Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 685
Filtrar
1.
Viruses ; 16(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066195

RESUMO

Omsk hemorrhagic fever virus (OHFV) is a member of the tick-borne encephalitis virus (TBEV) complex of the Flaviviridae family. Currently, there are no data on the cross-reactivity of antibodies to the NS1 proteins of OHFV and TBEV. Such data are of major interest for monitoring viral encephalitis of unknown etiology due to the increasing geographical distribution of OHFV. In this study, a recombinant OHFV NS1 protein was produced using the Escherichia coli expression system and purified. The recombinant OHFV NS1 protein was recognized by specific mice immune ascetic fluids to the native OHFV NS1 protein. A Western blot analysis and ELISA of the recombinant NS1 proteins of OHFV and TBEV were used to study the cross-reactivity of antibodies from immune ascites fluid obtained from OHFV-infected mice and mAbs against TBEV NS1. Anti-TBEV NS1 mouse monoclonal antibodies (mAbs) have been shown to not be cross-reactive to the OHFV NS1 protein. Sera from patients with confirmed tick-borne encephalitis (TBE) were examined by ELISA using recombinant OHFV NS1 and TBEV NS1 proteins as antigens. It was shown for the first time that cross-reactive antibodies to the OHFV NS1 protein were not detected in the sera of TBE patients, whereas the sera contained antibodies to the TBEV NS1 protein.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Proteínas Recombinantes , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Encefalite Transmitida por Carrapatos/sangue , Reações Cruzadas/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Animais , Humanos , Camundongos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Camundongos Endogâmicos BALB C , Feminino
2.
PLoS One ; 19(6): e0305603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913668

RESUMO

Tick-borne encephalitis (TBE) is usually diagnosed based on the presence of TBE virus (TBEV)-specific IgM and IgG antibodies in serum. However, antibodies induced by vaccination or cross-reactivity to previous flavivirus infections may result in false positive TBEV serology. Detection of TBEV RNA may be an alternative diagnostic approach to detect viral presence and circumvent the diagnostic difficulties present when using serology. Viral RNA in blood is commonly detectable only in the first viremic phase usually lasting up to two weeks, and not in the second neurologic phase, when the patients contact the health care system and undergo diagnostic work-up. TBEV RNA has previously been detected in urine in a few retrospective TBE cases in the neurologic phase, and furthermore RNA of other flaviviruses has been detected in patient saliva. In this study, blood, saliva and urine were collected from 31 hospitalised immunocompetent patients with pleocytosis and symptoms of aseptic meningitis and/or encephalitis, suspected to have TBE. We wanted to pursue if molecular testing of TBEV RNA in these patient materials may be useful in the diagnostics. Eleven of the 31 study patients were diagnosed with TBE based on ELISA detection of TBEV specific IgG and IgM antibodies. None of the study patients had TBEV RNA detectable in any of the collected patient material.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Imunoglobulina M , RNA Viral , Saliva , Humanos , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/urina , Encefalite Transmitida por Carrapatos/sangue , Encefalite Transmitida por Carrapatos/virologia , Encefalite Transmitida por Carrapatos/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Saliva/virologia , RNA Viral/urina , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Imunoglobulina M/sangue , Imunoglobulina M/urina , Imunoglobulina G/sangue , Imunoglobulina G/urina , Anticorpos Antivirais/sangue , Idoso de 80 Anos ou mais , Imunocompetência , Hospitalização
3.
Antiviral Res ; 228: 105941, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901737

