mRNA and protein levels in early embryos at different developmental stages, as well as changes in the methylation levels of H4R3me2s. Additionally, PRMT7 was knocked down in the developmentally arrested embryos to observe the further development of these embryos. Our results demonstrated that PRMT7 mRNA and protein levels in arrested embryos were significantly increased compared with those in control embryos; meanwhile, the methylation levels of H4R3me2s in arrested embryos were also increased significantly. Knockdown of PRMT7 could rescue partially developmentally arrested embryos, and even individual developmentally arrested embryos could develop into blastocysts. In conclusion, over-expression of PRMT7 disrupts the early embryo development process, leading to early embryos developmental arrest, but these developmentally arrested defects could be partially rescued by knockdown of the PRMT7 protein.


Assuntos
Embrião de Mamíferos/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Proteína-Arginina N-Metiltransferases/biossíntese , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Histonas/genética , Histonas/metabolismo , Humanos , Metilação , Proteína-Arginina N-Metiltransferases/genética
8.
Genes Dev ; 35(1-2): 117-132, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33334825

RESUMO

The p53 tumor suppressor protein is a potent activator of proliferative arrest and cell death. In normal cells, this pathway is restrained by p53 protein degradation mediated by the E3-ubiquitin ligase activity of MDM2. Oncogenic stress releases p53 from MDM2 control, so activating the p53 response. However, many tumors that retain wild-type p53 inappropriately maintain the MDM2-p53 regulatory loop in order to continuously suppress p53 activity. We have shown previously that single point mutations in the human MDM2 RING finger domain prevent the interaction of MDM2 with the E2/ubiquitin complex, resulting in the loss of MDM2's E3 activity without preventing p53 binding. Here, we show that an analogous mouse MDM2 mutant (MDM2 I438K) restrains p53 sufficiently for normal growth but exhibits an enhanced stress response in vitro. In vivo, constitutive expression of MDM2 I438K leads to embryonic lethality that is rescued by p53 deletion, suggesting MDM2 I438K is not able to adequately control p53 function through development. However, the switch to I438K expression is tolerated in adult mice, sparing normal cells but allowing for an enhanced p53 response to DNA damage. Viewed as a proof of principle model for therapeutic development, our findings support an approach that would inhibit MDM2 E3 activity without preventing MDM2/p53 binding as a promising avenue for development of compounds to activate p53 in tumors with reduced on-target toxicities.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Proliferação de Células/genética , Células Cultivadas , Embrião de Mamíferos/enzimologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Masculino , Camundongos , Mutação , Tamoxifeno/farmacologia
9.
Nature ; 587(7832): 139-144, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116310

RESUMO

Zygotic genome activation (ZGA) is the first transcription event in life1. However, it is unclear how RNA polymerase is engaged in initiating ZGA in mammals. Here, by developing small-scale Tn5-assisted chromatin cleavage with sequencing (Stacc-seq), we investigated the landscapes of RNA polymerase II (Pol II) binding in mouse embryos. We found that Pol II undergoes 'loading', 'pre-configuration', and 'production' during the transition from minor ZGA to major ZGA. After fertilization, Pol II is preferentially loaded to CG-rich promoters and accessible distal regions in one-cell embryos (loading), in part shaped by the inherited parental epigenome. Pol II then initiates relocation to future gene targets before genome activation (pre-configuration), where it later engages in full transcription elongation upon major ZGA (production). Pol II also maintains low poising at inactive promoters after major ZGA until the blastocyst stage, coinciding with the loss of promoter epigenetic silencing factors. Notably, inhibition of minor ZGA impairs the Pol II pre-configuration and embryonic development, accompanied by aberrant retention of Pol II and ectopic expression of one-cell targets upon major ZGA. Hence, stepwise transition of Pol II occurs when mammalian life begins, and minor ZGA has a key role in the pre-configuration of transcription machinery and chromatin for genome activation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , RNA Polimerase II/metabolismo , Zigoto/metabolismo , Alelos , Animais , Cromatina/genética , Cromatina/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/metabolismo , Epigenoma/genética , Feminino , Masculino , Herança Materna/genética , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/enzimologia , Oócitos/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , Zigoto/citologia , Zigoto/enzimologia
10.
J Biol Chem ; 295(50): 17060-17070, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33008887