RESUMO

Tick-borne encephalitis virus (TBEV) is a tick-borne flavivirus that induces severe central nervous system disorders. It has recently raised concerns due to an expanding geographical range and increasing infection rates. Existing vaccines, though effective, face low coverage rates in numerous TBEV endemic regions. Our previous work demonstrated the immunogenicity and full protection afforded by a TBEV vaccine based on virus-like particles (VLPs) produced in Leishmania tarentolae cells in immunization studies in a mouse model. In the present study, we explored the impact of adjuvants (AddaS03™, Alhydrogel®+MPLA) and administration routes (subcutaneous, intramuscular) on the immune response. Adjuvanted groups exhibited significantly enhanced antibody responses, higher avidity, and more balanced Th1/Th2 response. IFN-γ responses depended on the adjuvant type, while antibody levels were influenced by both adjuvant and administration routes. The combination of Leishmania-derived TBEV VLPs with Alhydrogel® and MPLA via intramuscular administration emerged as a highly promising prophylactic vaccine candidate, eliciting a robust, balanced immune response with substantial neutralization potential.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antivirais , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Leishmania , Vacinas Sintéticas , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Camundongos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Encefalite Transmitida por Carrapatos/prevenção & controle , Encefalite Transmitida por Carrapatos/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Leishmania/imunologia , Feminino , Adjuvantes de Vacinas/administração & dosagem , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Imunogenicidade da Vacina , Injeções Intramusculares , Camundongos Endogâmicos BALB C , Interferon gama/imunologia , Células Th1/imunologia
4.
Vaccine ; 42(13): 3180-3189, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614954

RESUMO

BACKGROUND: Tick-borne encephalitis (TBE) virus infects the central nervous system and may lead to severe neurological complications or death. This study assessed immunogenicity, safety, and tolerability of TBE vaccine in Japanese participants 1 year of age and older. METHODS: This phase 3, multicenter, single-arm, open-label study was conducted in Japanese adult (≥ 16 years) and pediatric (1-< 16 years) populations. Participants received a single 0.5-mL (adult) or 0.25-mL (pediatric) dose of TBE vaccine at each of 3 visits. The primary endpoint was the proportion of participants who were seropositive (neutralization test [NT] titer ≥ 1:10) 4 weeks after Dose 3. Secondary and exploratory endpoints included NT seropositivity rates 4 weeks after Dose 2, immunoglobulin G (IgG) seropositivity 4 weeks after Doses 2 and 3, NT geometric mean titers (GMTs), IgG geometric mean concentrations (GMCs), and geometric mean fold rises. Primary safety endpoints were frequencies of local reactions, systemic events, adverse events (AEs), and serious AEs. RESULTS: Among 100 adult and 65 pediatric participants, 99.0 % and 100.0 % completed the study, respectively. NT seropositivity was achieved in 98.0 % adult and 100.0 % pediatric participants after Dose 3; seropositivity after Dose 2 was 93.0 % and 92.3 %, respectively. In both age groups, IgG seropositivity was ≥ 90.0 % and ≥ 96.0 % after Doses 2 and 3, respectively; GMTs and GMCs were highest 4 weeks after Dose 3. Reactogenicity events were generally mild to moderate in severity and short-lived. AEs were reported by 15.0 % (adult) and 43.1 % (pediatric) of participants. No life-threatening AEs, AEs leading to discontinuation, immediate AEs, related AEs, or deaths were reported. No serious AEs were considered related to TBE vaccine. CONCLUSIONS: TBE vaccine elicited robust immune responses in Japanese participants 1 year of age and older. The 3-dose regimen was safe and well tolerated, and findings were consistent with the known safety profile of this TBE vaccine. CLINICALTRIALS: gov: NCT04648241.


Assuntos
Anticorpos Antivirais , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Imunoglobulina G , Vacinas Virais , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , População do Leste Asiático , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Encefalite Transmitida por Carrapatos/imunologia , Voluntários Saudáveis , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Japão , Testes de Neutralização , Vacinas Virais/imunologia , Vacinas Virais/efeitos adversos , Vacinas Virais/administração & dosagem , Idoso de 80 Anos ou mais
5.
J Clin Immunol ; 44(5): 116, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676861