RESUMO

CARM1 is a protein arginine methyltransferase (PRMT) that acts as a coactivator in a number of transcriptional programs. CARM1 orchestrates this coactivator activity in part by depositing the H3R17me2a histone mark in the vicinity of gene promoters that it regulates. However, the gross levels of H3R17me2a in CARM1 KO mice did not significantly decrease, indicating that other PRMT(s) may compensate for this loss. We thus performed a screen of type I PRMTs, which revealed that PRMT6 can also deposit the H3R17me2a mark in vitro CARM1 knockout mice are perinatally lethal and display a reduced fetal size, whereas PRMT6 null mice are viable, which permits the generation of double knockouts. Embryos that are null for both CARM1 and PRMT6 are noticeably smaller than CARM1 null embryos, providing in vivo evidence of redundancy. Mouse embryonic fibroblasts (MEFs) from the double knockout embryos display an absence of the H3R17me2a mark during mitosis and increased signs of DNA damage. Moreover, using the combination of CARM1 and PRMT6 inhibitors suppresses the cell proliferation of WT MEFs, suggesting a synergistic effect between CARM1 and PRMT6 inhibitions. These studies provide direct evidence that PRMT6 also deposits the H3R17me2a mark and acts redundantly with CARM1.


Assuntos
Embrião de Mamíferos/enzimologia , Fibroblastos/enzimologia , Histonas/metabolismo , Mitose , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Histonas/genética , Metilação , Camundongos , Camundongos Knockout , Proteína-Arginina N-Metiltransferases/genética
11.
Nature ; 587(7834): 443-447, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32968278

RESUMO

Current understandings of cell specification in early mammalian pre-implantation development are based mainly on mouse studies. The first lineage differentiation event occurs at the morula stage, with outer cells initiating a trophectoderm (TE) placental progenitor program. The inner cell mass arises from inner cells during subsequent developmental stages and comprises precursor cells of the embryo proper and yolk sac1. Recent gene-expression analyses suggest that the mechanisms that regulate early lineage specification in the mouse may differ in other mammals, including human2-5 and cow6. Here we show the evolutionary conservation of a molecular cascade that initiates TE segregation in human, cow and mouse embryos. At the morula stage, outer cells acquire an apical-basal cell polarity, with expression of atypical protein kinase C (aPKC) at the contact-free domain, nuclear expression of Hippo signalling pathway effectors and restricted expression of TE-associated factors such as GATA3, which suggests initiation of a TE program. Furthermore, we demonstrate that inhibition of aPKC by small-molecule pharmacological modulation or Trim-Away protein depletion impairs TE initiation at the morula stage. Our comparative embryology analysis provides insights into early lineage specification and suggests that a similar mechanism initiates a TE program in human, cow and mouse embryos.


Assuntos
Evolução Biológica , Ectoderma/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Trofoblastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Massa Celular Interna do Blastocisto/citologia , Massa Celular Interna do Blastocisto/metabolismo , Bovinos , Linhagem da Célula , Polaridade Celular , Ectoderma/citologia , Embrião de Mamíferos/enzimologia , Feminino , Fator de Transcrição GATA3/metabolismo , Via de Sinalização Hippo , Humanos , Camundongos , Mórula/citologia , Mórula/enzimologia , Mórula/metabolismo , Placenta/citologia , Placenta/metabolismo , Gravidez , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Trofoblastos/citologia , Proteínas de Sinalização YAP , Saco Vitelino/citologia , Saco Vitelino/metabolismo
12.
Biochim Biophys Acta Mol Cell Res ; 1867(4): 118648, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31935425

RESUMO

Porcine zygotic genome activation (ZGA) occurs along with global epigenetic remodeling at the 4-cell stage. These processes are regulated by histone acetylation, which requires acetyl-coenzyme A (CoA). Pyruvate dehydrogenase complex (PDC) is a crucial enzyme in glucose metabolism that converts pyruvate into acetyl-CoA. In mammalian cells, acetyl-CoA is produced by pyruvate dehydrogenase alpha 1 (PDHA1) translocated into the nucleus in special conditions. To determine whether zygotic PDHA1 plays a critical role in promoting histone acetylation during ZGA, a CRISPR/Cas9 genome editing system using multiple guide RNAs was employed to generate a PDHA1-targeted parthenogenetic embryo model. Results of immunofluorescent staining showed that the nuclear accumulation of PDHA1 during ZGA was significantly inhibited by PDHA1 targeting. Meanwhile, the 4-cell arrest rate significantly increased at 72 h after activation, indicating impeded embryonic development. In addition, nuclear histone acetylation significantly decreased when PDHA1 was targeted, and quantitative PCR showed that expression of several zygotic genes was significantly decreased in the PDHA1-targeting group compared to the control group. Overexpression of PDHA1 recovered the nuclear PDHA1, H3K9Ac and H3K27Ac and EIF1A expression levels. Moreover, the 5-to-8-cell-stage embryo development rate was only partially rescued. In conclusion, expression of zygotic origin PDHA1 contributes to porcine ZGA by maintaining histone acetylation in porcine embryos.


Assuntos
Núcleo Celular/enzimologia , Desenvolvimento Embrionário/genética , Histonas/metabolismo , Piruvato Desidrogenase (Lipoamida)/metabolismo , Zigoto/enzimologia , Acetilação , Animais , Sistemas CRISPR-Cas , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/metabolismo , Edição de Genes , Expressão Gênica , Genoma , Piruvato Desidrogenase (Lipoamida)/genética , Suínos , Zigoto/metabolismo
13.
Mol Neurobiol ; 57(2): 806-822, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31473904

RESUMO

Parkinson's disease is characterized by a loss of dopaminergic neurons in the ventral midbrain. This disease is diagnosed when around 50% of these neurons have already died; consequently, therapeutic treatments start too late. Therefore, an urgent need exists to find new targets involved in the onset and progression of the disease. Phosphodiesterase 7 (PDE7) is a key enzyme involved in the degradation of intracellular levels of cyclic adenosine 3', 5'-monophosphate in different cell types; however, little is known regarding its role in neurodegenerative diseases, and specifically in Parkinson's disease. We have previously shown that chemical as well as genetic inhibition of this enzyme results in neuroprotection and anti-inflammatory activity in different models of neurodegenerative disorders, including Parkinson's disease. Here, we have used in vitro and in vivo models of Parkinson's disease to study the regulation of PDE7 protein levels. Our results show that PDE7 is upregulated after an injury both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures and after lipopolysaccharide or 6-hidroxydopamine injection in the Substantia nigra pars compacta of adult mice. PDE7 increase takes place mainly in degenerating dopaminergic neurons and in microglia cells. This enhanced expression appears to be direct since 6-hydroxydopamine and lipopolysaccharide increase the expression of a 962-bp fragment of its promoter. Taking together, these results reveal an essential function for PDE7 in the pathways leading to neurodegeneration and inflammatory-mediated brain damage and suggest novel roles for PDE7 in neurodegenerative diseases, specifically in PD, opening the door for new therapeutic interventions.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/patologia , Animais , Apoptose , Linhagem Celular , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 7/genética , Modelos Animais de Doenças , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/patologia , Embrião de Mamíferos/enzimologia , Humanos , Masculino , Mesencéfalo/enzimologia , Mesencéfalo/patologia , Neuroglia/enzimologia , Neuroglia/patologia , Oxidopamina , Regiões Promotoras Genéticas/genética , Ratos Wistar , Substância Negra/enzimologia , Substância Negra/patologia
14.
Angew Chem Int Ed Engl ; 58(36): 12476-12480, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31276611

RESUMO

Protein arginine deiminases (PADs) hydrolyze the side chain of arginine to form citrulline. Aberrant PAD activity is associated with rheumatoid arthritis, multiple sclerosis, lupus, and certain cancers. These pathologies established the PADs as therapeutic targets and multiple PAD inhibitors are known. Herein, we describe the first highly potent PAD1-selective inhibitors (1 and 19). Detailed structure-activity relationships indicate that their potency and selectivity is due to the formation of a halogen bond with PAD1. Importantly, these inhibitors inhibit histone H3 citrullination in HEK293TPAD1 cells and mouse zygotes with excellent potency. Based on this scaffold, we also developed a PAD1-selective activity-based probe that shows remarkable cellular efficacy and proteome selectivity. Based on their potency and selectivity we expect that 1 and 19 will be widely used chemical tools to understand PAD1 biology.