RESUMO

PURPOSE: A patient with X-linked agammaglobulinemia (XLA) and severe tick-borne encephalitis (TBE) was treated with TBE virus (TBEV) IgG positive plasma. The patient's clinical response, humoral and cellular immune responses were characterized pre- and post-infection. METHODS: ELISA and neutralisation assays were performed on sera and TBEV PCR assay on sera and cerebrospinal fluid. T cell assays were conducted on peripheral blood the patient and five healthy vaccinated controls. RESULTS: The patient was admitted to the hospital with headache and fever. He was not vaccinated against TBE but receiving subcutaneous IgG-replacement therapy (IGRT). TBEV IgG antibodies were low-level positive (due to scIGRT), but the TBEV IgM and TBEV neutralisation tests were negative. During hospitalisation his clinical condition deteriorated (Glasgow coma scale 3/15) and he was treated in the ICU with corticosteroids and external ventricular drainage. He was then treated with plasma containing TBEV IgG without apparent side effects. His symptoms improved within a few days and the TBEV neutralisation test converted to positive. Robust CD8+ T cell responses were observed at three and 18-months post-infection, in the absence of B cells. This was confirmed by tetramers specific for TBEV. CONCLUSION: TBEV IgG-positive plasma given to an XLA patient with TBE without evident adverse reactions may have contributed to a positive clinical outcome. Similar approaches could offer a promising foundation for researching therapeutic options for patients with humoral immunodeficiencies. Importantly, a robust CD8+ T cell response was observed after infection despite the lack of B cells and indicates that these patients can clear acute viral infections and could benefit from future vaccination programs.


Assuntos
Agamaglobulinemia , Anticorpos Antivirais , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Doenças Genéticas Ligadas ao Cromossomo X , Imunoglobulina G , Linfócitos T , Humanos , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/terapia , Masculino , Agamaglobulinemia/imunologia , Agamaglobulinemia/terapia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Anticorpos Antivirais/sangue , Linfócitos T/imunologia , Resultado do Tratamento , Adulto , Imunização Passiva/métodos
7.
Nature ; 628(8009): 844-853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570685

RESUMO

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Assuntos
Alelos , DNA Polimerase gama , Vírus da Encefalite Transmitidos por Carrapatos , Herpesvirus Humano 1 , Tolerância Imunológica , SARS-CoV-2 , Animais , Feminino , Humanos , Masculino , Camundongos , Idade de Início , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , DNA Polimerase gama/genética , DNA Polimerase gama/imunologia , DNA Polimerase gama/metabolismo , DNA Mitocondrial/imunologia , DNA Mitocondrial/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Efeito Fundador , Técnicas de Introdução de Genes , Herpes Simples/genética , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/imunologia , Mutação , RNA Mitocondrial/imunologia , RNA Mitocondrial/metabolismo , SARS-CoV-2/imunologia
8.
J Neuroinflammation ; 20(1): 213, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737190

RESUMO

BACKGROUND: Type I interferons (IFN-I) are fundamental in controlling viral infections but fatal interferonopathy is restricted in the immune-privileged central nervous system (CNS). In contrast to the well-established role of Interferon Regulatory Factor 7 (IRF7) in the regulation of IFN-I response in the periphery, little is known about the specific function in the CNS. METHODS: To investigate the role for IRF7 in antiviral response during neurotropic virus infection, mice deficient for IRF3 and IRF7 were infected systemically with Langat virus (LGTV). Viral burden and IFN-I response was analyzed in the periphery and the CNS by focus formation assay, RT-PCR, immunohistochemistry and in vivo imaging. Microglia and infiltration of CNS-infiltration of immune cells were characterized by flow cytometry. RESULTS: Here, we demonstrate that during infection with the neurotropic Langat virus (LGTV), an attenuated member of the tick-borne encephalitis virus (TBEV) subgroup, neurons do not rely on IRF7 for cell-intrinsic antiviral resistance and IFN-I induction. An increased viral replication in IRF7-deficient mice suggests an indirect antiviral mechanism. Astrocytes rely on IRF7 to establish a cell-autonomous antiviral response. Notably, the loss of IRF7 particularly in astrocytes resulted in a high IFN-I production. Sustained production of IFN-I in astrocytes is independent of an IRF7-mediated positive feedback loop. CONCLUSION: IFN-I induction in the CNS is profoundly regulated in a cell type-specific fashion.