Assuntos
Citrulinação/efeitos dos fármacos , Citrulina/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteína-Arginina Desiminase do Tipo 1/antagonistas & inibidores , Animais , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/enzimologia , Células HEK293 , Histonas/química , Humanos , Isoenzimas , Camundongos , Proteína-Arginina Desiminase do Tipo 1/metabolismo
15.
Sci Rep ; 9(1): 9928, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289286

RESUMO

DNA polymerase (Pol) ß is a key enzyme in base excision repair (BER), an important repair system for maintaining genomic integrity. We previously reported the presence of a Pol ß transcript containing exon α (105-nucleotide) in normal and colon cancer cell lines. The transcript carried an insertion between exons VI and VII and was predicted to encode a ~42 kDa variant of the wild-type 39 kDa enzyme. However, little is known about the biochemical properties of the exon α-containing Pol ß (exon α Pol ß) variant. Here, we first obtained evidence indicating expression of the 42 kDa exon α Pol ß variant in mouse embryonic fibroblasts. The exon α Pol ß variant was then overexpressed in E. coli, purified, and characterized for its biochemical properties. Kinetic studies of exon α Pol ß revealed that it is deficient in DNA binding to gapped DNA, has strongly reduced polymerase activity and higher Km for dNTP during gap-filling. On the other hand, the 5'-dRP lyase activity of the exon α Pol ß variant is similar to that of wild-type Pol ß. These results indicate the exon α Pol ß variant is base excision repair deficient, but does conduct 5'-trimming of a dRP group at the gap margin. Understanding the biological implications of this Pol ß variant warrants further investigation.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , Replicação do DNA , Fibroblastos/enzimologia , Neoplasias/enzimologia , Fósforo-Oxigênio Liases/metabolismo , Polimorfismo Genético , Animais , Células Cultivadas , DNA Polimerase beta/química , Embrião de Mamíferos/enzimologia , Éxons , Humanos , Cinética , Camundongos , Neoplasias/genética , Neoplasias/patologia , Fósforo-Oxigênio Liases/química
16.
Theriogenology ; 133: 45-55, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31059928

RESUMO

Prostaglandin (PG) E2 plays a role in numerous aspects of mammalian reproduction, such as oviductal transport of gametes, hatching from the zona pellucida in blastocysts and early embryonic development. Despite the evident role of PGE2 in the regulation of female reproductive processes, in the literature, there is very little information concerning the expression of PGE2 synthesizing enzymes and the exact amount of PGE2 produced by bovine embryos in vitro. In the present study, we aimed to determine the mRNA levels and immunolocalization of the enzymes responsible for PGE2 synthesis (PTGS2, mPGES1, mPGES2 and cPGES) in embryos at the 2-cell, 4-cell, 8-cell, 16-cell, morula, early blastocyst, blastocyst, expanded blastocyst and hatched blastocyst stages, using a well-defined bovine model of oocyte developmental competence based on the time of first cleavage. PTGS2, mPGES2 and cPGES transcripts and proteins were detected in all stages of embryos, whereas the mPGES1 transcript and protein were not detected in embryos from the 2- to 16-cell stage. The results showed different transcription profiles of the enzymes involved in PGE2 synthesis in early- and late-cleaved embryos during the early stages of their in vitro preimplantation development. We also found that all the analysed stages of bovine preimplantation embryos released PGE2, with the highest concentration on Day 7 of culture in both the early- and late-cleaved groups. The present study is the first to demonstrate PGE2 synthesis and production by bovine early- and late-cleaved embryos at different stages of preimplantation development. Bovine embryos can produce PGE2, which may exert paracrine regulation during development. The transcription levels of PGE2 synthases were affected by the embryonic stage of development and quality. Our results indicate that the different transcription profiles of PTGS2, mPGES1, mPGES2 and cPGES, as well as PGE2 concentration, in early-versus late-cleaved embryos are dependent on the quality of the oocytes from which the embryos were obtained, which could reveal the association of PGE2 production during bovine preimplantation development with more advanced stages of embryo development.