Assuntos
Encefalite Transmitida por Carrapatos , Fator Regulador 7 de Interferon , Interferon Tipo I , Animais , Camundongos , Anticorpos , Astrócitos , Sistema Nervoso Central , Fator Regulador 7 de Interferon/genética , Encefalite Transmitida por Carrapatos/imunologia
9.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674524

RESUMO

Tick-borne encephalitis (TBE) is an emerging zoonosis that may cause long-term neurological sequelae or even death. Thus, there is a growing interest in understanding the factors of TBE pathogenesis. Viral genetic determinants may greatly affect the severity and consequences of TBE. In this study, nonstructural protein 1 (NS1) of the tick-borne encephalitis virus (TBEV) was tested as such a determinant. NS1s of three strains with similar neuroinvasiveness belonging to the European, Siberian and Far-Eastern subtypes of TBEV were studied. Transfection of mouse cells with plasmids encoding NS1 of the three TBEV subtypes led to different levels of NS1 protein accumulation in and secretion from the cells. NS1s of TBEV were able to trigger cytokine production either in isolated mouse splenocytes or in mice after delivery of NS1 encoding plasmids. The profile and dynamics of TNF-α, IL-6, IL-10 and IFN-γ differed between the strains. These results demonstrated the involvement of TBEV NS1 in triggering an immune response and indicated the diversity of NS1 as one of the genetic factors of TBEV pathogenicity.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Proteínas não Estruturais Virais , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Interleucina-10/genética , Zoonoses , Proteínas não Estruturais Virais/metabolismo
10.
J Virol ; 96(18): e0081822, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36098513

RESUMO

Tick-borne encephalitis virus (TBEV) is an important human arthropod-borne virus that causes tick-borne encephalitis (TBE) in humans. TBEV acutely infects the central nervous system (CNS), leading to neurological symptoms of various severity. No therapeutics are currently available for TBEV-associated disease. Virus strains of various pathogenicity have been described, although the basis of their diverse clinical outcome remains undefined. Work with infectious TBEV requires high-level biocontainment, meaning model systems that can recapitulate the virus life cycle are highly sought. Here, we report the generation of a self-replicating, noninfectious TBEV replicon used to study properties of high (Hypr) and low (Vs) pathogenic TBEV isolates. Using a Spinach2 RNA aptamer and luciferase reporter system, we perform the first direct comparison of Hypr and Vs in cell culture. Infectious wild-type (WT) viruses and chimeras of the nonstructural proteins 3 (NS3) and 5 (NS5) were investigated in parallel to validate the replicon data. We show that Hypr replicates to higher levels than Vs in mammalian cells, but not in arthropod cells, and that the basis of these differences map to the NS5 region, encoding the methyltransferase and RNA polymerase. For both Hypr and Vs strains, NS5 and the viral genome localized to intracellular structures typical of positive-strand RNA viruses. Hypr was associated with significant activation of IRF-3, caspase-3, and caspase-8, while Vs activated Akt, affording protection against caspase-mediated apoptosis. Higher activation of stress-granule proteins TIAR and G3BPI were an additional early feature of Vs but not for Hypr. These findings highlight novel host cell responses driven by NS5 that may dictate the differential clinical characteristics of TBEV strains. This highlights the utility of the TBEV replicons for further virological characterization and antiviral drug screening. IMPORTANCE Tick-borne encephalitis virus (TBEV) is an emerging virus of the flavivirus family that is spread by ticks and causes neurological disease of various severity. No specific therapeutic treatments are available for TBE, and control in areas of endemicity is limited to vaccination. The pathology of TBEV ranges from mild to fatal, depending on the virus genotype. Characterization of TBEV isolates is challenging due to the requirement for high-containment facilities. Here, we described the construction of novel TBEV replicons that permit a molecular comparison of TBEV isolates of high and low pathogenicity.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Interações entre Hospedeiro e Microrganismos , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Ativação Enzimática , Fator Regulador 3 de Interferon/genética , Metiltransferases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas não Estruturais Virais/imunologia
11.
Cell Rep ; 38(7): 110388, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172138