Assuntos
Bovinos/embriologia , Dinoprostona/biossíntese , Embrião de Mamíferos/enzimologia , Desenvolvimento Embrionário , Animais , Bovinos/metabolismo , Feminino , Masculino
17.
Hum Mol Genet ; 28(13): 2107-2119, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30789219

RESUMO

Several mosaic mutations of the mammalian/mechanistic target of rapamycin (mTOR) have recently been found in patients with cortical malformations, such as hemimegalencephaly (HME) and focal cortical dysplasia (FCD). Although all of them should activate mTOR signaling, comparisons of the impact of different mTOR mutations on brain development have been lacking. Also it remains unknown if any potential differences these mutations may have on cortical development are directly related to a degree of mTOR signaling increase. The present study assessed levels of mTORC1 pathway activity in cell lines and rat primary neurons overexpressing several mTOR mutants that were previously found in HME, FCD, cancer patients and in vitro mutagenesis screens. Next we introduced the mutants, enhancing mTORC1 signaling most potently, into developing mouse brains and assessed electroporated cell morphology and migratory phenotype using immunofluorescent staining. We observed the differential inhibition of neuronal progenitor cortical migration, which partly corresponded with a degree of mTORC1 signaling enhancement these mutants induced in cultured cells. The most potent quadruple mutant prevented most of the progenitors from entering the cortical plate. Cells that expressed less potent, single-point, mTOR mutants entered the cortical plate but failed to reach its upper layers and had enlarged soma. Our findings suggest a correlation between the potency of mTOR mutation to activate mTORC1 pathway and disruption of cortical migration.


Assuntos
Córtex Cerebelar/embriologia , Mutação , Neurônios/citologia , Neurônios/enzimologia , Serina-Treonina Quinases TOR/genética , Animais , Movimento Celular/genética , Córtex Cerebelar/citologia , Córtex Cerebelar/enzimologia , Córtex Cerebelar/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/metabolismo , Células HEK293 , Humanos , Malformações do Desenvolvimento Cortical/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neurogênese/genética , Neurônios/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
18.
Nature ; 566(7742): 105-109, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30675057

RESUMO

A gene drive biases the transmission of one of the two copies of a gene such that it is inherited more frequently than by random segregation. Highly efficient gene drive systems have recently been developed in insects, which leverage the sequence-targeted DNA cleavage activity of CRISPR-Cas9 and endogenous homology-directed repair mechanisms to convert heterozygous genotypes to homozygosity1-4. If implemented in laboratory rodents, similar systems would enable the rapid assembly of currently impractical genotypes that involve multiple homozygous genes (for example, to model multigenic human diseases). To our knowledge, however, such a system has not yet been demonstrated in mammals. Here we use an active genetic element that encodes a guide RNA, which is embedded in the mouse tyrosinase (Tyr) gene, to evaluate whether targeted gene conversion can occur when CRISPR-Cas9 is active in the early embryo or in the developing germline. Although Cas9 efficiently induces double-stranded DNA breaks in the early embryo and male germline, these breaks are not corrected by homology-directed repair. By contrast, Cas9 expression limited to the female germline induces double-stranded breaks that are corrected by homology-directed repair, which copies the active genetic element from the donor to the receiver chromosome and increases its rate of inheritance in the next generation. These results demonstrate the feasibility of CRISPR-Cas9-mediated systems that bias inheritance of desired alleles in mice and that have the potential to transform the use of rodent models in basic and biomedical research.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Conversão Gênica , Tecnologia de Impulso Genético/métodos , Mutação em Linhagem Germinativa/genética , Heterozigoto , Homozigoto , Alelos , Animais , Cruzamento , Proteína 9 Associada à CRISPR/genética , Cromossomos de Mamíferos/genética , Quebras de DNA de Cadeia Dupla , Modelos Animais de Doenças , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/metabolismo , Feminino , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Monofenol Mono-Oxigenase/genética , RNA Guia de Cinetoplastídeos/genética , Transgenes/genética
19.
Mol Reprod Dev ; 86(1): 4-19, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30411426