RESUMO

Powassan virus (POWV) is a tick-borne pathogen for which humans are an incidental host. POWV infection can be fatal or result in long-term neurological sequelae; however, there are no approved vaccinations for POWV. Integral to efficacious vaccine development is the identification of correlates of protection, which we accomplished in this study by utilizing a murine model of POWV infection. Using POWV lethal and sub-lethal challenge models, we show that (1) robust B and T cell responses are necessary for immune protection, (2) POWV lethality can be attributed to both viral- and host-mediated drivers of disease, and (3) knowledge of the immune correlates of protection against POWV can be applied in a virus-like particle (VLP)-based vaccination approach that provides protection from lethal POWV challenge. Identification of these immune protection factors is significant as it will aid in the rational design of POWV vaccines.


Assuntos
Linfócitos B/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Linfócitos T/imunologia , Vacinação , Vírion/imunologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Modelos Animais de Doenças , Encefalite Transmitida por Carrapatos/virologia , Interações Hospedeiro-Patógeno/imunologia , Camundongos Endogâmicos C57BL
13.
J Virol ; 96(1): e0168221, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643436

RESUMO

Powassan viruses (POWVs) are neurovirulent tick-borne flaviviruses emerging in the northeastern United States, with a 2% prevalence in Long Island (LI) deer ticks (Ixodes scapularis). POWVs are transmitted within as little as 15 min of a tick bite and enter the central nervous system (CNS) to cause encephalitis (10% of cases are fatal) and long-term neuronal damage. POWV-LI9 and POWV-LI41 present in LI Ixodes ticks were isolated by directly inoculating VeroE6 cells with tick homogenates and detecting POWV-infected cells by immunoperoxidase staining. Inoculated POWV-LI9 and LI41 were exclusively present in infected cell foci, indicative of cell to cell spread, despite growth in liquid culture without an overlay. Cloning and sequencing establish POWV-LI9 as a phylogenetically distinct lineage II POWV strain circulating in LI deer ticks. Primary human brain microvascular endothelial cells (hBMECs) and pericytes form a neurovascular complex that restricts entry into the CNS. We found that POWV-LI9 and -LI41 and lineage I POWV-LB productively infect hBMECs and pericytes and that POWVs were basolaterally transmitted from hBMECs to lower-chamber pericytes without permeabilizing polarized hBMECs. Synchronous POWV-LI9 infection of hBMECs and pericytes induced proinflammatory chemokines, interferon-ß (IFN-ß) and proteins of the IFN-stimulated gene family (ISGs), with delayed IFN-ß secretion by infected pericytes. IFN inhibited POWV infection, but despite IFN secretion, a subset of POWV-infected hBMECs and pericytes remained persistently infected. These findings suggest a potential mechanism for POWVs (LI9/LI41 and LB) to infect hBMECs, spread basolaterally to pericytes, and enter the CNS. hBMEC and pericyte responses to POWV infection suggest a role for immunopathology in POWV neurovirulence and potential therapeutic targets for preventing POWV spread to neuronal compartments. IMPORTANCE We isolated POWVs from LI deer ticks (I. scapularis) directly in VeroE6 cells, and sequencing revealed POWV-LI9 as a distinct lineage II POWV strain. Remarkably, inoculation of VeroE6 cells with POWV-containing tick homogenates resulted in infected cell foci in liquid culture, consistent with cell-to-cell spread. POWV-LI9 and -LI41 and lineage I POWV-LB strains infected hBMECs and pericytes that comprise neurovascular complexes. POWVs were nonlytically transmitted basolaterally from infected hBMECs to lower-chamber pericytes, suggesting a mechanism for POWV transmission across the blood-brain barrier (BBB). POWV-LI9 elicited inflammatory responses from infected hBMEC and pericytes that may contribute to immune cell recruitment and neuropathogenesis. This study reveals a potential mechanism for POWVs to enter the CNS by infecting hBMECs and spreading basolaterally to abluminal pericytes. Our findings reveal that POWV-LI9 persists in cells that form a neurovascular complex spanning the BBB and suggest potential therapeutic targets for preventing POWV spread to neuronal compartments.


Assuntos
Vetores de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/virologia , Ixodes/virologia , Animais , Células Cultivadas , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/transmissão , Células Endoteliais , Ordem dos Genes , Genoma Viral , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferons/farmacologia , Pericitos/virologia , Filogenia , Replicação Viral/efeitos dos fármacos
14.
J Virol ; 96(1): e0113021, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34613785

RESUMO

Tick-borne encephalitis virus (TBEV), of the genus Flavivirus, is a causative agent of severe encephalitis in regions of endemicity of northern Asia and central and northern Europe. Interferon-induced transmembrane proteins (IFITMs) are restriction factors that inhibit the replication cycles of numerous viruses, including flaviviruses such as West Nile virus, dengue virus, and Zika virus. Here, we demonstrate the role of IFITM1, IFITM2, and IFITM3 in the inhibition of TBEV infection and in protection against virus-induced cell death. We show that the most significant role is that of IFITM3, including the dissection of its functional motifs by mutagenesis. Furthermore, through the use of CRISPR-Cas9-generated IFITM1/3-knockout monoclonal cell lines, we confirm the role and additive action of endogenous IFITMs in TBEV suppression. However, the results of coculture assays suggest that TBEV might partially escape interferon- and IFITM-mediated suppression during high-density coculture infection when the virus enters naive cells directly from infected donor cells. Thus, cell-to-cell spread may constitute a strategy for virus escape from innate host defenses. IMPORTANCE TBEV infection may result in encephalitis, chronic illness, or death. TBEV is endemic in northern Asia and Europe; however, due to climate change, new centers of endemicity have arisen. Although effective TBEV vaccines have been approved, vaccination coverage is low, and due to the lack of specific therapeutics, infected individuals depend on their immune responses to control the infection. IFITM proteins are components of the innate antiviral defenses that suppress cell entry of many viral pathogens. However, no studies on the role of IFITM proteins in TBEV infection have been published thus far. Understanding antiviral innate immune responses is crucial for the future development of antiviral strategies. Here, we show the important role of IFITM proteins in the inhibition of TBEV infection and virus-mediated cell death. However, our data suggest that TBEV cell-to-cell spread may be less prone to both interferon- and IFITM-mediated suppression, potentially facilitating escape from IFITM-mediated immunity.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/metabolismo , Encefalite Transmitida por Carrapatos/virologia , Interações Hospedeiro-Patógeno , Interferons/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Efeito Citopatogênico Viral , Resistência à Doença/genética , Resistência à Doença/imunologia , Suscetibilidade a Doenças , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/imunologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Família Multigênica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Replicação Viral
15.
PLoS Pathog ; 17(12): e1009678, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34855915

RESUMO

Kyasanur Forest disease virus (KFDV) and the closely related Alkhurma hemorrhagic disease virus (AHFV) are emerging flaviviruses that cause severe viral hemorrhagic fevers in humans. Increasing geographical expansion and case numbers, particularly of KFDV in southwest India, class these viruses as a public health threat. Viral pathogenesis is not well understood and additional vaccines and antivirals are needed to effectively counter the impact of these viruses. However, current animal models of KFDV pathogenesis do not accurately reproduce viral tissue tropism or clinical outcomes observed in humans. Here, we show that pigtailed macaques (Macaca nemestrina) infected with KFDV or AHFV develop viremia that peaks 2 to 4 days following inoculation. Over the course of infection, animals developed lymphocytopenia, thrombocytopenia, and elevated liver enzymes. Infected animals exhibited hallmark signs of human disease characterized by a flushed appearance, piloerection, dehydration, loss of appetite, weakness, and hemorrhagic signs including epistaxis. Virus was commonly present in the gastrointestinal tract, consistent with human disease caused by KFDV and AHFV where gastrointestinal symptoms (hemorrhage, vomiting, diarrhea) are common. Importantly, RNAseq of whole blood revealed that KFDV downregulated gene expression of key clotting factors that was not observed during AHFV infection, consistent with increased severity of KFDV disease observed in this model. This work characterizes a nonhuman primate model for KFDV and AHFV that closely resembles human disease for further utilization in understanding host immunity and development of antiviral countermeasures.