RESUMO

More than 15 years have elapsed since the identification of phospholipase C ζ1 (PLCζ) from a genomic search for mouse testis/sperm-specific PLCs. This molecule was proposed to represent the sperm factor responsible for the initiation of calcium (Ca2+ ) oscillations required for egg activation and embryo development in mammals. Supporting evidence for this role emerged from studies documenting its expression in all mammals and other vertebrate species, the physiological Ca2+ rises induced by injection of its messenger RNA into mammalian and nonmammalian eggs, and the lack of expression in infertile males that fail intracytoplasmic sperm injection. In the last year, genetic animal models have added support to its role as the long sought-after sperm factor. In this review, we highlight the findings that demonstrated the role of Ca2+ as the universal signal of egg activation and the experimental buildup that culminated with the identification of PLCζ as the soluble sperm factor. We also discuss the structural-functional properties that make PLCζ especially suited to evoke oscillations in eggs. Lastly, we examine unresolved aspects of the function and regulation of PLCζ and whether or not it is the only sperm factor in mammalian sperm.


Assuntos
Sinalização do Cálcio , Embrião de Mamíferos/enzimologia , Desenvolvimento Embrionário , Fosfoinositídeo Fosfolipase C/metabolismo , Interações Espermatozoide-Óvulo , Espermatozoides/enzimologia , Animais , Feminino , Humanos , Infertilidade Masculina/enzimologia , Masculino , Camundongos , Injeções de Esperma Intracitoplásmicas
20.
Oncogene ; 38(7): 998-1018, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30190546

RESUMO

Cell cycle regulation, especially faithful DNA replication and mitosis, are crucial to maintain genome stability. Cyclin-dependent kinase (CDK)/cyclin complexes drive most processes in cellular proliferation. In response to DNA damage, cell cycle surveillance mechanisms enable normal cells to arrest and undergo repair processes. Perturbations in genomic stability can lead to tumor development and suggest that cell cycle regulators could be effective targets in anticancer therapy. However, many clinical trials ended in failure due to off-target effects of the inhibitors used. Here, we investigate in vivo the importance of WEE1- and MYT1-dependent inhibitory phosphorylation of mammalian CDK1. We generated Cdk1AF knockin mice, in which two inhibitory phosphorylation sites are replaced by the non-phosphorylatable amino acids T14A/Y15F. We uncovered that monoallelic expression of CDK1AF is early embryonic lethal in mice and induces S phase arrest accompanied by γH2AX and DNA damage checkpoint activation in mouse embryonic fibroblasts (MEFs). The chromosomal fragmentation in Cdk1AF MEFs does not rely on CDK2 and is partly caused by premature activation of MUS81-SLX4 structure-specific endonuclease complexes, as well as untimely onset of chromosome condensation followed by nuclear lamina disassembly. We provide evidence that tumor development in liver expressing CDK1AF is inhibited. Interestingly, the regulatory mechanisms that impede cell proliferation in CDK1AF expressing cells differ partially from the actions of the WEE1 inhibitor, MK-1775, with p53 expression determining the sensitivity of cells to the drug response. Thus, our work highlights the importance of improved therapeutic strategies for patients with various cancer types and may explain why some patients respond better to WEE1 inhibitors.


Assuntos
Proteína Quinase CDC2/metabolismo , Perda do Embrião/enzimologia , Embrião de Mamíferos/enzimologia , Mitose , Fase S , Substituição de Aminoácidos , Animais , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perda do Embrião/genética , Perda do Embrião/patologia , Embrião de Mamíferos/patologia , Ativação Enzimática , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...