Assuntos
Modelos Animais de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/virologia , Febres Hemorrágicas Virais/virologia , Macaca nemestrina , Animais , Chlorocebus aethiops , Citocinas/sangue , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/patologia , Feminino , Células HEK293 , Febres Hemorrágicas Virais/imunologia , Febres Hemorrágicas Virais/patologia , Humanos , Linfonodos/virologia , Células Vero , Viremia
16.
Sci Rep ; 11(1): 24198, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921220

RESUMO

Certain immunizations including vaccination against tick-borne encephalitis virus (TBEV) have been suggested to confer cross-protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Within a prospective healthcare worker (HCW) cohort, we assessed the potentially protective role of anti-TBEV antibodies against SARS-CoV-2 infection. Among 3352 HCW, those with ≥ 1 previous TBEV vaccination (n = 2018, 60%) showed a reduced risk of SARS-CoV-2 seroconversion (adjusted odds ratio: 0.8, 95% CI: 0.7-1.0, P = 0.02). However, laboratory testing of a subgroup of 26 baseline and follow-up samples did not demonstrate any neutralizing effect of anti-TBEV antibodies against SARS-CoV-2 in live-virus neutralization assay. However, we observed significantly higher anti-TBEV antibody titers in follow-up samples of participants with previous TBEV vaccination compared to baseline, both TBEV neutralizing (p = 0.001) and total IgG (P < 0.0001), irrespective of SARS-CoV-2 serostatus. Based on these data, we conclude that the observed association of previous TBEV vaccination and reduced risk of SARS-CoV-2 infection is likely due to residual confounding factors. The increase in TBEV follow-up antibody titers can be explained by natural TBEV exposure or potential non-specific immune activation upon exposure to various pathogens, including SARS-CoV-2. We believe that these findings, although negative, contribute to the current knowledge on potential cross-immunity against SARS-CoV-2 from previous immunizations.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Pessoal de Saúde/estatística & dados numéricos , SARS-CoV-2/imunologia , Adulto , COVID-19/epidemiologia , COVID-19/virologia , Proteção Cruzada/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/virologia , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Estudos Prospectivos , SARS-CoV-2/fisiologia , Soroconversão , Vacinação
17.
Viruses ; 13(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34696468

RESUMO

Dogs are frequently infected with the tick-borne encephalitis virus (TBEV). However, to date, only a few clinically manifest cases of tick-borne encephalitis (TBE) have been reported in dogs. In this study, three-month-old beagle dogs were infected with TBEV through a subcutaneous injection. Body temperature, clinical signs, blood haematology, blood biochemistry, and immune responses were monitored for up to 28 days postinfection (p.i.). No changes in body temperature or clinical signs were observed in the infected dogs. Most haematology and blood biochemistry parameters were unchanged after the infection, except for a slight reduction in blood lymphocyte counts, but they were within the physiological range. Low-titre viraemia was detected in 2/4 infected dogs between days 1 and 3 p.i. All infected dogs developed a robust immune response, in terms of neutralising antibodies. Thus, TBEV infections lead to effective seroconversion in dogs. Next, to assess TBEV exposure in dogs in the TBEV-endemic region of the Czech Republic, we conducted a serosurvey. Virus neutralisation tests revealed TBEV-specific antibodies in 17 of 130 (13.07%) healthy dogs, which confirmed a high, but clinically inappreciable TBEV exposure rate in the endemic area. The seropositivity rate was similar (12.7%; 41 positives out of 323) in a subgroup of dogs with various clinical disorders, and it was 13.4% (23 out of 171) in a subgroup of dogs with signs of acute neurological disease. Two dogs with fatal acute meningoencephalitis showed positive results for TBEV-specific IgM and IgG antibodies. These data extended our understanding of the clinical presentation of TBEV infections.


Assuntos
Doenças do Cão/diagnóstico , Doenças do Cão/virologia , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/veterinária , Encefalite Transmitida por Carrapatos/virologia , Animais , Anticorpos Antivirais/sangue , República Tcheca , Modelos Animais de Doenças , Doenças do Cão/imunologia , Cães , Encefalite Transmitida por Carrapatos/imunologia , Feminino , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Testes de Neutralização , Zoonoses Virais/diagnóstico , Zoonoses Virais/imunologia , Zoonoses Virais/virologia
18.
Viruses ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452359

RESUMO

Tick-borne encephalitis virus (TBEV) causes 5-7 thousand cases of human meningitis and encephalitis annually. The neutralizing and protective antibody ch14D5 is a potential therapeutic agent. This antibody exhibits a high affinity for binding with the D3 domain of the glycoprotein E of the Far Eastern subtype of the virus, but a lower affinity for the D3 domains of the Siberian and European subtypes. In this study, a 2.2-fold increase in the affinity of single-chain antibody sc14D5 to D3 proteins of the Siberian and European subtypes of the virus was achieved using rational design and computational modeling. This improvement can be further enhanced in the case of the bivalent binding of the full-length chimeric antibody containing the identified mutation.


Assuntos
Anticorpos Antivirais/imunologia , Desenho Assistido por Computador , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , Sítios de Ligação de Anticorpos , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/terapia , Humanos , Camundongos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/uso terapêutico , Proteínas do Envelope Viral/imunologia
19.
Viruses ; 13(6)2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072119

RESUMO

Tick-borne encephalitis (TBE) has a substantial impact on human public health in many parts of Europe and Asia. Effective inactivated purified whole-virus vaccines are in widespread use in TBE-endemic countries. Nevertheless, vaccination breakthroughs (VBTs) with manifest clinical disease do occur, and their specific serodiagnosis was shown to be facilitated by the detection of antibodies to a non-structural protein (NS1) that is produced during virus replication. However, recent data have shown that NS1 is also present in the current inactivated vaccines, with the potential of inducing corresponding antibodies and obscuring a proper interpretation of NS1-antibody assays for diagnosing VBTs. In our study, we quantified anti-virion and anti-NS1 antibody responses after vaccination as well as after natural infection in TBE patients, both without and with a history of previous TBE vaccination (VBTs). We did not find significant levels of NS1-specific antibodies in serum samples from 48 vaccinees with a completed vaccination schedule. In contrast, all TBE patients mounted an anti-NS1 antibody response, irrespective of whether they were vaccinated or not. Neither the dynamics nor the extent of NS1-antibody formation differed significantly between the two cohorts, arguing against substantial NS1-specific priming and an anamnestic NS1-antibody response in VBTs.


Assuntos
Anticorpos Antivirais/sangue , Formação de Anticorpos , Vírus da Encefalite Transmitidos por Carrapatos/química , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Vacinação/estatística & dados numéricos , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Adolescente , Adulto , Idoso , Áustria , Criança , Pré-Escolar , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/efeitos adversos , Adulto Jovem
20.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33831141

RESUMO

Tick-borne encephalitis virus (TBEV) is an emerging human pathogen that causes potentially fatal disease with no specific treatment. Mouse monoclonal antibodies are protective against TBEV, but little is known about the human antibody response to infection. Here, we report on the human neutralizing antibody response to TBEV in a cohort of infected and vaccinated individuals. Expanded clones of memory B cells expressed closely related anti-envelope domain III (EDIII) antibodies in both groups of volunteers. However, the most potent neutralizing antibodies, with IC50s below 1 ng/ml, were found only in individuals who recovered from natural infection. These antibodies also neutralized other tick-borne flaviviruses, including Langat, louping ill, Omsk hemorrhagic fever, Kyasanur forest disease, and Powassan viruses. Structural analysis revealed a conserved epitope near the lateral ridge of EDIII adjoining the EDI-EDIII hinge region. Prophylactic or early therapeutic antibody administration was effective at low doses in mice that were lethally infected with TBEV.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Imunoglobulina G/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/genética , Células Cultivadas , Estudos de Coortes , Reações Cruzadas/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Encefalite Transmitida por Carrapatos/virologia , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Camundongos Endogâmicos BALB C , Homologia de Sequência de Aminoácidos , Análise de Sobrevida , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...